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This paper presents the GREENHOME environment, a toolkit providing several data analytical tools for metering household energy
consumption and CO2 footprint under di�erent perspectives. GREENHOME enables a multi-perspective analysis of household energy
consumption and CO2 footprint using and combining several variables through various statistics and data mining algorithms. This
elastic and multi-perspective analytics facility is an element of the originality of GREENHOME.reviewer To test GREENHOME, the paper
reports on experiments conducted for modelling and forecasting energy consumption and CO2 footprint in the context of the Triple-A
European project.
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1 INTRODUCTION

Global warming, and its impending follow-ups, have become a major global issue. Scientists and governments have agreed
that cleaner and sustainable solutions can help in reducing the impact of this phenomenon. Studies like [16, 33, 43, 58]
have agreed that the energy sector, speci�cally the electric sector, impacts carbon dioxide (CO2) emissions and can be
regulated by public policies to reduce greenhouse gases emissions. According to EU statistics [8], buildings represent
40% of all energy consumption and 36% of CO2 emissions in Europe due to the age of buildings in European cities. [48]
shows that if the current energy consumption pattern persists, the world’s energy consumption will increase more than
50% before 2030.

The concept of �smart building� has been introduced to address problems implied by this observation. The principle
is to integrate dati�cation1 into buildings to optimise their usage in terms of comfort and energy. A smart building uses
sensors and software for automating some processes like control lighting [5], climate [13], entertainment systems, and
1Technological trend turning many aspects of our life into data for comprehension and value extraction (https://en.wikipedia.org/wiki/Data�cation).
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2 G. Vargas-Solar, et al.

appliances [30]. It may include home security [30] such as access control and alarm systems and occupancy measures
[1]. Besides, the integration of smart measuring devices in a household via the Internet of things (IoT)2 allows collecting
information used for generating bene�cial insights to increase energy e�ciency in households and turn them into
smart ones [64]. For example, the energy consumption environment is an advanced metering infrastructure (AMI)
that measures, collects, analyses consumption, and communicates with metering devices according to a schedule or on
request [18, 36].

Advances in sensing and data analysis technology open the possibility of using collected data to be processed
and analysed to enhance the e�ciency of the energy consumption, and energy grid [53]. Discovering, analysing and
predicting energy consumption in buildings and households is an emerging research area. Academic and industrial works
have proposed methods to predict energy consumption. Some do not consider smart meter data, like the work reported
by [32], that proposes a two-stage long-term retail load forecast� model considering the residential customer’s attrition.
Others like [34], do use smart meter� data to forecast micro-grid settings to learn spatial information shared among
interconnected customers, and to address the over-�tting challenges [19] to predict buildings energy consumption
using time series data [42]. Studies and manifestos like [58] agree that it is essential to have a thorough understanding
of sustainable energy consumption.reviewer

This paper presents the GREENHOME environment that provides tools to scientists for combining di�erent variables
to produce energy consumption models. These models give di�erent energy consumption perspectives that can help to
understand and compare them. The environment enables a multi-perspective analysis of household energy consumption
and CO2 footprint using and combining several variables through di�erent statistics and data mining algorithms. To
test GREENHOME, the paper reports on experiments conducted for modelling and forecasting energy consumption
and CO2 footprint in a household in Picardie, a region in the north of France, using energy data collected during one
year3 in the context of the Triple-A European project.

GREENHOME implements two machine learning methods to forecast energy consumption: the auto-regressive
integrated moving average model (ARIMA) and the autoregressive model with exogenous terms (ARX). For the case
study used in our experiments concerning the estimation of energy consumption of a house in Picardie, we used data
collected hourly during 2018. Experimental results show that the ARX model is assessed with a better residential
mean square error (RMSE) than the ARIMA model. We show that the performance of the model increases by adding
exogenous variables. Both models report better performance than the naive forecast model-persistence method. Through
experiments, we compared how they adapt best to the analysis of the datasets. The application of these models on other
datasets may lead to di�erent results. Beyond the pertinence of using one model or another, we show the importance
of GREENHOME as an environment that facilitates comparing models on the same dataset with di�erent analytical
criteria but, in particular, the comparison of models and results across experiments of the same type, namely energy
consumption analysis.

The remainder of the paper is organised as follows. Section 2 discusses the background of smart metering analytics
(modelling and forecasting techniques). Section 3 introduces GREENHOME, our household energy consumption and
CO2 footprint metering and predicting system. Section 4 reports results on experiments regarding the data preparation
phase of experiments run on data sets about household energy consumption. Section 5 reports the setting and results of
a data science experiment regarding the computation of energy consumption and CO2 footprint. Section 6 introduces
our experiment regarding prediction models applied for forecasting energy consumption in a household. It describes

2See the definition in the glossary in appendix A. In the remainder of the section, terms tagged with a ‘*’ are defined in the appendix.
3Dataset available at https://github.com/javieraespinosa/Triple-A-household-energy-dataset
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results and discusses results. Section 7 introduces related work describing and comparing existing smart metering
systems. Section 8 concludes the paper and discusses future work.

2 BACKGROUND

This section introduces the most relevant aspects to consider when dealing with big data processing for the smart
grid. The study discusses the conditions in which data is collected in smart metering environments�. Then, aspects to
consider for analysing data for answering questions about power load analysis� and forecasting, anomaly detection�,
load pro�ling� and the associated architectures. This paper addresses the analysis and forecasting of energy consumption.
This section studies aspects to consider for addressing the problem.

Exploiting big data in a smart grid is done by collecting data by smart metering tools and analysing data for pro�ling
and forecasting power load. This collection and analysis are done through a reference architecture implemented by big
data smart grid environments.

2.1 Big Data Processing for the Smart Grid

Big data proposes strategies to analyse, extract information, and deal with datasets that are too large or complex for
traditional data-processing systems [31, 49]. There is a consensus about its characteristics described by the well-known
V’s model [31]: volume, velocity, variety, veracity and value. Other V’s have been also considered like validity [31] to
refer to the period during which data are representative, valid for a given use, and visibility [31] determining the point
of view from which data are collected and processed.

In the smart grid context, analysed and extracted big data can be collected using di�erent smart meters� installed in
buildings to gather information regarding the energy and gas consumption, meteorological measures and residents’
behaviour. The ability to extract valuable insights using big data processing can improve the e�ciency of the smart
grid, decrease consumption and maintain a production-consumption real-time balance.

Smart Grid Data Analytics. The survey reported in [47] queried people on top analytics initiatives�. It shows that
system modelling, asset optimisation and outage management are the drivers in utility operational expenditures. The
conditions in which the utility industry operates and its asset-intensive nature explains that the system modelling is on
the top of the list. Smart meters� data contribute to the implementation of load management and forecasting in two
aspects:

� Customer characterisation: The electricity consumption pro�le is related to the customer’s socio-demographic
status. This allows the classi�cation of customers. Therefore, the point is to recognise socio-demographic
information about customers from load pro�les and predict the loads according to their socio-demographic
classi�cation. Di�erent techniques, including fast Fourier transformation, sparse coding, and clustering, were
used to classify customers. In addition, data like location, �oor area, age of consumers, and several appliances
may help in the classi�cation.
� Demand response implementation (DR)�: DR has played a vital role in balancing the supply and demand for

electrical load [14]. Bill rebates, redeemable vouchers, discounts are some incentive payments derived from
DR programs. DR programs may lead to success only if these two factors are achieved: (i) how to operate DR
resources which are mainly related to customers, energy market, devices and utility company; and (ii) how to
measure DR performance. However, traditional baseline estimation cannot characterise uncertainties due to
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their deterministic modelling. This de�ciency often results in erroneous system operations and miscalculated
payments that discourage participating customers [46].

Smart Grid Big Data Analytics Architectures. The main objective of big data analytics� is to explore and process data
and transform it into meaningful information such as patterns of operation, alarm trends, fault detection, and control
commands [47]. It uses techniques proposed in di�erent domains like data mining, statistical analysis, machine learning
and arti�cial intelligence (AI). Smart Grid Analytics uses data science processes for combining di�erent solutions.
Therefore it uses di�erent technologies for managing, integrating and processing datasets, including Data warehouses
DWH, large scale data processing frameworks (e.g., Hadoop) and real-time processing (stream computing) [29]. For
instance:

� Data warehouses (DWH) are used for storage.
� Apache Hadoop is an open-source software library, a framework that allows for the parallel processing of large

data sets across clusters of commodity hardware using simple programming models.
� Stream computing tools monitor millions of events in a speci�c time window to react proactively, and they are

behaviour-based architectures where events are analysed in real-time and action performed and then stored in
databases for further analytics.

The smart metering components can be deployed in the cloud [56] using multiple back-end services that communicate
with the outside using three interfaces:

� Cloud gateway communicates with the sensors. It ingests device telemetry and ensures that the target devices
reliably receive control messages.
� Web Application Server is responsible for house residents and administrators’ interface. It provides a user

interface necessary for data visualisation and device management, and monitoring. It is also responsible for
securing these interfaces.
� Protocol Bridge provides the connection between the platform and an external platform. It translates between

the standard application protocol and the protocol used by the external system.

Network-centric architectures, for instance, Service-Oriented Architectures (SOA) and resource aggregation and
virtualization, are possible solutions to achieve flexibility and scalability in the grid control and monitoring infrastructure
[17]. For example, Fenix4 develops the concept of Virtual Power Plant to abstract and model the presence of a vast
number of distributed energy resources.reviewer.
Atat et al. in [3] propose a survey with a broad overview of data collection, storage, access, processing and analysis. The
way big data converge with smart energy systems is that of architectures (e.g., cloud, fog, edge) providing storage and
computing resources, and that of algorithms for processing and analysing data for modelling and predicting energy
consumption in many di�erent perspectives to uncover hidden pa�erns, unknown correlations and other helpful
information.reviewer

When combined with artificial intelligence, machine learning, smart grid Big Data analytics architectures, will bring
about new applications, services, and opportunities [3]. This strategy will help revolutionise the "smart planet" concept,
where smarter water management, health care, transportation, energy, and food will radically transform people’s
lives.reviewer

4http://www.fenix-project.org
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Energy consumption of big data environments.reviewer. Information and communications technologies (ICTs) can enable
powerful social, economic and environmental benefits. However, ICT systems give a non-negligible contribution to
world electricity consumption and CO2 footprint. reviewer

The increasing number of devices and IoT systems enabling cyber-physical industrial IoT environments may consume
substantial energy. Thus, the relevant energy e�iciency issues have led to the proposal of energy-e�icient architectures
[51, 59] consisting of sense entities, RESTful services hosted networks, cloud servers, and user applications. reviewer

Lorincz et al. [33] analyse the costs for the global annual energy consumption of telecommunication networks, estimate
the ICT sector CO2 footprint contribution, and predicts energy consumption of all connected user-related devices and
equipment between 2011�2030.

To reduce energy consumption at all levels of the stack, green wireless communications reason about the use
of environmentally sustainable materials, occupying less land space, accompanying less electromagnetic pollution,
together with waste recycling and reducing wastes, and cost reductions [57].reviewer

2.2 Forecasting Energy Consumption

Analysing time-oriented data and forecasting values using time series are classic problems that analysts face in the
�eld of energy consumption [21]. The focus is on short to medium-term forecasts where statistical methods are helpful.
Short-term predictions provide forecasting over days, weeks, or months to the future. Short-term forecast purpose is
identifying, modelling and interpolating patterns and insights launched by historical data. The motive for forecasting
in the electric consumption time series is that predictions are critical for various decision-making tasks like estimating
carbon footprint, reducing energy consumption, etc. The forecast here is a quantitative forecast, where the model uses
historical data and formally summarises patterns in data and statistically outcome a relationship between the previous
records and the estimated ones.

Forecasting Models. There are mainly three groups of forecasting models: engineering, statistical and arti�cial intelli-
gence models. A review of prediction methods can be found in [64] and [62]. Engineering methods are comprehensive
methods that use the structural characteristics of the building in the form of physical principles and thermodynamic
equations as well as environmental information like climate conditions and occupants’ activities. However, these
methods need �ne-grained details about the structure and the thermal characteristics of the building that unfortunately
are not always available [55].

Statistical methods use historical data to correlate between instance consumption and previous consumption and most
in�uencing variables. Consequently, the quality and quantity of historical data possess a crucial role in developing the
model. Regression models, conditional demand analysis (CDA), auto-regressive moving average (ARMA), autoregressive
integrated moving average (ARIMA) and Gaussian mixture models (GMM) are some examples of statistical models
[12, 25, 27, 54]. The objective is to achieve energy e�ciency and help stakeholders make decisions about di�erent
levels (region, city, quarter). The models are applied within data analytics�, and data science pipelines that can generate
continuous insight out of data produced by sensing buildings and households [38]. It is believed that the data science
approach can bring a new perspective to the study of energy e�ciency in buildings and electric savings [64]. Thus, data
science pipelines have been specialised in smart grid and smart metering analytics processes.

Forecasting Pipeline. The forecast process transforms a set of inputs into a set of outputs based on speci�c criteria.
The outputs’ set can be apprehended as a single result related to energy consumption per hour. The steps followed in
the forecast process are: (i) data preparation� that includes problem de�nition, data collection�, anomaly detection�
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6 G. Vargas-Solar, et al.

and attribute engineering; (ii) data analysis that includes selecting and �tting the model; (iii) validating the model; (iv)
deploying a forecasting model and �nally (v) monitoring the forecast model performance.

Model Fitting, Selection and Validation. For a given prediction problem, choosing one or more forecast models is
necessary and �tting the model to the data. Fitting is the process of estimating the model’s parameters using di�erent
methods, especially the method of least squares [7]. It is essential to de�ne the meaning of performance carefully. It is
tempting to evaluate performance based on the �t of the forecasting on the historical data. Many statistical measures
describe how well a model �ts a given data sample.

When more than one forecasting model seems reasonable for a particular application, forecast accuracy measures
can also be used to discriminate between competing models like using the one-step-ahead forecast errors:

eC (l)= yC - �y C (t-1)

Where �yC (t-1) is the forecast yC made one in a prior period. Suppose there are n observations for which forecast has
been made. Forecast accuracy standard measures are, for example, the mean error (ME), the mean square error (MSE)
and the residual mean square error, de�ned as follows:

"� = 1
=

˝=
C=1 4C „;”

2

The mean square error:

"(� = 1
=

˝=
C=1 j4C „;”” j

2

The residual mean square error: RMSE=
p
"(�

MSE and RMSE are estimates of the expected value of forecast error. Their values should be close to zero, meaning
that the forecast technique produces unbiased forecasts. If the mean square error drifts away from zero, this can show
that the underlying time series has changed in some fashion and that the forecasting technique has not tracked this
change. Both MSE and RMSE measure the variability in forecast error. The variability should be small. RMSE is a direct
estimator of the variance of the one-step-ahead forecast errors.

Selecting a model that provides the best �t to historical data generally does not necessarily result in the best forecast
model. Focusing on the model that produces the best historical �t often results in over-�tting. In general, the best
approach is to select the model that results in the smallest RMSE or MSE value when the model is run on top of data
not used for the �tting process. This is done after splitting data, one for model �tting and the other for performing
testing. It is called a cross-validation method.

Model validation is the process of evaluating the model chosen to determine how it is likely to perform in the desired
application. The principle of the validation pipeline is getting new inputs for the model, di�erent from the data used for
testing and training. Therefore, the data used to build the �nal model usually come from 3 datasets: (i) training dataset
that the model is initially �t on using a supervised method, (ii) the �tted model is used to predict the observation of
the testing dataset where the estimation error is calculated for evaluating the model and (iii) the validation dataset
used to provide an unbiased evaluation of a �nal model �t on the training dataset. This �nal dataset can stem from the
initial dataset or another one. A dataset that has never been used for training a model is called the holdout dataset. Data
splitting is used here; generally, 70% of the data set is used for testing, and 30% is used for validation. It goes beyond
evaluating the ��t� of the model to historical data toward the examination of the forecast errors when estimating fresh
new data.

Forecast Model Deployment. Model deployment [21] involves getting the model and the resulting forecast in use by a
customer. The user must participate to know how to exploit the model and decide how to visualise results. Monitoring
Manuscript submitted to ACM
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forecast model performances is a continuous process to ensure that the model deployed is still performing satisfactorily.
Sometimes, models that performed very well in the past might deteriorate, leading to a more signi�cant forecast error.

2.3 Discussion

This section introduced the state of the art for energy consumption and carbon footprinting environments. Big data
analytics, machine learning and arti�cial intelligence are employed in the smart metering environment to extract
functional patterns from the massive amount of data collected from the smart meters. Combining these techniques makes
it possible to predict energy consumption and then estimate and predict carbon footprint. Measuring these consumption
references and associating them with human behaviour and economic aspects (energy invoice) can encourage people to
develop strategies to decrease their consumption. However, applying these analytics still faces numerous di�culties, as
most utilities and customers are uncertain about the results produced by the analytics. Therefore, our work proposes
an environment, namely GREENHOME, that enables the application of analytics and prediction combining di�erent
variables and models to observe energy consumption and CO2 footprint in households under di�erent perspectives.

3 SMART ENERGY AND CO2 FOOTPRINT METERING ENVIRONMENT

GREENHOME is a smart metering energy and CO2 footprint environment that analyses household energy consumption.
GREENHOME lets scientists combine di�erent variables to produce models that give di�erent energy consumption
perspectives to understand and compare. GREENHOME was implemented and validated through an experiment de�ned
in the context of the Triple-A European project5 willing to show homeowners that, with behaviour changes and
investment in carbon-free technologies, both energy consumption and CO2 footprint can decrease.

IoTfusion layer

Big / edge persistencesupport

Data 
preparation

Data analyticslayer

Sensinglayer

Storage & fusion layer

Modelling
energy-

consumption

EstimatingCO2 
footprint

Predictingenergy-
consumption& 
CO2 footprint

Analyticsvisualizationlayer

Social networks
Household

Meteorology

Fig. 1. GREENHOME general architecture

5http://www.triple-a-interreg.eu
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The GREENHOME architecture is organised in four layers (see Figure 1). Two external layers are devoted to input
and output. From the input side, GREENHOME is fed with data stemming from smart metering sensors inside and
outside households, from meteorological services for exogenous variables, and we also consider a social aspect with data
produced by social network services that communicate information about residents habits6. The output information of
GREENHOME is given with visual results combining di�erent dashboards. The visualisation layer is an interface to
visualise di�erent components using dashes. The primary purpose is to provide a decision-making tool using dashes,
including tables, graphics, graphs, and other visual elements that best help understand data.

Two internal layers of GREENHOME are the data storage and fusion layers. They are externalised towards the cloud.
GREENHOME relies on services devoted to IoT� data fusion, and REST� services provision for Web and storage services
that ensure data persistence and data feeding to processes that run energy models.

The core of GREENHOME is the Data Analytics layer, which provides libraries for designing data science pipelines
to build a di�erent analysis method of a given problem (e.g., energy and CO2 metering and consumption prediction).

3.1 Sensing, Fusion and Storage Layers

The sensing layer gives access to di�erent metering tools (i.e., things) used to collect data from three types of sources: (i)
social networks, which are REST services providing Tweets, Facebook posts, etc., producing insights related to energy
consumption, (ii) weather stations in the speci�c locations, and (iii) sensors equipped near and inside the household
to collect meteorology data. Combining a set of sensors, social data through a communication network can lead to
di�erent estimations of households’ energy consumption and the CO2 footprint. Data collected from things (sensors)
connected to the Internet are sent to the cloud via communication protocols provided by the IoT fusion layer.

The IoT� fusion layer integrates heterogeneous data to produce consistent and useful collections. The edge persistence
support provides communication between heterogeneous data from di�erent sources and the data analytics layer.
Sensor data fusion is performed using several algorithms, including central limit theorem, Kalman �lter, Bayesian
networks, Dempster-Shafer, and convolutional neural network [9, 35, 39]. The storage layer stores integrated data
relying upon a combination of several systems such as HDFS and NoSQL systems like Apache HBase7.

3.2 Analytics and Prediction Layer

The data analytics layer is the core of the metering environment. It provides analytics tools that implement di�erent
algorithms to prepare data, model energy consumption, estimate CO2 footprint and predicts energy consumption.

Data Fusion Services. Stored data undergo two processes before being analysed: cleaning and integration. Data
cleaning validates and pre-processes data integrating di�erent sources into a dataset that can be analysed. Data
cleaning consists of three phases: (i) adding metadata to the original data to document the procedure of data acquisition
considering information related to a data source and the version of the collector; (ii) detecting bad data for tracking
anomalous values and tagging them as missing or bad data; (iii) extracting features and deriving new data from raw
datasets. Dataset integration merges di�erent datasets and provides homogeneous datasets adapted for target analytics.

Data Preparation Services. These services transform integrated data to match the format expected by the data
analytics services. Transformations include grouping or joining data. Depending on the purpose of the study, it is
possible to prepare small datasets (i.e., samples) derived from an extensive initial dataset, applying traditional statistics.

6In the current GREENHOME version, the social data harvesting is not yet implemented and exploited. This concerns our current work.
7https://hbase.apache.org
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Analytics and prediction services implement statistical and machine learning methods to estimate and forecast energy
consumption and CO2 footprint. Predictive techniques are based on models to explain, cluster, forecast the variables
under study. The main output is trained models that predict the CO2 footprint and energy consumption.

The visualisation layer uses the results to create graphics representing the relationship among variables, such as
energy consumption and CO2 footprint.
The study, modelling, estimation and prediction of energy consumption in households requires considering data
concerning architectural, social, behavioural, technical, natural variables. These data are collected in di�erent conditions
and are not always available or cannot always be correlated because of mathematical or privacy constraints. Analytics
environments must be flexible because they should provide insight into energy consumption with the data they have
and then easily enhance their models when other datasets are liberated. The originality of GREENHOME is that new
data providers, datasets and models can be added as new components that can be then used to produce, discover and
predict consumption models and CO2 footprint.reviewer

To validate our GREENHOME, we developed experiments based on a use case described next.

3.3 Experiments

We used as an experiment scenario the Triple-A project that aims to identify and describe the household energy
consumption for increasing energy e�ciency and reducing CO2 emission of single-family houses8. The implemented
use case targets the observation of a household in Picardie under the supervision of SPEE [28], an integrated service of
energy renovation of private housing. SPEE uses smart meters to accomplish real-time measurements of the energy
used for heating and speci�c electricity. The house understudy is a working-class house with red bricks built in 1926.
A living space area of 85 m2 with only gas as heating energy. Gas is used too for heating water. The living room
is oriented southeast, and because of retirement, the single occupant of the house is all day all night at home. The
indoor temperature, as programmed, is 20°C day and 17°C at night. Data collected are: (i) electric consumption, (ii) gas
consumption, (iii) indoor/outdoor temperature, and (iv) outdoor humidity.

Other meteorological historical data were downloaded from the Meteoblue website9: (i) total precipitation, (ii)
snowfall amount, (iii) total cloud cover, (iv) sunshine duration, (v) shortwave radiation, and (vi) wind speed and
direction.

Electric and gas meters were built adapted to the house characteristics. A weather sensor was placed outside and
protected from sunlight on the north facade to capture outdoor temperature and humidity. A comfort sensor was
installed in the house where there is not much temperature and humidity variation. Sensed data are provided in 20 CSV
�les, collected between January 2018 and February 2019, with 4 CSV �les containing two months observations.

Data includes energy consumption and gas arranged in a cumulative order; indoor/outdoor temperature and
indoor/outdoor humidity. The gas consumption meter was installed on the 2nd of August. Gas consumption was
excluded from the modelling hereafter to ensure credibility in the analysis. Note that data are timestamped10. Python
3.7 was used as a programming language11. The Python implemented application runs on a Docker [44] environment.

Methodology. The use case requirement was to estimate the electric end-use e�ciency pro�le in buildings and carbon
footprint to derive a decision support tool for the electric sector. According to [2], understanding the residential building

8https://github.com/javieraespinosa/Triple-A-household-energy-analysis
9https://www.meteoblue.com/en
10A dashboard providing a graphical view of the data is available at https://triple-a-demo.herokuapp.com
11It is an interpreted, functional, high-level programming language with dynamic semantics.
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energy consumption as an independent statistical object is adequate for systematically accumulating the underlying data
for residential building energy consumption and understanding the conditions of its energy consumption. Therefore,
we proposed an energy consumption statistical system and explored e�ective statistical methods for studying building
energy consumption.

Fig. 2. Analytics metering pipeline

We designed an analytics metering pipeline encompassing four steps (see Figure 2): (i) data collections statistic
characterisation implementing statistics and plots to discover trends and patterns; (ii) analysis, comparison and
conjectures; (iii) data preparation� for deciding the appropriate strategy to replace missing values and outliers; (iv)
modelling energy consumption and estimating the derived CO2 footprint.

Na•ve Forest 
Persistence

ARIMA ARX 

With Exogenous 
Variables

Fig. 3. Forecasting energy consumption pipeline

Then we designed a forecasting energy consumption pipeline consisting of three steps (see Figure 3): (i) computing a
forecasting baseline using naive forest persistence; (ii) forecasting energy consumption without exogenous variables
using ARIMA; (iii) forecasting energy consumption with exogenous variables using ARX. The implementation of these
pipelines is described in sections 4, 5 and 6.

4 DATA COLLECTIONS PREPARATION

Preparing� data collections implies detecting and replacing outliers�. We applied three methods in the experiment:
extreme value analysis (EVA), proximity, and projection. We show that the box plot provided in the extreme value
analysis produces the best observation for outliers, and it was the one used for replacement in the experiment.

4.1 �antitative Profile of Data Collections

A quick statistical information on the numeric column related to energy consumption per hour using the Pandas method
pd.describe() shows the statistical description in Table 1.

The distribution of the values of the CSV is given as follows: (i) cumulative energy consumption with a timestamp
and no speci�c time di�erence; (ii) cumulative gas consumption with timestamp and no speci�c time di�erence; (iii)
external temperature and external humidity with timestamp recorded every 10 minutes; (iv) internal temperature and
internal humidity with timestamp recorded every 10 minutes.
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Table 1. Statistical description of the initial dataset

Count 102
Count 10152.000000
Mean 164.634161
Std 187.285460
Min 0.000000
25% 62.000000
50% 99.000000
75% 180.250000
Max 1985.000000

Note that there are missing observations after having a minimum equal to zero. To count missing data, we assigned
a true mark to all values in the subset of the Pandas DataFrame that have zero values. Then we count the number of
true values in each column. There were 148 values missing values in the electric consumption data, which is equal to 6
days. In contrast, only 15 observations were missing in the external temperature. The analysis did not retain the gas
consumption dataset because it contained too much missing data. In the context of the project, the gas metering was
an issue because we could not identify the right technology to use considering the characteristics of the observed
household and the national regulations. This issue had implications for the reliability of the estimations. However, it
was more important to avoid biased and wrong readings that could perturb the study.

We observed an enormous gap between the mean value (approximately 165) and the maximum value (approximately
1985). This issue required detecting outliers and replacing them12. The strategy here was to identify and analyse
representative sample data. Therefore, cumulative electric consumption data was shifted toward its initial format. After
computing the �rst discrete di�erence of each element in the consumption dataset, and due to missing slots, six values
were found as huge negative numbers and were replaced by zero. The new values are the estimated actual consumption
values grouped by timestamp (see Figure 4).
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Fig. 4. Electric consumption before sampling between Jan. 2018 and Feb. 2019

12Di�erent methods can be applied for replacing missing values. (i) Using a constant value that has meaning within the domain. (ii) Choosing a value
from other randomly selected records. (iii) Estimating a value using a model. (iv) Computing the mean, mode or median of the initial set.
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It was necessary to resample from the original data to create datasets, from which the variability of the quantiles of
interest could be assessed without long-winded and error-prone analytical calculations [23]. In our experiment, data
were sampled in two ways. The �rst sampling was done on the entire dataset as an hourly sampling. The main reason
is that exogenous variables were used in the model, including temperature, for example, and it was not appropriate to
use a unique temperature value for the whole day.
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Fig. 5. Daily energy consumption in 2018 and conjectures

Figure 5 shows a graph of the energy consumption after being daily re-sampled with some conjectures about this
initial analysis. A long-range period in December was detected as nearly zero daily consumption. This absence of
consumption can be explained assuming the absence of the occupant in the holidays period (see (a) in Figure 5). Close
to the beginning of the year, there is a consumption peak. This peak might re�ect the presence of other occupants, for
instance, for celebrating holidays (see (b) in Figure 5). Spring months do not show high consumption. Particularly March,
April and May have low daily consumption. This low daily consumption can be due to the increase in daylight saving
(see (c) in Figure 5). In Summer, the fact that people need some cooling devices due to high temperatures increases
the daily energy consumption in houses as shown in number (d) of Figure 5. Note that both dark red colours are
considered outliers. In the project, we intended to validate these conjectures by analysing social media posts that
could give insight on whether the inhabitant of the house was on vacation or in which periods the person was at
home or not. This analysis introduces privacy issues that are di�icult to address without careful processes. The house’s
inhabitant validated these conjectures, so our future work will develop human-in-the-loop techniques for completing
and validating analysis results.

4.2 Extreme Value Analysis

Extreme value analysis (EVA) deals with the extreme deviations from the median of probability distributions [41]. A
common way of approaching an extreme value problem is to divide the data into subsamples, then one of the extreme
value distributions is �tted to those observations [45].
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Outliers are often easy to spot in histograms. Indeed, the histogram in Figure 6 shows the presence of outliers. The
histogram in Figure 6 divides the range of values into 12 groups based on the month and then shows the frequency �
how many times the data falls into each group � through a bar graph.

!"# $%& '" ( ")( '"* !+# !+, "+- .%) /01 2%0#/3

!"#

$

%$$

&$$$

&%$$

'$$$

'$&(

Fig. 6. Energy consumption per hour grouped by month

No outliers are detected in the sample. The recommended next steps are to plot a scatter plot of the data and a
boxplot to observe outliers. Another plot that has been used is the scatter plot in Figure 7 (left) that groups data by
month. In this case, values far from the group of the same month are considered outliers. Our graph shows outliers in
June, August, September, October and November.
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Fig. 7. Sca�er plot for energy consumption per hour grouped by months (le�) and daily energy consumption over one year (right)

A scatter plot after grouping data by seasons provides insight into the problem, including detecting outliers and
analysing the change of behaviour over the seasons (see Figure 7 right).

The boxplot graph in Figure 8 spots outliers depicting groups of numerical data through their quartiles. It captured
the summary of the data with a simple box and eased comparison across groups13.

Observe that the median di�ers from one month and the other, with July having the highest median, May having
the lowest consumption variation, and December having the highest consumption variation. Some data points not

13The function boxplot() of Pandas has been used to plot a boxplot. We also used the seaborn library from the Pandas library to generate the graph
shown in Figure 8.
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Fig. 8. Boxplot for daily energy consumption grouped by months

included between the whiskers were plotted as an outlier with a star (above 8000) in February. The graph shows the
consumption per day for each month. It can be interesting to observe consumption per hour.

Therefore, another graph was plotted to spot outliers in each hour per month (see Figure 9). The mean value is
the same somehow in all months, and numerous outliers are spotted for all months. The suite of data exploration
tasks at di�erent granularities with the applied methods showed the importance of the kind of strategy adopted for
thoroughly understanding data from di�erent perspectives. Again having a tool like GREENHOME that provides an
environment that promotes this multifaceted exploration has been vital for the experiments and the project in general.
Such multi-facet analysis can help answer questions about the sensors used for observing variables, about the habits
of inhabitants, etc.
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Fig. 9. Boxplot for hourly energy consumption grouped by month

4.3 Proximity Method

Given a dataset spread in a space, the measured distance between two data points in the dataset can be used to quantify
the similarity between two data points. Consequently, data points being far from each other can be considered as
outliers�. The proximity method assumes that the proximity of an outlier to its nearest neighbours signi�cantly deviates
from the proximity of the data point to most of the other data points in the data set [11].
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Fig. 10. K-means clustering for hourly electric consumption with k=4,12

K-means clustering is a proximity method [42] that partitions data into k groups assigning them to the closest
cluster centroid. Once these centroids have been assigned, the distance between each object and a cluster centroid is
calculated, those with the most signi�cant distance are considered as outliers14. We de�ned four clusters assuming that
there are four seasons in the year, and then we de�ned twelve, given the twelve months of the year. The clustering
algorithm that clusters the dataset by month has a similar behaviour related to energy consumption resulting in a stable
consumption for the whole month (see Figure 10 K-means clustering for hourly electric consumption with k=4,12).
Clustering provides a view of the readings and understand whether readings and energy consumption are seasonal.
Seasonality is an initial hypothesis regarding energy consumption.

4.4 Interquartile Range Method

Projection methods are relatively simple to apply and quickly highlight outliers [63]. We used the Interquartile Range
Method (IQR) because it is well-adapted for exploring data with non-Gaussian distribution as in our experimental
case. The IQR is derived from the di�erence between the 75th and 25th percentiles of the data. It identi�es outliers by
de�ning limits on the sample values that are a value of k above the 75th or below the 25th. K is de�ned as 3 or above to
�nd extreme outliers15.

Percentiles: 25th = 62.000, 75th = 180.250, IQR = 118.250

Identified outliers: 1050

Non-outlier observations: 9102

Then the IQR can be de�ned as the di�erence between the 75th and 25th percentiles already calculated. The cuto�
of outliers was calculated as 1,5 times IQR. This cuto� was subtracted from the 25th percentile and added to the 75th
percentile to give the de�nite limits of data. After running the above strategy, the following results were derived: 1050
values were detected as outliers as they lay below the 25th percentile equal to 62, or they rise above the 75th percentile
equal to 180. As a result, the outliers represent 10% of the dataset.

14From sklearn.cluster library in Python, the K-Means function was used to cluster data classifying them into four groups of equal variance.
15The percentiles of the data series related to energy consumption were calculated using percentile() NumPy method that uses as parameter the data
set and the percentile desired.
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4.5 Comparison and Bad Data Replacement

A bad data item� is an outlier� that seems an unlikely observation produced when observing human behaviour. Three
methods were used in the above technical experiment.

(i) The Extreme value analysis plotted by a histogram giving the �rst glimpse for discovering outliers, then a scatter
plot to detect outliers easier. The basic plot drawn was the Box and Whisker plot to identify outliers.

(ii) The K-Means clustering algorithm was used to identify proximity between data points. The observation with
high proximity to the cluster centre was considered as an outlier.

(iii) The mathematical approach IQR computed the series, out of which an outlier is identi�ed. Based on the applied
clustering method, about 1050 values were detected as outliers and replaced by the mean value according to each
month.

The first quantitative exploration of the data content helped technicians in the project gain insight into how hardware
(i.e., sensors) were working and the �quality of the readings�. Energy consumption analysts could start having a first
view of the energy consumption behaviour, mainly when data were organised into seasons. This shows the importance
of performing comparative and multi-perspective datasets exploration.

5 COMPUTING HOUSEHOLD ENERGY CONSUMPTION AND CO2 FOOTPRINT MODELS

A sound understanding of the determinants that drive household electricity consumption is needed for e�ciently
planning and analysing e�ciency. We analysed variables to determine they in�uence energy consumption. We used
the sensitivity analysis proposed by the Morris model for performing the study. Finally, given the computed electric
consumption, we estimated the CO2 footprint. The complementary question that we aim to answer is which variables
within the household and external to it determine the energy consumption and contribute to increasing the size of the
CO2 footprint.

5.1 Sensitivity Analysis Using the Morris Model

Smart meters and home energy-monitoring services have produced data associated with variables that allow studying
determinants of energy use and energy-related behaviours like the external temperature, external humidity, total
precipitation, snowfall amount, total cloud cover, shortwave radiation, wind speed and wind direction.

We used the Morris Model to perform a sensitivity analysis to determine their in�uence on energy consumption.
The Sensitivity analysis ranks inputs according to their in�uence on �energy consumption� output variability; that is, it
screens out inputs, which have little or no in�uence on energy consumption. The results justify the choice of input
values to calibrate the model used for forecasting energy consumption.

The Morris analysis specifying the percentage in�uence of each parameter on the output energy consumption is
shown in Figure 11. Note that external humidity has the highest impact on the overall energy consumption, whereas
the snowfall amount is trivial. The shortwave radiation also in�uences the energy consumption in the house, mainly
due to lighting. A high value of total cloud cover means no radiation is exposed to the house, which requires using light,
leading to an increase in energy consumption. The external temperature might be linked to an electrical device such
as a fan that the occupant turns on when it is hot. For the time being and because we could not use social behaviour
data, we have not performed a correlation study among the household energy consumption behaviour, the variation of
exogenous variables and the actual actions of the inhabitants in a household.
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Fig. 11. Impact of di�erent input variables on the energy consumption

Table 2. Carbon emission factor from the Triple-A project (kgCO2/KWh)

Member state Displaced electricity Natural gas Heating Oil Biomass
UK 0.519 0.216 0.298 0.039

Netherlands 0.530 0.204 0.267 0/0.395
France 0.09 0.241 0.329 � 0.013

Belgium 0.258 0.202 0.279 0

5.2 Mathematical Estimation of the CO2 Footprint

The carbon footprint is a measure of the total amount of Carbon Dioxide (CO2) and other greenhouse gas emissions
directly or indirectly caused by an activity or accumulated over the life span of a product, person, organisation or
even a city or state [20]. A CO2 footprint determines the emission of greenhouse gases produced due to, directly and
indirectly, human activities. The methodologies for calculating the CO2 footprint are still evolving even if the carbon
footprint is becoming a standard criterion for managing greenhouse gas.

Each country uses di�erent sources and input variables to model annual energy use for gas and electricity and
derives an estimation of CO2 emission. Figure 2 provides the breakdown by Triple-A partner countries. The calculation
used to generate annual carbon savings for this project is given by:

C�$2
0 = » „��%" „:,�”���%� „:,�””�’�� „:6�$2�:,�” …

1000

where EDPM is the Energy demand before the measure, the EDPI is the Energy demand post-installation, and the
REF is the relevant emissions factor.

The formula used to calculate CO2 emissions based on electrical consumption inside a house is as follows:
C�$2
0 =[Energy consumption (kWh)]Örelevant emissions factor (kgCO2/ kWh) / 1000

However, the choices of the Triple-A project about the carbon emission factors concerning each country may
not be completely accurate. Thus, we decided to use values from the RØseau de Transport d’ÉlectricitØ (RTE), which
continuously provides an indicator of the carbon footprint of electricity generation in France, expressed in grams of
CO2 per kWh generated.

Figure 12 shows the estimation of CO2 footprint for each day of the 2018 year in our use case. The same peaks
spotted in electric consumption are spotted in the CO2 footprint. These observations suggest that energy consumption

Manuscript submitted to ACM



18 G. Vargas-Solar, et al.

must be reduced to reduce the CO2 footprint. Actions must be adopted, especially at Christmas and some months in
summer. Changes in habits can eventually lead to other energy consumption behaviour that will be compared in other
experiments in the Triple-A project, which gives context to our experiments.
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Fig. 12. Carbon footprint of hourly energy consumption

6 PREDICTING HOUSEHOLD ENERGY CONSUMPTION AND CO2 FOOTPRINT

GREENHOME provides three energy forecast methods that use smart meters measurements and weather data to predict
energy consumption in buildings. The pipeline implemented for studying energy consumption �rst applies the naive
forecast model, the ARIMA model, and the ARX model with other inputs that might decrease the performance gap.
These models provide di�erent perspectives on energy consumption in a household. As said before, the GREENHOME
environment promotes the comparison of these di�erent perspectives. Beyond the final performance assessment of the
models where one numerically performs be�er than the other, the variation of the criteria adopted for implementing
the pipelines seems more revealing (e.g., choosing exogenous variables or no). The complementary results determine
the type of questions that can be asked given specific combinations of variables.

6.1 Naive Forest Persistence Model

The naive forecast persistence model16 consists of three steps: (i) preparing the dataset to create a lagged representation
for each observation; (ii) using a resampling technique for splitting the dataset into train and test fragments; (iii) measure
performance to evaluate the model. e.g., mean squared error. The pseudocode of the function and its complexity is given
in Figure 13. For our experiments, the complexity of the algorithm did not determine the execution of the pipelines.
However, when data collections increase volume, it is capital to consider this complexity for choosing the size of test,
training and validation data sets concerning the available computing resources.

The persistence algorithm uses the value at time t-1 to expect the predicted output at time t . The creation of a lagged
representation of each observation means that given the record at t-1 , the record at t-1 is predicted. To fragment the

16https://www.sciencedirect.com/topics/engineering/persistence-model
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Fig. 13. Persistence model and complexity measures persistence

dataset into training and test datasets, we made a classi�cation of 99% for training and 1% for testing given the small
size of the initial dataset. The persistence method can be de�ned as a function that returns the input provided.

The persistence model was evaluated on the test dataset using the walk-forward validation method17. The Walk-
forward validation is a method where the model predicts each record in the dataset one at a time. Predictions were
made for each record in the test dataset. The predictions were compared to the actual values. The computed residual
mean squared error was RMSE=77.835.

The plot in Figure 14 �Persistence forecast model� shows the training dataset and the diverging of the predicted line
from the actual values. Note that the model is a step behind the initial values. The graph is not stationary and varies a
lot, which limits the persistence model.

The naive forecast persistence model is a baseline for the forecast problem; that is, if any other forecast model
achieves a performance at or below the baseline, the technique needs to be improved or abounded18.

6.2 ARIMA Model

An ARIMA model19 [26] was designed and developed to solve the forecasting problem of household energy consumption
(see Figure 15).

The model was con�gured both manually and automatically. Once the ARIMA model was used, its residual error
was calculated. The standard notation is ARIMA(p,d,q) where p denotes the number of lag records included in the

17https://en.wikipedia.org/wiki/Walk_forward_optimization
18This is essential in the forecast problem because it gives an idea about how well all other models perform on the problem.
19ARIMA is a class of statistical model for analyzing and forecasting time series data.
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Fig. 14. Persistence forecast model
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Fig. 15. ARIMA model pipeline

model, d denotes the degree of di�erencing, (i.e. the number of times the raw records are di�erenced) and q denotes the
order of moving average, which is the size of moving window.

The pseudocode and complexity measures of the ARIMA model are shown in Figure 1620.
Regarding complexity, ARIMA requires O(1) space for every modi�cation to store the new data. Each modi�cation

takes O(1) additional time to store the modi�cation at the end of the modi�cation history. Components for measuring
complexity are as follows:

� Ms = person hours of setting up the data and computer program for parameter estimation.
� C = computer use costs of analysis
� MT = mans hour of interpreting and tabulating computer results.
� T = number of observations in the dataset.

20Note that wherever q appears, it is multiplied by a factor of 2. This is to incorporate the fact that moving average and mixed processes are more
complicated than an auto-regressive process.
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Fig. 16. ARIMA model and complexity measures

� (p,d,q) = vector with components p, order of the AR portion of the model; d, degree of di�erencing to achieve
stationary; and q order of the MA portion of the model.
� Ms, C, and MTare each positively related to T, p, d, and q.

For simplicity, complexity costs will be measured as:

Ci = h.Ms + C + h.Mt

= h.Ms(T,p,d,q) + C(T,p,d,q) + h.MT(T,p,d,q)

Where h is the wage rate of the investigator.

(1) Ms� V1 + V2.T + V3.(p+2q+1)

(2) C � V4.T + V5.(p+2q) + V6.T.(p+2q+1) + V7.T.(p+2q+1) 2

(3) MT� V8.(p+2q+1)

For Ms, V1 re�ects the time needed to write standard subroutines for the numerical computation of parameters of
the marginal distribution, the time needed to write a program section transition from the original dataset to the dC�

di�erences, and program debugging time. V2.T time needed to tabulate and check data. V3.(p+2q+1) measures the time
needed to write p+q+1 integration routines.

For C, V4.T measure costs of compiling data, printing predictions, and computing statistics. V5.(p+2q) re�ects the cost
of compiling the remainder of the program deck. V6.T.(p+2q+1) measures costs of computing predictions and obtaining
plots of p+q+1marginal. V7.T.(p+2q+1) 2 measures cost of performing p+q+1integrations. For MT, V8.(p+2q+1) re�ects
the time needed to read and interpret the results of the analysis.
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Manual Con�guration. ARIMA(p,d,q) requires the parameters p, d and q. Usually, the con�guration is done manu-
ally21. As shown in Figure 17, the energy consumption data series is not-stationary.
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Fig. 17. Non-stationary plot of energy consumption per hour

A stationary version of the series is derived after di�erencing the original series, followed by a stationary test of the
new data series. The unit root is done as a test for stationary. Unit root if found, then the time series is not stationary.
The augmented Dickey-Fuller test gives a test statistic value -25.2, smaller than the critical value at 1%, equal to -3.43.
This accepts the rejection of the null hypothesis at a high level. The idea of rejecting the hypothesis con�rms that the
process has no unit root, and therefore the series is stationary.

The di�erence between the test statistic value and the critical value is more than 20. Therefore, any value of d greater
than 0 could be considered. This means that a di�erencing level of 2 can be used, and so d=2. Now, both the lag values
and the moving average parameters, p and q should be selected. These values can be derived from the autocorrelation
function plots and the partial autocorrelation function plots. By default, all lag values are plotted, which is a noisy plot.
This requires a good lag value de�nition, and as it is an hourly prediction, the best-chosen lag value is 25 since a similar
consumption pattern happens at the same hour of the previous day.

The left side of Figure 18 shows auto-correlation graphs. The �rst graph is condensed, with nothing to visualise.
Therefore, as mentioned, a lag=25 is signi�cant to the plot. The 2nd plot shows a correlation of 0.6 at lag=1, 0.4 at lag=2,
and then 0.2 at lag=3. It is straightforward to see that lag=2 results in a good starting of p at 2.

The right side of Figure 18 presents the partial auto-correlation graph with lag=25, indicating a good starting value
for q=1. The graph shows a partial auto-correlation equal to 0.55 at lag=1, then it drops signi�cantly to 0.1 at lag=2,
then there is no correlation at t-2 . The best value for q=1. This analysis suggests a start with ARIMA(2,1,2) that gives
an RMSE=65.025which is quite lower than the value generated by the persistence model.

Con�guring ARIMA using Grid Search. To con�rm the manual results, a grid search can be done to �nd best ARIMA
parameters to ensure that no other combination can result in better RMSE performance. The search will skip values that
will not converge. The values to search are: p: 0 to 4, d: 0 to 2, q: 0 to 4. This implied 300 runs of test harness, it took one
hour to execute22. The results shows that the best ARIMA model is ARIMA(2,1,3) with an RMSE=64.043, used next.
21The method statsmodels.tsa.stattools.adfuller() was used as a unit root to verify if data is stationary.
22Here, the function ARIMA()provided in the statsmodels.tsa.arima_model library, and the function mean_squared_error() provided by the
sklearn.metrics library were used.
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Fig. 18. Auto-correlation plot (le�) and partial auto-correlation plot (right)

Table 3. Brief statistics for residual error

Count 102
Mean -0.348572
Std 64.358404
Min -153.106851
25% -44.182336
50% -4.695801
75% 28.659611
Max 241.561941

Review Residual Error. As a �nal validation of the chosen model, a review of the residual error forecast should be
done. As an ideal case, the distribution of errors has to be a Gaussian distribution with the mean equal to zero. Brief
statistics and plots can check this.

The mean is a non-zero value of -0.5. This value assures that the predictions are biased. The distribution of residual
error is shown in Table 3.

Fig. 19. Distribution of residual error
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The plot suggests a Gaussian-like distribution with a long middle tail. This information can be used to bias the correct
prediction by adding -0.589739 to each forecast made. The predictions performance changed from 64.043 to 64.042.
Therefore, this bias correction can somehow be ignored, considering that the bias correction will increase complexity
and cost without even improving performance in the study case because the performance did not change at all.

Model Validation. The selected model must be validated. The �nal RMSE value is 64.121, which is not too far from
the previous calculated and expected value of 64.043. Figure 20 shows a plot of each prediction and expected value
for the time steps in the validation dataset. Some observations have (almost) the same values as the predicted ones
whenever there was no signi�cant deviation between one hour and the other. The model has a signi�cant performance
gap whenever there is a sudden change in the hourly energy consumption. Adding exogenous parameters as input to
the forecast model can be improved to improve the forecast and reduce the performance gap, which is explained in the
next section.
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Fig. 20. ARIMA forecast model plot

6.3 ARX Model

The ARX model is an autoregressive method with exogenous inputs (independent of the process to model)23. Auto-
regressive models express a univariate time series y= as a linear combination of past observations y=�1 and white noise
V= and are mathematically expressed as [37]:

~= =
˝<
8=1 „08 �~ „=�8” ‚ E=”

Where a8 and m represent respectively the auto-regressive coe�cient and auto-regressive order. Considering inputs
r= and output S= , the ARX model can be mathematically expressed as proposed in [37]:

B= =
˝
9 = 1<„0 9 �B „=�9”‚˝ 9=1< „19�A=�9‚D= ” ”

Where u= is white noise and a9 and b9 are p*p and p*q matrices, respectively.
ARX can be practical and e�ective when the parameter to be estimated a linear correlation with the input parameters

of the algorithm. It is also e�ective for determining the order of the system. Thus, it is necessary to evaluate the order
23According to Diversi et al. [24], ARX is the simplest model within the equation error family. It has many practical advantages concerning estimations,
and predictive use since its optimal predictors are always stable.
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of the ARX polynomial to determine the order of the polynomial that results in the least cost and error. The AKAIKE
criterion can be used to determine the most suitable order of the system [4]. The AKAIKE criterion is de�ned as an
estimator of the relative quality of statistical models for a given set of data.

Forecasting Energy Consumption with ARX.. The external temperature, external humidity, wind direction, and total
cloud coverage were the exogenous variables given as input for the forecast model of our experiment. The use of these
variables required implementing an auto-regression model that considered the change of the electric consumption
behaviour according to the exogenous variables. Di�erent input data were used in the model, out of which the following
lead to the minimum RMSE value with the highest performance about the AKAIKE value explained before. The
linear regression expression went as follows, with y: consumption, u0: external temperature, u1: external

humidity u2: wind direction, u3: radiation, u4: wind speed .

~ »:… = ‚0�537388~ »: � 1… ‚ 0�2407662D0»:… ‚ 0�503764D1»:… ‚ 0�010898D2»:… ‚ 0�035441D3»:… ‚ 0�105516D4»:… (1)
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Fig. 21. ARX forecast model plot

Figure 21 ARX Forecast Model plot shows that the model forecasts a month and a half period and a high-performance
gap with high peaks. Despite these issues, the forecast model successfully worked, as shown hereafter.

For the RMSE, a manual check for best parameters using di�erent input variables was done to test the model with
di�erent combinations. The combination mentioned above of input variables led to the lowest RMSE=55.843230.

6.4 Discussing Results

As the results have proved, both models work as long as they produce an RMSE value less than the RMSE value of the
baseline model, that is, the persistence model. However, the ARX model has an RMSE value less than the ARIMA model,
and this is so logical because the ARIMA model does not consider exogenous variables rather than previous observations
as an input for its forecast model. The idea of measuring energy consumption is of great interest and is full of magic and
weirdness because energy consumption behaviour is unpredictable. However, there are some cases where predictions
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can come true. The concept of predicting energy consumption without considering di�erent indirect variables may
work but not for every case. Much more, indirect variables that impact energy consumption di�ers from one condition
to another. For example, the household in the case study uses electricity only for lighting, while other households use
electricity for heating. For this reason, it seems nonsense to take into consideration the architecture of the house in
the �rst case, but it can have a substantial impact in the second case. For our future study in the Triple-A project,
the objective will be to produce datasets concerning a farm of houses with di�erent architectural characteristics and
locations. The interest in combining analysis with various pa�erns (architectural characteristics, exogenous variables
determined by geographical location, habits depending on the number of inhabitants and socio-economic group, etc.)
will lead to more accurate insight into energy consumption and carbon footprint.

7 SMART METERING SYSTEMS AND APPLICATIONS

A smart metering system� is an integrated infrastructure of smart meters, communication networks, and data manage-
ment systems that enables two-way communication between utilities and customers [6]. The two primary functions
are monitoring and control. Monitoring allows us to understand the way energy is consumed or generated at home
and display historical data on demand. Control indicates if the energy management system can act on one element
of the energy �ow in a house or a building (e.g., switch on/o� an appliance, adjust the in-house temperature, etc.).
Combined with customer technologies, the objective of a smart metering system is to encourage customers to reduce
energy consumption and carbon footprint [53]. It also allows utilities to o�er incentives to customers to reduce peaks
in energy demand and consumption at certain times. The following lines describe examples of these types of systems
and compare them with our proposal.

7.1 Social Smart Metering

Understanding energy consumption behaviour is an essential element in sustainable studies. Energy consumption
related information could be extracted from user-generated content posted on social media. Such work was proposed
in [52], where a pipeline helps identify energy-related terms in Twitter posts. Twitter posts were classi�ed into four
categories related to dwelling, leisure, food, and mobility according to the activity performed. A web application was
also developed that allows end-users to check their energy consumption based on analysis driven in the pipeline. The
main thing that makes social media data trending is that traditional ways of getting data, including smart meters, are
costly and may lack contextual information.

7.2 Netatmo Application

It is an easily con�gured application controlled by a smartphone (or tablet) to monitor and record the given local
environment. Netatmo weather stations consist of several sensors, which monitor inside and outside air temperature
(speci�ed manufacturers accuracy: � 0.3 �C) and relative humidity (� 3%), as well as indoor barometric pressure (�
1mb), carbon dioxide concentration and noise pollution. Optional additional measurements include precipitation and
wind, although these modules are less frequently purchased and data are less available. Data is transmitted wireless,
using a combination of Bluetooth and Wi-Fi, to the cloud where it can be accessed via a smart device, as well as being
made available online via a �weather map� on the Netatmo website with observations updated every 5 min24.

24Wikipedia, �Estimation Theory�, 2019. [Online]. Available: https://en.wikipedia.org/wiki/Estimation_theory.
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7.3 TOON Application

Toon is a smart thermostat solution developed by Quby (a company based in the Netherlands). The device o�ers a
touch screen display through which users can set their preferences. Toon is not reduced to just thermal management.
The device can provide valuable data on the building’s energy consumption and be used for security purposes. Toon
can interface with other smart devices such as smart plugs, Amazon Alexa and Philips Hue Lighting. Toon is an
internet-connected device, thus allowing users remote access to change or update settings. Below is a summary of the
speci�cation of Toon.

Utilities such as Eneco (Dutch utility) are also able to collect anonymous and aggregated data. This data is helpful for
scheduling, planning and allows end-users to compare their usage patterns to similar households. Subsequently, this
data can be used to propose an optimised heating schedule [15].

7.4 Smart energy projectsreviewer

EU-DEEP25 focuses on the importance of distributed energy resources by addressing technical challenges, economic
values and business models and drawing a set of recommendations. IntUBE26 deals with the energy e�iciency of single
and groups of buildings. eDIANA27 develops middleware and platforms to integrate buildings as nodes in the grid. A
further issue concerns making users aware of energy and environmental issues. The project BeAware28 proposes an
interactive game that monitors the environment to advise users and award them according to their behaviour. The
projects INTEGRAL29 and SmartHouse/SmartGrid30 propose multi-agent systems and home gateways to control local
energy production, energy market, demand-side, and load forecast. The AIM project31 models and manages domestic
appliances.reviewer.

7.5 Comparison

Existing systems vary a lot in the sensing technology used for sensing variables. This di�erence too introduces disparities
in the type of observed variables. The system in Picardie in the Triple-A project was done in cooperation with QUARTUM
that provides sensors for measuring/collecting electricity consumption (�electricity sensor�); measuring/collecting
temperature and humidity outside (�weather sensor�); measuring/collecting temperature and humidity inside (�comfort
sensor�); measuring/collecting gas consumption which is optional as not every household uses gas for heating (�gas
sensor�). The system also uses a tablet for showing the collected data. The data collected by the electricity, the weather
and the gas sensors are transmi�ed via radio frequency (433 MHz) to the tablet. The comfort sensor sends information
to the tablet via Bluetooth.
In general, systems monitor real-time energy consumption for providing an aggregated visual view to household

inhabitants. However, none of the studied environments addresses the carbon footprint of the consumed energy at the
level of households and buildings. Of course, energy consumption is related to energy consumption invoices but has a
less environmental impact. Only two environments worked on predictions of energy consumption under the aim of

25http://www.eudeep.com
26http://www.intube.eu
27http://www.artemis-ediana.eu
28http://www.energyawareness.eu/beaware
29http://integral-eu.com
30http://www.smarthouse-smartgrid.eu
31http://www.ict-aim.eu
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decreasing consumption. Both systems need the use of solar panels. The idea of providing a new environment that
predicts energy consumption while estimating carbon footprint is yet to come.
Prediction can be important for household inhabitants because they can plan and organise their activities beforehand
and learn from previous behaviour pa�erns to adjust them to adopt a green behaviour. The economic dimension
derived from a more intelligent energy consumption pa�ern can encourage the homeowners to invest in more accurate
sensing material and even in house structural modifications that can help to reduce consumption and carbon footprint.
The question is to determine to which extent human behaviour pa�erns can reduce these metrics and at which point
inhabitants need to modify architectural and structural modifications of the house to achieve greener consumption.

8 CONCLUSION AND FUTURE WORK

We have proposed GREENHOME, a smart metering energy and CO2 footprint environment, using a toolkit for
modelling and predicting energy consumption in households at di�erent granularities and from di�erent perspectives.
The experimental environment was implemented in a house in Picardie, where electrical consumption was predicted
using three di�erent models: the persistence model, ARIMA model, and ARX model after detecting anomalies to best �t
the model on the given data. The carbon footprint was also estimated using some mathematical equations.

The results show that the implemented ARX model, which adds exogenous variables as an input, results in less
RMSE value and better performance than the ARIMA model utilised. After a sensitivity analysis implemented using the
Morris method, we included exogenous variables to check which variables impact the most on the hourly consumption.
External temperature and external humidity were the two most signi�cant variables that a�ect consumption.
By applying the di�erent models for estimating energy consumption and forecasting, we identified the importance of

combining technical data stemming from sensors installed in the household with meteorology, location, architectural,
urban data, and social data representing inhabitants’ actual habits and behaviour. The study of variables sensitivity and
the experimentation of their use for forecasting energy consumption in households copes with the Triple-A project’s
objectives that are willing to increase awareness and easy access to the visualisation of variables that play a role in
their energy consumption and carbon footprint. This strategy shall result in increased adoption of behaviour that can
decrease energy consumption and carbon footprint. This strategy will also lead to the investment of house owners to
improve their houses with low-carbon technologies. At the same time, tools like GREENHOME will have to evolve,
proposing user-friendly decision-making interfaces for house owners and governmental decision-makers to identify
how to promote low-carbon behaviours and develop policies including funding to achieve the development of green
households.
Energy consumption and CO2 emissions in the household is a crucial element to achieve sustainability from social,
economic, and environmental perspectives. The sustainable development goals agreed in 2015 by the United Nations
discuss the importance of addressing energy consumption and CO2 emissions in many di�erent domains. In [58]
authors identify SDG-related research initiatives and activities and found that the majority of contributions to by the
IEEE and ACM research communities have mainly focused on the technical aspects. At the same time, there is a lack
of holistic social good perspectives. In particular, the problem of energy consumption in households calls for more
holistic strategies. Considering holistic approaches is part of our current work.reviewer

Smart meter data analytics is a promising area that incorporates di�erent �elds of science, including the machine-
learning �eld. It is, without doubt, a topic that will grow more important as long as the smart grid topic is developing,
where all parties involved should reap the environmental and economic bene�ts of progressing load forecasting and
estimating the carbon footprint.
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Therefore, it is crucial to develop multi-facet analytics platforms to predict energy consumption in buildings and
estimate their CO2 footprint. This multifaceted view can contribute to producing a better understanding of the behaviour
to adopt to help decrease global warming. For the time being, studies focus on smart metering produced data that can
be more or less precise depending on the installation of smart meters in households. Other data issued from social
media or annotated explicitly by the inhabitants can be complementary. However, integrating di�erent data retrieved
under di�erent conditions and contexts calls for the combination of analytics models. This combination must follow
rules that still need to be stated. As GREENHOME, platforms that serve as analytics labs where data scientists can
combine and explore di�erent models on top of heterogeneous datasets need to emerge and be consolidated.
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A GLOSSARY

Anomaly detection. Identi�cation of rare observations that raise suspicion after being signi�cantly di�erent from the other
observations that can be considered as bad data [53]. Anomaly detection and correction are vital for forecasting since a model with
outliers (see de�nition of outliers below) might result in biased parameters estimation.

Bad data. Refer to missing values or unusual patterns caused by unplanned events during data collection and communication (e.g.,
abnormal stops or restarts of the smart meter).

Data analytics. Analytical activities that varies along a continuum [47]: (i) descriptive analysis consisting of data visualisation,
data mining and aggregation reports targeting the understanding of the data stemming from consumption sensing to decide how to
process it; (ii) diagnostic analytics aiming the identi�cation of the cause of given events; (iii) predictive analytics addressing the ability
to make probabilistic predictions; (iv) prescriptive analytics that utilises techniques like simulation and decision support to �nd the
optimal strategies that can mitigate future risks.

Data preparation. Phase of the data analytics pipeline that includes data collection and anomaly detection. This phase also deals
with outliers that a�ect the quality of the model used.

Data collection. Refer to harvesting �relevant� and historical values (i.e., not all historical data are useful). Since storage and
harvesting changes over time, one has to deal with missing or corrupted data.
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Demand response implementation (DR). Change in the regular consumption of electric usage by end-users. This change is due to a
response to changes in the price over time or to incentive payments [40].

Internet of Things (IoT). Infrastructure of interrelated devices, mechanical and digital machines, and objects communicating over
the Internet. When applied to electric utilities in buildings, it promotes the implementation of a �Smart Building�.

Load pro�ling. Used to determine basic electricity consumption patterns of di�erent costumers’ groups by classifying consumers’
load curves according to their energy consumption behaviour: (i) direct clustering-based approach with di�erent classi�cation
techniques used like K-means[20] [42], hierarchical clustering [61], and self-organising map (SOM) [50]; (ii) indirect clustering includes
dimensionality reduction, load characteristics and uncertainty-based methods depending on the features extracted before clustering.
Note that most clustering techniques use historical data that requires techniques to deal with the huge amount of streaming data
gathered by smart meters.

Outlier. A data point is considered as an outlier when it diverges from an overall pattern on a sample.

Power load analysis. Power analysis performed on the distribution system to ensure balancing and no overloading in any place on
the grid. Load analysis results can be further used for load forecast and demand response programs.

Representational State Transfer (REST). Software architectural style that de�nes a set of constraints to be used for creating Web
services. Web services that conform to the REST architectural style, called RESTful services, provide interoperability between computer
systems on the internet. RESTful services allow the requesting systems to access and manipulate textual representations of Web
resources by using a uniform and prede�ned set of stateless operations.

Smart meter. Electronic device that records electric energy consumption and communicates data to the electricity supplier for
monitoring and billing [22]. The high frequency of data readings opens new possibilities for understanding the electricity demand
network [60]. By providing real-time data, a smart meter allows utility providers to optimise energy distribution while allowing
consumers to make smarter decisions about their energy consumption and associated carbon impact [10].

Smart metering environment. System that measures, collects, and analyses data collected by meters (i.e., physical variables like gas
and electric consumption, temperature, humidity, occupancy, etc.). A smart metering system consists of three main components:

(i) Smart meters installed in households that send data at a speci�c rate (e.g., each 5, 30 or 60 secs).
(ii) Communication networks to transmit data from and to the smart meters equipped in the households.

(iii) Data management system to store and process data, and send back data like billing information, load forecast, real-time carbon
footprint, etc.
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