N

N

Enriched nonconforming multiscale finite element
method for Stokes flows in heterogeneous media based
on high-order weighting functions
Qingqing Feng, Grégoire Allaire, Pascal Omnes

» To cite this version:

Qingqing Feng, Grégoire Allaire, Pascal Omnes. Enriched nonconforming multiscale finite element
method for Stokes flows in heterogeneous media based on high-order weighting functions. Multiscale
Modeling and Simulation: A SIAM Interdisciplinary Journal, 2022, 20 (1), 10.1137/21M141926X .
hal-03475694

HAL Id: hal-03475694
https://hal.science/hal-03475694v1

Submitted on 11 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-03475694v1
https://hal.archives-ouvertes.fr

w N

33
34
35
36

37

ENRICHED NONCONFORMING MULTISCALE FINITE ELEMENT
METHOD FOR STOKES FLOWS IN HETEROGENEOUS MEDIA
BASED ON HIGH-ORDER WEIGHTING FUNCTIONS *

Q. FENG', G. ALLAIRE!, AND P. OMNES$

Abstract. This paper addresses an enriched nonconforming Multiscale Finite Element Method
(MsFEM) to solve viscous incompressible flow problems in genuine heterogeneous or porous media. In
the work of [B. P. Muljadi, J. Narski, A. Lozinski, and P. Degond, Multiscale Modeling & Simulation
2015 13:4, 1146-1172] and [G. Jankowiak and A. Lozinski, arXiv:1802.04389 [math.NA], 2018], a
nonconforming MsFEM has been first developed for Stokes problems in such media. Based on these
works, we propose an innovative enriched nonconforming MsFEM where the approximation space
of both velocity and pressure are enriched by weighting functions which are defined by polynomials
of higher-degree. Numerical experiments show that this enriched nonconforming MsFEM improves
significantly the accuracy of the nonconforming MsFEMs. Theoretically, this method provides a
general framework which allows to find a good compromise between the accuracy of the method and
the computing costs, by varying the degrees of polynomials.
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1. Introduction.

1.1. Multiscale problems. Modeling of Stokes flows in heterogeneous media
is a topic of significant interest in many engineering practices, such as reservoir en-
gineering, flows through fractured porous media, flows in nuclear reactor cores, etc.
The challenge in numerical simulations of these problems lies in the fact that the so-
lution contains multiscale features such as spatial scale disparity and requires a very
fine mesh to resolve all the details. In some engineering circumstances, quantities
of interest are only related to macroscopic properties of the solution. But fine-scale
features cannot be omitted in physical models since they can affect significantly the
macroscopic behavior of the solution. However, solving these problems on a very fine
mesh can be prohibitively expensive or impossible with today’s computing capacities.
As a consequence, some model reduction techniques are developed to get reliable so-
lutions at reasonable computational costs. These methods attempt to resolve scales
below the coarse mesh scale by incorporating local computations into a global problem
which is defined only on a coarse mesh.

1.2. Multiscale methods. A certainly not exhaustive list of Multiscale meth-
ods includes homogenization based methods [5, 20, 28], upscaling methods [8, 23, 32,
43], Multiscale Finite Element Methods (MsFEMs) [9, 19, 20, 21, 29, 30], variational
multiscale methods [2, 31], heterogeneous multiscale methods [17, 28], multiscale finite
volumes and discontinuous Galerkin methods [3, 14, 26, 34] and so on. MsFEMs were
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2 Q. FENG, G. ALLAIRE, AND P. OMNES

first proposed by [29, 30] and then experienced major advancements in [9, 19, 20, 21].
This method has been extended to the generalized multiscale finite element method
in [10, 11, 12, 18]. MSFEMSs use a finite element approach and construct special ba-
sis functions which incorporate the fine scale features of the problem. MsFEMs rely
on two types of meshes: a global coarse mesh and a collection of local fine meshes.
The basis functions are constructed by solving local problems on the fine meshes
with prescribed boundary conditions. Then a coarse-scale problem, involving these
basis functions, is solved on the coarse mesh. In order to improve the accuracy of
MsFEMs, the oversampling method [29] was introduced to better approximate the
boundary conditions in local problems. This gives a nonconforming MsFEM since the
oversampling introduces discontinuities across coarse elements.

Another nonconforming method, namely the Crouzeix-Raviart MsFEM, was de-
veloped for solving the diffusion problem [35, 36, 37], the advection-diffusion problem
[16], the Stokes problem [33, 40] and the Oseen problem [39] in heterogeneous media.
More recently, [13] proposes a multiscale hydrid high-order method for highly oscil-
latory elliptic problems. The method in [13] can be considered as a first attempt at
generalizing the Crouzeix—Raviart MsFEM to arbitrary orders of approximation. In
the Crouzeix-Raviart MsFEM, basis functions are constructed associated to coarse
element edges. The non-conforming nature of the Crouzeix-Raviart element [15] pro-
vides great flexibility especially in case of randomly placed obstacles. The conformity
between coarse elements is enforced in a weak sense, i.e., only the average of the
jump of the function vanishes on the interface between coarse elements. In the case of
densely placed obstacles, it is very difficult to avoid intersections between interfaces
of coarse elements and obstacles. In this situation, the Crouzeix-Raviart MsFEM is
very attractive since it allows the multiscale basis functions to have a natural bound-
ary condition on coarse element edges, which relaxes the sensitivity of the method to
complex patterns of obstacles, without using oversampling methods.

In [40] the Crouzeix-Raviart MSFEM was introduced for Stokes problems in het-
erogeneous media. In order to improve the accuracy of the method, the authors of [33]
enriched the approximation space of velocity by adding weighting functions which are
defined by linear polynomials. The penalization method was applied with high dif-
fusion and viscosity parameters inside the obstacles, in order to perform numerical
simulations on simple Cartesian meshes, and local problems are discretized by the
Q;-Q; finite element method [4].

We mention that the method proposed in [13] share some similarities with our
enriched Crouzeix-Raviart MSFEM in the use of weighting functions defined by poly-
nomials of higher degrees. But the method in [13] is defined only for elliptic problems
in the framework of a hybrid high-order method, whereas in our work we develop an
enriched method for flow problems in the framework of MsFEMs.

1.3. This paper. We propose an innovative enriched Crouzeix-Raviart MsFEM
for Stokes flows in heterogeneous media with numerous solid obstacles. In this method,
both approximation spaces of velocity and pressure are enriched by adding weighting
functions which are defined by polynomials of higher-degrees. By varying the degrees
of polynomials, the enriched Crouzeix-Raviart MsFEM allows to find a good com-
promise between the accuracy of the method and the computing costs. Numerical
experiments show that the enriched Crouzeix-Raviart MsFEM is significantly more
accurate than the MSFEM proposed in [33, 40]. In practice, rather than using the
penalization method as in [33, 40], we perform numerical simulations using body-
fitted unstructured triangular meshes. Local problems are solved by the finite volume
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element method [6] in an industrial software TrioCFD [41].

The paper is organized as follows. The problem formulation is described in sec-
tion 2. The enriched Crouzeix-Raviart MsFEM is presented in section 3. Section 4
discusses shortly the practical implementations of MsFEMs. In section 5, we present
some numerical experiments in 2-d (although the method is analysed in space di-
mension 2 or 3) and compare the accuracy of different variants of Crouzeix-Raviart
MsFEM. The conclusions are given in section 6.

9

Fig. 1: Rectangular domain 2 comprising a fluid domain Q¢ perforated by a set of
obstacles B*®

| Boundary of obstacles 0B°

@l Obstacles B¢

| Domain Q¢
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2. Problem formulation. Let Q C R? be a regular bounded open set (with
d =2 or 3). As shown in Figure 1, we divide the domain € into a fixed solid part
B¢ such that 9B N9 = () and its complementary fluid part Q° (here £ denotes a
small parameter equal to the ratio of the heterogeneities characteristic length with
the characteristic length of the domain). The steady-state Stokes problem is to find
the velocity u : Q¢ — R and the pressure p : Q° — R solutions to
(2.1) —pAu+Vp=f in Q°
divu =0 in Q°,

where the boundary conditions are given by

(2.3) u=0 ondB°NoNe,
(2.4) u=0 on 00NN,

with f a given force per unit volume, and p the dynamic viscosity.
The weak formulation. We introduce the spaces V = H} (Q° )d for the velocity,

(2.5) M = L (9°) = {p € L*(Q¥) s.t. / p =0}

e

for the pressure and X = V x M. For simplicity the fluid domain ¢ is assumed
to be connected in order for the pressure to be uniquely defined in M. The weak
formulation of the Stokes problem (2.1)—(2.2) reads: find (u,p) € X such that

(26) c((u,p) ) (va)) = . f ", V(’U, Q) € X,

where the bilinear form c is defined by

c((u,p),(v,q)):/ (uVu : Vo —pdive —qgdivu).

€
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The existence and uniqueness of a solution to problem (2.6) is guaranteed by the

120 Banach-Necas-Babuska (BNB) theorem [22]. This theorem states that problem (2.6)
121 has a unique solution provided that the bilinear form ¢ is bounded and satisfies the
122 so-called inf-sup condition:

123 (2.7) Ja>0, inf sup c((w,p), (v,9)

(wp)eX (vgex 1w plx lv,allx —

Algorithm 3.1 main steps of a multiscale finite element method

10:

Partition the domain © into a set of coarse elements (coarse mesh)
for each coarse element do
Partition the coarse element into a fine mesh
Construct multiscale basis functions via local problems
Compute rigidity matrices locally on the fine mesh
end for
Assemble global matrices and solve the coarse problem on the coarse mesh
for each coarse element do
Reconstruct fine-scale solutions on the fine mesh
end for

3. Crouzeix-Raviart Multiscale Finite Element Method. Algorithm 3.1

126 outlines the main steps of MsFEMs. We present the enriched Crouzeix-Raviart Ms-
FEM following these steps.

(a) heterogeneous domain )¢ (b) coarse mesh Ty and element T
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(c) fine mesh T, (T) (d) reference mesh T, (£2°)

Fig. 2: Tllustration of the heterogeneous domain Qf, the coarse mesh T, the fine
mesh 75 (T) of a coarse element T' and the reference mesh 7, (Q°).

3.1. Discretization of the domain. We discretize the domain 2 into an un-

129 structured coarse mesh Ty (see Figure 2 (b)) consisting of Ny elements (triangles)
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of width at most H. Let £y denote the set of all edges/faces of Ty including those
on the domain boundary 0f). For the sake of simplicity, we denote elements of £y as
faces throughout this paper. On each element 7' € Ty, we construct a fine mesh 7, (T")
(see Figure 2 (c)), with cell elements of maximum width h. Typically 0 < h < H and
Tr is fine enough to fully resolve obstacles B€.

Note that fine meshes do not need to be matching on their common interfaces,
which allows to generate them independently and in parallel. If fine meshes do match
on the interface between coarse elements, their union forms a conforming reference
mesh T,(Q°) (see Figure 2 (d)) which is used to compute reference solutions, only
needed for the validation of MsFEMs.

Let wp be the neighborhood of the face E € £y defined by

(3.1) wg =| J{T) € Tu | E C 0T}}.
J

When F is in the interior of the domain, wg is the union of two adjacent elements.
When E is on the boundary of the domain, wg is composed of only one element.

3.2. Crouzeix-Raviart functional spaces. Now we introduce some important
definitions and notations. For any integer n and any integer 1 < [ < d, we denote
by P! the linear space spanned by [-variate polynomial functions of total degree at
most n. The dimension of P, is

N,ll := dim (Pil) = <n * l).

n

For any T € Ty, we denote by P? (T) the restriction to T of polynomials in P<.
For any E € g, we denote by P4~1 (E) the restriction to E of polynomials of P41,
For the sake of simplicity, we denote P4 (T') and P4~ (E) respectively by P, (T) and
P, (E).

Let s be a positive integer and let wg ; : E — R? be some vector-valued functions
associated to each face F € &y for i = 1,--- | s. Let r be a non-negative integer and
let o : T — R? be some vector-valued functions associated to each coarse element
T e Ty for k=1,---,r. Let t be a positive integer and let wr ; : T — R be some
scalar functions associated to each coarse element T' € Ty for j =1,--- ,t.

Hypothesis 3.1. For n =0, for any T € Ty and for any E € £y, we choose

s=d: wg1=e€1, " ,WEs = €q,
(3.2) r=0,
t=1: wpy =1,

where (ey, -, eg) is the canonical basis of R, For n > 1, for any E € £y and for
any T € Ty, we assume that
1. s=dN$ ! and (wEg,;), ;< is a set of basis functions of (P, (E))d.

2. r=dN¢_; and (prk), <)<, is a set of basis functions of (P,_1(T))".

3. t=NZ and (@1,5)1< <t is a set of basis functions of P, (T).

Remark 3.2. For n = 0 the choice (3.2) of weighting functions implies that the
enriched Crouzeix-Raviart MsFEM becomes exactly the Crouzeix-Raviart MsFEM
proposed in [40]. This also corresponds to the so-called CR2 method investigated
in [33]. Furthermore, in a domain without obstacles, i.e. BS = (), the Crouzeix-Raviart
MsFEM space with n = 0 becomes the classical Crouzeix-Raviart finite element space.
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6 Q. FENG, G. ALLAIRE, AND P. OMNES

Remark 3.3. For n = 1 and for the space dimension d = 2, our choice of weighting
functions is, for any T € Ty and for any F € E(T),

WE1 =€, WE = €y, WE3=NgYE, WE4 = TEPE,
(3.3) wr1 =1, wre =, wr3 =1y,

Yr1 = €1, P12 = €2,

where ¥ g and ¢ are non-vanishing functions in Py (E) with vanishing mean-values on
ENQFf and (ey,es) is the canonical basis of R2. In this paper, we have implemented
and tested only the enriched MSFEM with n = 1 which we denote by CR4_high.

Remark 3.4. Our choice of weighting functions for n > 1 is driven by the following
fact: once the polynomial degree for the weighting functions (wg ;) has been chosen, it
is seen in (3.13)—(3.15) that the pressure decomposition into resolved and unresolved
contributions motivates the fact that the boundary trace of the resolved pressure
belongs (at most) to the span of (wg;), and that the space of unresolved velocities
is orthogonal to (at least) the gradients of the resolved pressures. So our choice,
although not the only possible one, corresponds to these two limit cases: resolved
pressures will have the same polynomial (maximal) degree as the set of (wg;), and
unresolved velocities will be (minimally) orthogonal to polynomials one order lower
than the resolved pressures.

To construct the approximation spaces of enriched Crouzeix-Raviart MsFEM, we
define V5** differently from that of [33, 40]:

yert — ) weE (L? (QE))d s. t.oulpe (HH(TN QE))d for any T € Ty,
= u=00n09B°, [, o ([u]] - wpg;=0foral Ecéy, j=1,---,s )’
where [[u]] denotes the jump of w across an internal face and [[u]] = u on 9. The

space V5" enhances the natural velocity space (H& (QE))d so that we have at our

disposal discontinuous vector fields across faces of the coarse mesh Tp. Therefore V5"

is not included in (H& (Q ))d, the MsFEM is nonconforming and the homogeneous
boundary condition is only weakly enforced.
The extended velocity-pressure space is defined as

Xt = VE x M

with M defined by (2.5). We want to decompose X & into a direct sum of a finite di-
mensional subspace Xy containing coarse scales and an infinite dimensional subspace
XY containing unsolved fine scales, i.e., X&' = Xy & X%. This will be achieved in
Theorem 3.15.

Taking into account Hypothesis 3.1, we first define the infinite dimensional space
XY as follows.

DEFINITION 3.5. The velocity-pressure space X% is defined as a subspace of X &t

by
X% =VE x MY, with

o JueV§ s bt [po.u-wp; =0, [ o u- oK =0,
(8:4) VH{VTETH,VEegH,j:1,~-~,s,k:zl,-~-,r. ’

(3.5) Mgz{peMs. t./ pr,jZO,VTETHaj:L"',t}.
TNQ:
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It is important to stress that enriching only the set of edge weights wpg ; seems
insufficient: indeed, in that case, a given function u vanishing on the edges of any
T would belong to the unresolved fine scales whatever the number of edge weights,
but imposing the condition meQE u - 7, = 0 for an increasing number of triangle
weights will reduce the norm of its component in the unresolved subspace.

Besides, for any T' € Ty, we define MY (T') by

(3.6) MY(T) = {p€L2 (TNQF) s. t. / por;=0,i=1,--- 7t}.
T

nQe

ext

DEFINITION 3.6. The velocity-pressure space X is defined as a subspace of X ¢,
being the ”orthogonal” complement of X, with respect to the bilinear form cy (.,.) as
follows:

(um,pr) € Xg <= (um,py) € X' such that
(37) CH ((uH7pH) ) (’U, q)) = Oa V(’U, Q) € X?{)

where cp (.,.) is defined by

cu((uw,pm), (v,q) = Z / (WVupg : Vo —py div v — g div ugy).
TeTy TN

Remark 3.7. The word "orthogonal” is written between quotes since the bilinear
form ¢y (.,.) is not a scalar product (not positive definite).

DEFINITION 3.8. Define functional spaces My and Vi by

(38) My={qeMs. t qlreP,(T), VT € Tu},
v e VE VT € Ty, T € MY(T) such that
—puAv + V¢ € span{pr1, -+ o1} in TNQOE

div v € span{wy 1, - ,wr.} T NQ°
pVon — (Tn € span{wp 1, - ,wrs} on ENQEVE € E(T)

(3.9) Vg =

where € (T') is the set of faces composing 0T .

Remark 3.9. Clearly, My, defined by (3.8), is orthogonal to MY, defined by (3.5),
in the set M.

Remark 3.10. In Sections 3.3 and 3.5 it will be proved that Vy is finite-dimensio-
nal and spanned by velocity fields associated to each element T" € Ty and weight
1, with 1 <k < r on the one hand and to each edge I € £ and weight wg ; with
1 < ¢ < s on the other hand.

LEMMA 3.11. In definition (3.9), the pressure (T is uniquely defined for a given
velocity v € V. Therefore, gluing together the pressures (T on all triangles T € Ty
yields a single function wg (v) € MY such that Ty (v) = (T on any triangle T € Ty.
The operator g : Vi — M% is linear and continuous.

Proof. For a given v € Vi, we rewrite definition (3.9)

—/JA’U + VCT = Z )\T,k: PT Kk inTNO,
k=1
div v € span{wr1, -+ ,wr.} in TNOS,
v=0o0n0B*NT,

pVon — (T'n € span{wp 1, - ,wp s} on ENQS, VE € £(T).
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for some vector A\p = (Ar1,---,Ar,). Let us show that the pressure T e MY%(T)
and the vector Ay are uniquely defined. Assume there exist (ClT , AlT) € MY%(T) x R"
and (CQT , )\2T) € MY%(T) x R” satisfying the system of equations above for the same
velocity v. In other words,

V= A perk + plo,
k=1

T
Ve = Z A Pk + HAv.
k=1
Subtracting these equations, we obtain

T

V(T =G) = (M = Arg) ek

k=1

The fact o1 € (Pp1 (T))d implies that ((f' —¢f) € P,(T). At the same time,
(¢ —¢F) € MJ(T) defined by (3.6) which is orthogonal to P, (T'). Thus we deduce
that ¢ = ¢ and then AL = \2. Therefore we conclude that there exists an operator
mg Vi — My such that (T = [ry (v)]j7. Moreover, my is obviously linear and,
since Vp is finite-dimensional, 7y is continuous. 0

THEOREM 3.12. Using the notations of Definition 3.8, let us introduce the space
(3.10) Xy =span{(ug, 7y (uy) +Pu),un € Vi, pu € My} .
Then it coincides with the subspace Xy defined in (3.7), namely
(3.11) Xp=X,.

Proof. We first prove the inclusion Xy C X 5. Let (ug,py) € Xy in the sense
of definition (3.7), i.e. ¥ (v,q) € X%

(3.12)

ca((um,pu), (v,q) = Y / (uVup : Vo —py dive — g div uy) =0.
TeETH TnGe

Let py € My be the orthogonal projection of py on My, and let py = (py — Pu)-
The fact that My and MY are orthogonal implies that

pr = Py + py with py € My and ply € MY.

By virtue of this decomposition, the term concerning pg in (3.12) can be decomposed

as
(3.13) Z/ py div v = Z/ Py div v + Z/ Py div v,
T

TeTy nQe TeTy Y TNOe TeTy Y TNO®

Now we compute the first term in the right hand side of (3.13). Integrating by parts
on each triangle T yields:

(3.14) / PH divv:/ v~n]3H7/ v-Vpy, Vv € V,S.
TNOE A(TNQe) TNQ:

This manuscript is for review purposes only.



9
Since py € My, definition (3.8) implies that for any T' € Ty, pul|r € P, (T). Thus,

for any E € E(T), pulpn € (Pu(E))* = span{wg,, - ,wp.s}, according to Hy-
pothesis 3.1. Then, since v € V3, definition (3.4) implies that

/ v-npyg = 0.
A(TNQe)

Then (3.14) reduces to

/ ﬁHdivvz—/ v-Vpp.
TNQ: TNQ:

As pylr € Py (T), it is obvious that Vpy = 0 for n = 0 and that Vg € (]P’n_l(T))d =
span{@r1, -+, 1.} onT € Ty for n > 1, according to Hypothesis 3.1. Then, since
v € V3, definition (3.4) implies that

/ ﬁHdiV’U:—/ v-Vpg =0.
TNE TNE

As a result, (3.13) reduces to

py divo = / ply div v
> fon 2 Jrep

TET TET
and (3.12) reduces to: V (v,q) € XY,
(3.15)
cy ((up,pm), (v,q) = Z / (uVug : Vo — ply div v — ¢ div ug) = 0.
TeTy Y TN

In a second step, choosing the test function v = 0 and, for a given element
T € Tu, the test function ¢ € MY with ¢ vanishing outside T, (3.15) becomes

/ q div ug = 0.
TNQ:

By definition (3.5) of MY, this implies that
(3.16)  (div up)p € span{wr, -, wre} Le (divug)p € Py (T) in TNQS,

thanks to Hypothesis 3.1.
In a third step, we observe that for any face E € £(T), there exist some (not

unique) functions vg,; € (H1 (TN QE))d, i=1,---,s such that

fFﬁQs Vg, WFj; = 5E,F5'L',j7 VF € S(T)7 v.] = la S,
(317) fTﬂQE VE,i PT, = 0, Vil = PRI ¢
vg,; =0, on 0B*NT.

We also observe that there exist (not unique) functions vy € (H* (T'N QE))d, k=

1,---,r such that

Jproe V7w =0, VE € E(T), Vj =1, s,
(3.18) fTﬂQe vr g Pry = 0k, VI=1,--- 1,
vp =0, on dB°NT.

This manuscript is for review purposes only.
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10 Q. FENG, G. ALLAIRE, AND P. OMNES

Remark 3.13. One may construct such functions as follows. Let 6 be a given non-
vanishing positive function in H} (T'NQ°). Then, functions vy are sought under
the form (> zpwprr)f. They evidently satisfy the first and last line of (3.18)

1<k/<r
and, for any k, coefficients zj j/ are chosen such that > ap 2k p = gy for all
1<k’ <r
l=1,---,r, with ap; = meQE O@r i - pr,;. This is a square linear system which

has a unique solution since (v, w) — [, . 0v - w is a scalar product on (Pn,l(T))d

and (@7,k);<p<, @ basis of that space. Next, for a given face £ € £(T'), considering

a function 0 € HS (ENQ°) a similar process leads to functions vg,; defined on
E N QF, vanishing on 9(E N Q°) and such that fEmQE Vg, - WEg,; = 0; ;. Extending
these functions by 0 on the other faces F' # E of T and on 0B NT, they belong to
HY2(Q(T N QF)) and can be lifted to functions of H*(T N Q) still denoted by v ;
and which verify by construction the first and third lines of (3.17). We conclude by

setting VE,i = ’lNJE’Z' — Z ARUT K with ap = meQE ’lNJE,Z' T PT k-
1<k<r

We denote by V(T') the set of functions in (H' (TN QE))d vanishing on 0B N T
(3.19) V(T) = {v € (HY(Tn QE))d such that v =0 on 9B N T} .
We now check that the space V(T') can be decomposed as

V(T) =V o(T) ®span{vg,, vri, VE€ET), i=1,---,s, k=1,---,r}
where

1 )9 . — —
3.20) V(1) =1 v € (H(TNQ))": [pg.v-wr; =0, [rrg.v-$r1=0, |
(3.20) IO() {'uzoonﬁBeﬂT, VFe&T), j=1,---,s,1=1,---,r

Indeed, the fact that these two subspaces are in direct sum is obvious. Next, we
decompose any v € V(T) into

S T
(3.21) v=0+ Z Z’BE’ivE’i + Z Bk VT k-
k=1

Ecéy i=1

Choosing

(322) BE,i = / v - wEﬂ- and ﬂT,k = / v - QDT,k,
ENQE TNOE

one may easily check that v € V(7).

Now, for a given T' and a given v € V(T'), let @ be the function which is equal to ©
on T'NQOF as constructed in (3.21), and equal to 0 elsewhere. Hence, since v € V((T),
it holds that © € V3. Taking ¢ = 0 and v = @ in (3.15) we obtain

(323) e ((umpn). (8,0) = / (Vs = V5 — ply div &) = 0,

TNQs
Substituting ¢ defined in (3.21) into (3.23), we obtain

/ (uVuy : Vo — ply div v) = ZﬁT,k/ (uVug : Vory — ply div vgy)
TNQ: Pt

(3.24) + Z ZﬂEz/ (uVug : Vog; —py div vg,).

EcE&(T) i=1 Tnas
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Denoting for any E € £(T),i=1,---,sand k=1,---,r

/ .
ABi = / uwVug : Vvg,; — py div vg,
TNQs

/ .
>\T,Ic = / ,U,VUH : VUT,]c — Py div UTk,
TNE

and using the definition of Bg,; and Sry given by (3.22), equation (3.24) can be
written as

S

/ (uVug : Vo — ply div o) = Z
TNQ:

)\E,i/ V- WE,
Bee () i1 ENQe

(3.25) +Z)\T7k/ VT,
k=1 T

nQe

which holds for any v € V(T') defined in (3.19). In (3.25), considering an arbitrary
v that vanishes on all edges E € £(T) and integrating by parts in the left-hand side,
we obtain the following strong form:

T
(3.26) —pAug + Vpy =Y Arrpr in TNOE.
k=1

Then by writing the variational formulation of (3.26) for v € V(T') and comparing
with (3.25), we deduce that

(3.27) pVugn —pyn € span{wg 1, - ,wg s} on ENQ°VE € E(T).

Finally, combining equations (3.16), (3.26) and (3.27), we obtain

—pAug + Vpy =Y Arkeri in T NOS,
k=1
div ug € span{wr1, - ,wre} in TNOQ°,
uy =0on 9B NT,
pNVugn —pyn € span{wg 1, - ,wr s} on ENQS, VE € E(T).

Using Lemma 3.11, the pressure py = mg (uy) and the vector Ay = (Ar1,..., Ary)
are both uniquely determined by uy. We recall that the pressure py is defined by
P = Pu + py. Thus we proved that (ugy,py) defined in (3.7) belongs to the space
defined by (3.10), i.e. Xy C Xp.

Reciprocally, we now prove that (ug,py) € Xy defined by (3.10), with py =
Pr + 7 (ug), also satisfies relation (3.7). The first step is to remark that (wp,ppr)
in indeed in X§*; the fact that py belongs to M is obvious, and the fact that uy
belongs to V5** comes from the definition of Vj itself. As far as the ”orthogonality”
relation in (3.7) is concerned, since uy € Vi then Lemma 3.11 shows that there exist
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a unique (T = 7y (uy) € MY(T) and a unique (A7.1, -, A7) € R” such that
(3.28) —pAug + V¢ =" Aprpry in TNOE,

k=1
(3.29) div uy € span{wr1, - ,wrs} in TNOQS,
(3.30) ug =0o0n dB°NT,
(3.31) uVugn —(T'n € span {wg1, - ,wgs} on ENQS, VE € E(T).
Equation (3.31) shows that for any E € £(T), there exist Ag 1, -, Ag,s € R such

that
pNugn —(Tn = Z)\E’in’i on ENQS, VE € E(T).
i=1

Taking the scalar product of (3.28) with any v € V3, integrating by parts and making
use of the equations above, we obtain

/ uVuH:Vv—/ < divv:Z/\TJc/ PT )V
TNQs TnQ: 1 TNQs

S

332) + )‘E,z/ Wgi- V.
< 2 20 o

Ee&(T) i=

Then, definition (3.4) of V}} implies that

/ gaTJf-v:Oand/ wg;-v=0.
TNQs ENQe

Thus (3.32) reduces to

(3.33) / uNVug : Vo — / mg(ug)r div o = 0.
TNQe TNQ:

Besides, for py € My, integration by parts yields

/ ﬁH|T divv:/ ’U'nﬁH|T7/ ’U~V]7H|T, V'DEVI?I.
TnQe (TNOe) TnQe

Definition (3.8) of My implies that pg|r € Po(T) , so that Vpg|r € (Pn_1(T))*
for n > 1 and Vpg|r = 0 for n = 0. We also have that the restriction of npy|r
to E € £(T) belongs to (P,(E))?. Making use of Hypothesis 3.1, definition of 1%
implies that

VR 1Y7) =0
(3.34) Jocras) pHJT :»/ Pl div v = 0.
Jrrae v+ grad pulr =0 TrO

Moreover, for any uyg € Vg, divuy € span{wr1,---,wr.}. The fact that
MY (T) is orthogonal to span {w7 1, - ,w7,} implies that for any ¢ € M¥%(T)

(3.35) / g divug = 0.
TnQe
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As a result, summing (3.33), (3.34) and (3.35), we obtain that V (v,q) € XY, and
forall T € Ty

/ uNVug :V'u—/ (7TH(’U,H)|T +pH|T) divv—/ g div uyg =0,
TNQO: TNQ: TNQ:

Now by definition py|r = mg(wm)|r + pu|r on each element T € Ty. Summing
the equation above on all elements 7' € Ty, we obtain that for any (v,q) € X%,

Z/TQQEMVUH:VU—Z/T pHdiV”*Z/T g divug = 0.

TeET TeETH nge TeETu nee

which exactly means that (upg,pr) € Xg, and therefore X, C Xp. Consequently,
equality (3.11) is proved. 0

3.3. Local problems defined by Stokes equations. Now we construct some
functions associated to elements or faces of the coarse mesh, we shall prove in sec-
tion 3.5 that they form a basis of the resolved space V. From their definitions below,
they evidently belong to V5**.

The strong form. We first construct functions associated to faces of the coarse
mesh. For any E € &y, for i = 1,---,s, find the function ®pz,; : Q° — R? the
pressure 7w ; : ° — R such that ®g; and 7 ; vanish outside the coarse element(s)
Tr C wg (defined by (3.1)) for k € {1,2} (only one coarse element if E € 99) and
solve on T}:

—pA®E ; + Vg, € span{pr, 1, -, @1} in T NQF,

div ®p,; € span{wr, 1, - ,wr,+} in T NQ°,

uV®gpn —7mgn € span{wp1, - ,wrs} on FNQ°, VF € E(Ty),
Pp,;, =00n 0B NTy,

(3.36) s ’
F=F

51"7 .
fFﬂQs‘I’E,¢~wF,j{O73 FtE VE e&(Ty), Vi=1,---,s,

kaﬂQE q)E,i CPTL L= 0OVl = ]_7 ceeLr,

kaﬂQE TE, " WTy,m = 0Vm = ].,--- ,t.

Then, we construct functions associated to elements of the coarse mesh. For each
T €Ty, for k=1,---,r, the support of the function ¥r j is reduced to T'NN°. We
find Opp: Q°F — R? and 7k : §° — R by solving on T

—pAYT ) + V7r i € span{pr 1, -, o1} in TNOS,

div 7y, € span{wr1, - ,wrs} in T NQE,

VO n — mpgn € span{wp 1, - ,wrst on FNQ, VF € £(T),
(337) { Wy, =00ndBNT,

Jonge g -wpj = 0VF € E(T), Vi=1,-- s,

Jroa: ©T k- Ty =0 VI=1,--- 7,

Jroge Tk - @rm =0¥m =1,--- t.

The weak form. The weak form of (3.36) is as follows. Let ny, = s x Card(E(Ty)).
For any FE € g, for i =1,--- ,s, on the coarse element T}, C wg for k € {1,2} (only

one coarse element if £ € 99), find &5, € (H1 (T, N QE))d such that ®5; = 0 on
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0B* N1y, mp; € L? (T, N QF), ()\F,j)FES(Tk)J:l,»--,s € R™ and (>\Tk,l)l=1,-~,r e R"
by solving:

(3.38)

S
kaﬁQE uV®g,: Vo — meQE mpidivo+ Y S AR [pnge U wWEy =
Fe&(Ty)j=1

S A7 meQE P10 v, Yo e (H (Tp N QE))d such that v = 0 on 9B N T,
=1
kaﬁQE q div ®p,; =0, Vg € MY (Ty),

Yo > Eg [rnq- ®EiWEj = e, Y(RE ) Fes(Ty)j=1, s € R,
Fe&(Ty)j=1
T

> meQs @ o1, =0, V(u)i=1,..r» €R",
=1

kasz TE;  @ry,m =0, VYm=1,--- ,t.

The weak form of (3.37) is as follows. Recall that ny; = s x Card(&(T)). For
k=1, ,r find ¥ry € (H(TNQ))? such that ¥rp = 0 on BN T, mry €
L? (T N QF), (Arj)ree(r),j=1,..,s € R™ and (Ar)i=1,... » € R" by solving

(3.39)

S
fTﬂQE pN¥r s Vo — meQe mredivo+ 30 Y AR fFﬁQE V- WFpj =
FEE(T) j=1

> Ary fTQQE PV, Y € (H1 (TN QE))d such that v =0 on 0B N1T,
=1
Jrege @ div ®p 4 = 0,Yq € M} (T),

Yo 2 bEy Jpnge Ok - W =0, Y(pE ) Fes(ty),j=1, s € R™,
FEE(T) j=1
T

Yuri frege Ok T = firk, Y(pr)i=1,... » € R,
=1

fTﬁQf Trk - Wrm =0, Ym=1,--- ,t.

3.4. Well-posedness of local problems. We prove that the local problems
(3.36) and (3.37) are well-posed. Choosing a coarse element 7' € Ty, let npy be the
number of edges composing dT and ns = np X s be the dimension of the vector
containing Lagrange multipliers (Ag,;) for all F € £(T) and j = 1,--- ,s. Moreover,
r is the dimension of the Lagrange multiplier vector (Ap;) for [ = 1,--- ,r. We
introduce the velocity space

Vp={ve (B (Tn0)", v=00n 0B NT},

as well as MY (T), the pressure space defined by (3.6). The variational formulation of
local problems (3.38) and (3.39) are of the form :
Find (u,p, (Ar;), (Ary)) € Vi x MY(T) x R™ x R" such that

( ) aT (U,’U) +br ('v,p) +cg (v, ()\EJ)) + dT(v, (AT,Z)) =0, Yv e Vp
(3.41) br (u,q) =0, Vg € M (T)

(3.42) u, (ur;)) = b ((pry)), Vipr;) € R™,

(3.43) (

u, (1)) = L2 ((pra)), ¥ (prg) € R

)
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182 where the bilinear forms are defined by

483 ar (u,v) = / uVu : Vo,
TNOQe
484 br (v,p) = —/ p div v,
TNOQe
S
o0 = 3 Yoans [ v,
Fe&(T) j=1 Fnas
T
486 dr (v, (ur2)) = D pr / v 7y,
487 I=1 rnes

and where the linear forms ¢; and /5 are defined by
0 ((nryj)) = pei 5 L2((prg)) =0 for (3.38) and

6 ((pry)) =0 La((pr)) = pr for (3.39).
488 System (3.40)—(3.43) is called a twofold saddle point problem in the literature and
189 can be viewed as a single saddle point problem defined on Vi x (M$(T) x R™ x R").
190 By introducing the following bilinear form

491 Y (v, (p, (Ar;) (A1) € Vi x (ME(T) x R™ x R")

493 br (v, (p, (Ar) . (A1) = br (v,p) + c& (v, (Apy)) + dr (v, (A1),

194 system (3.40)—(3.43) can be reformulated as

195 (3.44) ar (u,v) + by (v, (p, Arj), (Are))) =0, Yo € Vr,

196 (3.45) br (w, (¢, (1ry) s (nr))) = € ((1rg)) + Lo (),

198 V(q, (ury), (ury)) € MY (T) x R™ x R".

499 Now we can apply the inf-sup theory to prove the well-posedness of (3.44)—(3.45).

500 It is easy to check that the bilinear forms a7 and by are both continuous over their
501 spaces of definition. Additionally, the linear forms ¢; and /{5 are also continuous.

7 lowing inf-sup condition: there exists & > 0 such that V (p, (Ar;), (Ar;)) € MY(T) x
g R™ xR"

502 Moreover, the bilinear form ar is coercive over the velocity kernel of the bilinear form
503 ET, since this kernel, for all n > 0, contains vector functions which, at least, have
504 mean values that vanish on the edges (or faces) of T', and this implies a Poincaré-like
505 inequality.

506 Finally, it remains only to prove that the bilinear form br(.,.) satisfies the fol-
5

5

b M), (A
509 (3.46) Sup T (’U, (p’ ( F7j) ) ( TJ)))
ve¥r (|Ipll g2 zngey + 1R+ N 190 ey
511 To check the inf-sup condition for br(.,.), for any p € MY (T), (\r;) € R™ and

512 (Apy) € R”, we would like to find a velocity field v € Vp and a polynomial ¢ € P, (T)
513 such that

> a.

514 (347) —divv=p+gq,

1o (348) / Iv'waj:)‘F,j’VFES(T)7j:1a"'755
FNQe

516 (349) / (A CPT,Z = )\T,l ,vl = 1,~ s, T
TNOs
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16 Q. FENG, G. ALLAIRE, AND P. OMNES
Indeed, in that case we would have (since (p, q)rnq: = 0)

(3.50) br (v, (p, (Ar) s A1) = Pl 22 (rnge) + [ Ar) I + 1Ozl

Note that it is necessary to include a polynomial ¢ € P,,(T") in (3.47); if not, for any
q € P,(T), we would have

3.51 div v,q") = / (¢'n) / v-Vq'.
(3:51) ( Z FOQE TﬁQ€

Since (¢'n)p € span{wp;,j = 1,---,s} and Vq' € span{er;,[ = 1,--- 7}, then
(3.51) with (3.48) and (3.49) would imply that the sets (Arj)reg(r),j=1,..,s and
(Ar,1)i=1,... » could not be arbitrary.

Using functions (3.17) and (3.18), we may look for v under the following form

(3.52) Z Z)\FJUFJ+Z)\TIUTZ+IU

Fe&(T) j=1
with w € Vr verifying
(3.53) — divw = p,
(3.54) / w-wp; =0,VFe&T),j=1,---,s,
FNQe
(355) / w’QOT,l:(),Vl:l,"‘,T
TNQO:

where
ﬁ:pi (aana),
and I1,, is the L?(T N Qf) orthogonal projection on P, (T) and a is defined by

Z Z)\F] div vp ;— Z)\Tl div vp.

Fe&g(T

Moreover, in (3.47), we chose ¢ = II,,a. Note that p is orthogonal to P, since this is
the case for both p and (a — I, a).
The standard inf-sup condition (with constant S > 0) is equivalent to the fact

that for any ¢ € L3(T N QFf), there exists wo € (H&(THQE))d C Vr such that
div wg = ¢ and ||w0||H1(TmQE) < B114]| 2 (rros)- We pick such a wg for the particular
case § = p since p is orthogonal to P, and thus belongs to L3(T N QF). Since p
depends continuously on p and a and since a depends continuously on the sets of Ap ;
and Ar; (recall that vp; and vy, are given functions), then wg depends continuously
on p and on the sets of Ap; and Ap;. Moreover, such a wg automatically verifies
boundary conditions (3.54) since it vanishes on the boundary. The sequel of the proof
is performed for the case d = 3; the case d = 2 can be performed in a similar way, the
only difference being that there are two curl operators when d = 2, one that applies
on vector fields and returns a scalar field, and the other that acts conversely. Let G
be a given open ball included in T'N ¢, we shall look for w under the following form:

(3.56) w=wo+V Xz,
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in which z will be a smooth function compactly supported in G (and thus V x z will
be in (Hg(T N QE))d) such that

(3.57) / sz-cpT’l:/z~V><<pT,l:—/ wo -, V=1, 7.
TNQ: g TNQ:

Let us now prove that it is possible to construct such a function z. We start by
proving that the equalities in (3.57) will be verified for all [ = 1,--- | r if they are
verified on a subset of indices. For this, let us consider the curl operator

Vx : (Pro1)? = (Pr_2)?

and denote by R(Vx) its range and r. := dimR(V x) the dimension of this range.
Like for any linear operator in finite dimensions, it holds that:

(3.58) (P,,_1)? = Ker(Vx) @ Span(er,,),

where (@7, )1<k<r, is a subset of (¢p71,)1<i<, such that (V X 7, )1<k<r, is a basis
of R(Vx). We now prove that if the equalities in (3.57) are verified for all [ = I,
with 1 < k < r., then they will be verified for all 1 < [ < r. Indeed, taking into
account (3.58) and since it can easily be proved that Ker(Vx) = V(P,), then if | # Ii,
it holds that there exists r € P,, and a set of real numbers (ay) such that

pry = Vr+ E QRPT 1), -
1<k<re

According to this decomposition, we have on the one hand

/Z'VXSOT,I: Z Oék/z'VXSOT,lk:_ Z Oék/ Wo - PT,1,
g g TNQE

1<k<r. 1<k<r,

since (3.57) is assumed to hold true for all I, with 1 < k < r.. On the other hand,

we have
—/ w0'<PT,l=—/ wg - Vr — E ak/ Wo * PT,1;,
TNOe TnOe TNOe

1<k<r.

so that (3.57) will hold for the index [ if [}, . wo - Vr vanishes for any r € P,,. This
is indeed the case since

/ w0~Vr:—/ divwor:—/ pr=20
TNQe TNQE TNQe

because p is orthogonal to P, and r € P,,.

Setting ¥y := V x @7, , the conclusion of the first part of this proof is that it
is sufficient to construct a function z, regular enough and compactly supported in G
such that (3.57) is satisfied for all indices lx, namely

(3.59) /z-¢k:—/ wo - pru Yk =1, e
g TNOE

Choosing a positive non-vanishing smooth scalar function # with compact support
in G, we look for the function z under the form

z=| > |0,

1<i<r.
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with a set of real numbers (z;) with ¢ = 1,--- ,r.. Then, (3.59) reduces to finding a
vector (z;) such that

(3.60) > (/aq/;i.q,bk)zi:_/ wo -, V=1, 7.
g TNQe

1<i<r,

This is a square linear system of size r. which has a unique solution since

(p7Q)H/g9p-q

is a scalar product on R(Vx) and (5) a basis of that space. Moreover, since this is
a finite dimensional linear system, the dependence of the coefficients z;, and thus of
the function V X z with respect to the right-hand side in (3.60), and thus with respect
to wy, is continuous.

As a conclusion, we have constructed a function w under the form (3.56) which
verifies (3.53)—(3.54)—-(3.55). We have shown that, by construction, both wg and V x z
depend linearly and continuously on p, Ap; and Ap;. Therefore, this is also the case
for v defined from w by (3.52). Thus from (3.50), we conclude that (3.46) holds with
a constant & > 0. This continuity constant may of course depend on ¢, in a way which
is out of the scope of this article.

3.5. Basis of the space Vj.

THEOREM 3.14. The functions ®g; for E € Eg andi=1,--- ,s defined by their
restrictions (3.36) over each element Ty, whose boundary includes E and Wry for
T e Ty and k =1,--- ,r defined by (3.37) form a basis of Vg defined by (3.9). In
other words,

(3.61) Vug =span{®p;, Yoy, Ecéy, T €Ty, i=1,---,8, k=1,--- ,r}

and {®g,, E€y,i=1,---,s} U{Prk, T €Ty, k=1,---,r} forms a linearly
independent family.

Proof. First of all, it is easy to verify that
{‘ﬁE,iy EegH, 1=1,--- ,S}U{‘I’T’k, TETH, k=1,--- ,7“}

forms a linearly independent family.

Then, let us prove (3.61). It is obvious that functions ®g;, for E € £y and
i=1,---,s defined by (3.36) and Wy for T € Ty and k = 1,--- ,r defined by (3.37)
all belong to V. Consequently, we have

span{@Eﬂ', ‘I’T,ka EEEH, TGTH, iil,’“ , S, kil, ,’I"}CVH

Reciprocally, let u € Vi; definition of Vg implies that on each T" € Ty, there
exist a unique (7' € MY%(T) and a unique vector (Ar1,---, A7) € R” that satisfy
(3.28)—(3.31). We introduce v and o as follows:

0= 2 0 (o) v 32 )

TeT k=1 Eecfy i=1

7= 5 B X (o) e 3 (] ) e

TET TeTy k=1 Eec€y i=1
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614 For any T € Ty, it is easy to check that the restrictions of v and o to T verify:
615 (3.62) —pAv + Vo € span{epr 1, -, o1, n TNO°
616 (3.63) div v € span{wyr 1, - o} in TNO°
617 (3.64) pVon —on € span{wpq, -+ ,wrst on FNQ°, VF € E(T)
618 v=0o0n0B°NT
619  (3.65) / v-wg;,=0VEe€&(T),Vi=1,---,s
EnQe
620 (3.66) / v =0vl=1,---,r
TNQ®
621 (3.67) / o-wr; =0Vj=1,---,t
622 TNQe
623 Equation (3.62) implies that there exists (Ar1, -, Ar,) € R” such that
624 (368) *[IJA’U + Vo = Z )\T,I(PT,L
625 =1
626 Choosing v as the test function in the variational formulation of (3.68) implies
627 that
(3.69)
628 / N\Vv|2 — / odive = Z >\T,z/ YT, -v +/ (uVon —on) - v.
Gog  JTNOE TnQ: =1 TnQs A(TNNe)
)4z
630 It is straightforward to deduce from (3.63) and (3.67) that
631 / odive =0.
632 TnO:
633 Then equation (3.66) implies that
634 Z )\T,z/ wr-v=0.
635 1=1 e
636 Combining equations (3.64) and (3.65), we can deduce that
637 / (uVon —on) - v = 0.
638 o(TNe)
639 Finally, equation (3.69) reduces to
640 / |Vo|? =0,
641 TNOe

642 which implies that v is constant on T'N Q. With (3.66), we deduce that v = 0.
643 Thus we have proved that

644 Viu C span{®p,;, Cry, E€éy, T €Ty, i=1,---,s, k=1,--- ,r}.
646 Consequently, combing the results above, we have proved that
64% Vu =span{®p;, Yri, E€ €y, T €Ty, it=1,---,5, k=1,--- ,r}. 1]
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We conclude that any function Vg can be represented as
S T
Vug € Vi, ug = Z ZUE,i(pE,i + Z ZUT,k‘I’T,k-
Eec&py i=1 TeTH k=1

An explicit formulation of the linear operator g (see Lemma 3.11) is

(3.70) VYuyg € Vg, gy (’U,H) = Z ZUE,iWE,i+ Z ZUT,kWT,k~

Ec&y i=1 TeTy k=1

3.6. Decomposition of the space X§. Subsection 3.2 results in the following
decomposition.

THEOREM 3.15. The space X§ can be decomposed as:
Xit' = Xu © Xy,
where XY, is defined in Definition 3.5 and Xy is defined in Definition 3.6.
Proof. This theorem is proved in two steps:
(i) X5 = Xpg + XYy, (i) Xgn XY ={0}.

We start by proving step (i). First, by definition Xy and X% are both subsets of
Xert. Next, we prove that X&' C Xy + XY ie. for any (u,p) € X&' there exist
(wp,pu) € Xg,u® € V) and p° € MY such that

(3.71) u=uy+u’, p=py+p°.

In order to prove this, we consider a given (u,p) € X&' and we first pick any
triangle T' € Ty; then we consider the velocity space Vi ((T') defined by (3.20), we
recall the definition of MY (T) by (3.6) and we consider the following problem: Find
(u®p%) € Vio(T) x MY (T) such that

(3.72)
/ (uVu’ : Vo —p® div v) = / (uVu : Vo —p divv), Yo € V(1)
Qe Qe
(3.73) / q div u’ = / q div u, Vg € M} (T).
TNQ: Qe

This problem has a unique solution because:

(a) (u,v) = [rnqe (BVu: Vo) is coercive on Vi o(T),

(b) the existence of a function w € Vr satisfying (3.53)—(3.54)—(3.55) with a linear
and continuous dependence with respect to an arbitrary p € MY (T) proves the inf-sup
condition for the divergence operator over the couple of spaces Vfo(T) x M%(T).

By gluing together (u’,p°) on each element T € Ty, we obtain that (u®p”) €

V3 x MY. Consequently, we have proved that for any (u,p) € X&*, there exists

(u®p%) € XY such that

e (u%,9°), (v,9)) = cu ((u,p), (v,q)), ¥ (v,q) € Vi x My
Thus, defining wy and py by

0 0
Ug=uU—U, PH=P—P,
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689  we get that (upy,py) satisfies

699 ci (wa,pn), (v,9) =0, ¥ (v,q) € Vg x M}

692 and we deduce by Definition 3.6 that (ug,pr) € Xp. Finally, we conclude that
693 X&' =Xy + XY

694 Now it remains to prove step (ii), namely that Xy N X% = {0}. Let (u,p) € XgN
695 X%, then this implies that for each T € Ty, pjr belongs at the same time to P, (T) ac-
696 cording to (3.8), and to its orthogonal according to definition (3.6) and Hypothesis 3.1.
697 This implies that p = 0. Next, Definition 3.6, implies that ¢y ((u,p), (u,p)) = 0,
698 which reduces to meQE uVu : Vu = 0, leading to w = 0 which finishes this part of
699 the proof. O

700 3.7. Coarse-scale problem. The coarse-scale formulation of the Stokes prob-
701 lem (2.1)—(2.2) reads: find (uy,py) € Xy such that

783 CH ((uH7pH> ) (’WQ)) = (f,’U), V(U7Q) € Xy.

704 Theorem 3.12 implies that py can be decomposed as pg = 7y (upy) + Py with
705 7y (ug) € MY and py € My. It is easy to verify that (7g (ug),div v) = 0 for all
706 uwg,v € Vg. The problem above can thus be reformulated as: find uy € Vg and
707 pg € My such that

708 (3.74) ay (UH,U)+bH (’U,ﬁH) =Fy ('v), Yv € Vy,

W (3.75) bu (um,q) =0, Vg € Mpy,

711  where

712 apg (up,v) = / uNVug : Vo,
Tets J TNO

713 by (’U,pH) = — / py div v,

TeTy Y TNE*
714 Fy(v)= Y / f-v.
.. TeTsy J TNO

716 THEOREM 3.16. The space Vi and the space My have the following relation
718 divg Vg = My,
where div g is the broken divergence operator defined triangle by triangle:
(divy v)p = div vjr.

719

Proof. We prove first that divyg Vg € My. For any v € Vy, for any T € Ty, it
holds that div vy € Py, (T') thanks to (3.9) and Hypothesis 3.1. It thus remains to
prove that divg v € M, which reduces to prove that

/ diVH’U = 0.
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This is true. Indeed, since Vi C V§**, definition of V5** implies that [, [[v]]-n =0,
and we thus deduce that

divgv = / divwe = / v-n= / v-n||=0.
/QE Z TNQs Z a(TNOe) E;}{ ENQs ! /

TETH TeETH

Hence we have proved that divy Vg C My.
Reciprocally, we now prove that My C divyg Vg. For any ¢ € My, definition of

My shows that ¢ € L3 (Q2). Thus, there exists v € (H} (QE))d such that div v = gq.
Since (H} (QE))L{ C V§5*t, Theorem 3.15 implies that v can be decomposed as

(3.76) v = vy +vY with vy € Vg, v € V.

For any element T € Ty, let wy € P, (T). Integration by parts gives:

Z/ wTdiV'uH:Z/ wTvH-n—Z/ vy - Vaor
TeTy Y TNQe TeTy Y O(TNRE) TeTy Y TNQe
Substituting vy defined in (3.76) into this equation, we obtain

div vy = 0
Z /TQQEWT 1V Vg Z

/ wr (v—oY) - n
TeETu TETH a(TﬁQE)

(3.77) - Z/ (v—vY) - Vor
TeTy /TN

The fact that wy € P, (T) implies that nwy € (P,(T))* and Vo € P,_y(T).
Then, definition of V by (3.4), Hypothesis 3.1 implies that

/ v mwr =0, / v - Voor = 0.
a(TNQe) TNQe

Finally (3.77) reduces to

E / wT div VU
TeETH g

Z /TQQS’U'V?DT

> [ wweon-
A(TNQ=) TeTs

TeET

Z / wr div v
TET TnG:

S L

TeET

Since vy € Vp, we know by (3.9) that, on T, divwvyg € P,(T). Moreover,
q € P,(T) and wr is arbitrary in P,(T) in the above equality. Thus, we deduce
that ¢ = (div vg)|r and so ¢ = divg vg. Thus My C divg V. Consequently,
combining the results above, we conclude that divyg Vg = Mpg. O

Making use of Theorem 3.16, it is trivial to deduce from (3.75) that div ugy =0
in TNQE for T € Ty. We can thus eliminate the pressure unknown from (3.74)—(3.75)
by introducing a subspace of V:

Zy = {v € Vi such that divgv =0, VI € Ty}.
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Therefore (3.74)—(3.75) is equivalent to: find uy € Zp such that

Z/ uVug : Vo = Z/ f-v, YveZy
TNQs

TETH TeTy 7/ TN*

The existence and uniqueness of a solution uy to this problem is guaranteed
by the coercivity of the bilinear for over V. Then the existence and uniqueness of
pressure py follows from the fact that divy Vg = Mpy. As a result, we have proved
that (3.74)—(3.75) has one and only one solution (wg,pr) € Vg x My.

To solve the coarse-scale problem on the coarse mesh, we approximate the non-
homogeneous Dirichlet boundary condition uy = 0 defined by (2.4) in a weak form:

/ ug - wg; =0, VE€EgNOQ, j=1,---,s.
ENdQ
3.8. Reconstruction of fine-scale solutions. After obtaining coarse solutions

ug = (up1, - 7uE’S)E€5H and pg = (ﬁH|T)T€TH’ we reconstruct on any coarse
element T € Ty fine-scale solutions by:

S r
E g upPr; + E ur ¥,
k=1

uylr =
EcE(T) i=1
S r
pulT = g E UEiTE; + E ur Tk + DH|T-
Ee&(T) i=1 k=1

4. Implementation issues and comparisons to previous methods. We
implement MsFEMs in a CFD software called TrioCFD [41] developed by the CEA. In
TrioCFD, incompressible Navier-Stokes equations are discretized by the finite volume
element method [6, 7], which is a certain combination of the finite element method
[22, 27] and the finite volume method [24, 42]. The main idea is to approximate
fluxes on the boundary of control volumes by replacing unknowns by a finite element
approximation. The finite volume element method consists of two meshes: a primal
mesh and a dual mesh. Equations are discretized by volume integrals on the dual
mesh and unknowns are discretized into a finite element space on the primal mesh.

In our work, we implement the CR4_high MsFEM where weighting functions are
defined by (3.3). Local problems (3.36)—(3.37) are solved by the finite volume element
method where the velocity and pressure are discretized by the P; nonconforming/IPy
element. The coarse-scale problem is implemented using (3.74)—(3.75), with a stan-
dard orthogonal basis of the fully discontinuous IP,,(T) space for the pressure and the
basis of V that was constructed in subsection 3.5 for the velocity. The global matrix
can be computed in parallel over multiple processors and remains sparse since the
supports of these basis functions are local.

We want to compare the accuracy of CR4_high to that of MSFEMs proposed
originally in [33, 40]. Thus we implement also the CR2 and CR3 MsFEMs defined
in [33]. The CR2 method is the original method of [40] and corresponds to the choice
n = 0 of the present article. The CR3 method is obtained by enriching the edge
weighting functions:

WE1 = €1, Wg2 = ey, WE3 = NgYg,

where g is a non-vanishing function in Py (F) with vanishing mean-value on E N §°
and (ey, ez) is the canonical basis of R2. We also investigate the CR4 method which
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24 Q. FENG, G. ALLAIRE, AND P. OMNES
enriches the CR3 method to reach the full [P;(F)]? weighting space on the edges:

WE,1 = €1, WE2 = €3, W3 = NgYE, Wg3 = TEYE,

where ngYp, TE¢p are the same as those in (3.3). In all these methods, the pressure
weighting function is limited to wr; = 1, and we recall that @7 for k =1,--- ,r are
only defined in the enriched MsFEM and do not exist in CR2, CR3 and CR4. The idea
in comparing CR4 and CR4_high is to show that enriching only the edge weighting
functions wg ; is not enough to significantly enhance the accuracy of the scheme. We
also need to add constraints in the triangle in order to make the non-resolved space
V2 (3.4) smaller and smaller.

Unknowns in local problems of CR2, CR3 and CR4 are discretized by the Py
nonconforming /Py element. Reference solutions are computed by the same finite
volume element method. Instead of using the penalization technique and Cartesian
meshes as in [33, 40], we impose the no-slip condition directly on obstacles and nu-
merical simulations are performed on body-fitted unstructured meshes.

Enriching the basic CR2 method by additional coarse basis functions rather than
using finer meshes is an alternative to reduce the computational error, just like p
enrichment is an alternative to h refinement in standard finite elements. Both ap-
proaches imply growing costs which have to be compared to guide a choice between
both approaches. In order to detail this (for d = 2), let us consider a coarse mesh
made up of np triangles with ng edges. Then, Table 1 displays the number of un-
knowns that will be necessary for the different methods; for the sake of comparison,

the asymptotic relationship ng ~ %nT will be used. We conclude from this table that

Table 1: Number of unknowns in the different methods

Field Method
CR2 CR3 CR4 CR4_high
Pressure nr nr nr 3nr
Velocity 2ng 3ng dng dng + 2nr
Total nr+2ng nr+3ng nr+4ng  dny +4ng
Asympt. total dnp 5.5n7 nr 11nyp

using CR4_high is worth the additional complexity as soon as it is at least % times
more accurate than CR2, or twice as accurate as CR3, on a given mesh.

5. Numerical simulations. We consider Stokes flows in a two-dimensional
open channel Q = [0 <2 < 2,0 <y < 1], where the heterogeneity is represented by
arbitrary placements of solid obstacles. Three-dimensional numerical simulations were
also carried out with CR2 and CR3 and can be found in [25]. As shown in Figure 3,
case A contains 26 obstacles of width ¢ = 0.015 and case B contains 100 obstacles
of width € = 0.003. Case B corresponds to a denser distribution of obstacles and
is similar somehow to a homogenization setting, while case A with fewer and bigger
obstacles is not so close to an asymptotic homogenized regime. We assign p = 1 and
f = 0. The parabolic inflow boundary condition u = y (1 — y) e; is imposed at the
inlet. The Neumann boundary condition uVu - n — pn = 0 is imposed at the outlet
and the no-slip condition is applied on other boundaries. In numerical convergence
studies, we fix the element size h of fine meshes and vary only the element size H of
coarse meshes. We ensure that h < ¢ < H. The element size h is small enough to
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case A case B

Fig. 3: Two computational domains with square obstacles

(e) reference

Fig. 4: |u| contours of Stokes flows in case B computed on the coarse mesh 2x4

well capture small obstacles in the media. We are interested only in the case in which
H > ¢, since the opposite case H < ¢ is covered by classical finite element methods
and MsFEMs are not needed.

For case B, Figure 4, Figure 5 and Figure 6 show the velocity contours computed
respectively by CR2, CR3, CR4 and CR4_high on various coarse meshes as well as the
reference solution. Figure 7, Figure 8 and Figure 9 show the pressure computed by
CR2, CR3, CR4 and CR4_high on various coarse meshes and the reference pressure.
The reference solution is computed on a mesh containing 2,000,000 elements with an
average element size h = 0.00025. Globally, we observe that the velocity and pressure
computed by MsFEMs converge to the reference solutions. It is shown that CR3 is
much more accurate than CR2 whereas CR4 is only slightly better than CR3. It is
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(d) CR4_high 4x8

0.3106
l 02330

01553

00776

0.000

(e) reference

Fig. 5: |u| contours of Stokes flows in case B computed on the coarse mesh 4x8

(d) CRA_high 8x16

0.3106
l 0.2330

01553

00776

0.000

(e) reference

Fig. 6: |u| contours of Stokes flows in case B computed on the coarse mesh 8x16
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(a) CR2 2x4 (b) CR3 2x4

(c) CR4 2x4 (d) CR4_high 2x4

133.8

37.24

(e) reference

Fig. 7: Pressure of Stokes flows in case B computed on the coarse mesh 2x4

evident that both the velocity and pressure computed by CR4_high are significantly
more accurate than those given by other MsFEMs. As shown in Figure 4 and Figure 7,
CR4_high already captures most of the important flow features on the 2x4 coarse
mesh and the solution is in good agreement with the reference solution. Table 2
and Table 3 present the error study of different MsFEMs on various coarse meshes,
relatively to the reference fine-scale solution (in L? norm). Figure 10 shows the
numerical convergence of velocity computed by different MsFEMs in both case A and
B. We observe a converging trend of the velocity and the pressure in both case A and
case B. It is observed that these methods have the same rate of convergence, which
is about 1 in case A and a bit lower in case B. The enriched MsFEM does not show a
larger rate of convergence than lower-order methods. We only mention that a related
high-order method proposed in [13] proves an error in the energy norm that behaves
like /€ + H" ! + \/% for smooth solutions of periodic elliptic problems with highly
oscillating coefficients. Ref. [1] additionally considers the effect of the fine mesh on the
error. These theoretical results and the numerical results presented in these references
show that it is not easy to isolate the sole effect of refining H; this issue needs further
investigation. In the present work, the errors of MsFEMs are relatively small even on
coarse meshes with a rather large (H/¢) ratio and errors of CR4_high are much smaller
than those of other MSFEMs. For a fair comparison, one should refer to Table 1 which
takes into account the additional complexity of CR4_high with respect to the other
methods. We conclude that it is always advantageous to implement CR4_high rather
than CR2, and that the comparison with CR3 depends on the test case, on the mesh
and on the considered variable (pressure or velocity).
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(a) CR2 4x8 (b) CR3 4x8

(c) CR4 4x8 (d) CR4_high 4x8

133.6

37.24

(e) reference

Fig. 8: Pressure of Stokes flows in case B computed on the coarse mesh 4x8

Table 2: Error analysis of Stokes flows in case A

Config L? Rel. U L? Rel. P
| CR2 CR3 CR4 CR4.high | CR2 CR3 CR4 CR4.high
2x4 0.334 0.210 0.190 0.091 0.475 0.212 0.146 0.096
4x8 0.174 0.072 0.065 0.039 0.321 0.144 0.083 0.055
8x16 | 0.061 0.026 0.022 0.015 0.173 0.075 0.044 0.034
16x32 | 0.030 0.014 0.011 0.006 0.116 0.056 0.025 0.020

870 From Table 2 and Table 3, Case B seems to be more difficult in that the errors
871  with respect to the fine scale reference solution are larger in that case. This may be
872 due to the larger number of obstacles which generate richer flow patterns.

873 6. Conclusions. An innovative enriched Crouzeix-Raviart MsFEM has been
874 proposed for solving Stokes flows in highly heterogeneous media with solid obstacles.
875 This method has been validated in numerical experiments by comparing to Crouzeix-
876 Raviart MsFEMs originally proposed in [33, 40]. Local problems are implemented
877 in TrioCFD using the finite volume element method where physical unknowns are
878 discretized by the P; nonconforming/Py or P; nonconforming/P; element. Instead
879  of using the penalization method, the no-slip condition is imposed on obstacles and
880 numerical simulations are performed on body-fitted unstructured meshes.

881 Numerical experiments show a good converging trend of solutions computed by
832 MSsFEMs to reference solutions. In particular, it has been shown that the enriched
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(a) CR2 8x16 (b) CR3 8x16

(c) CR4 8x16 (d) CR4_high 8x16

1336

37.24

(e) reference

Fig. 9: Pressure of Stokes flows in case B computed on the coarse mesh 8x16

Table 3: Error analysis of Stokes flows in case B

Config L? Rel. U L? Rel. P
| CR2 CR3 CR4 CR4.high | CR2 CR3 CR4 CRA4.high
2x4 0.478 0.301 0.274 0.159 0.595 0.315 0.281 0.227
4x8 0.329 0.185 0.158 0.114 0.556 0.289 0.249 0.189
8x16 | 0.189 0.096 0.084 0.061 0.449 0.232 0.164 0.130
16x32 | 0.116 0.055 0.045 0.030 0.307 0.184 0.118 0.102

Crouzeix-Raviart MsFEM with n = 1 is significantly more accurate than Crouzeix-
Raviart MsFEMs proposed in [33, 40]. A clear perspective is to perform an error
analysis in order to obtain the relation between the error and the order of the approx-
imation n. Besides, it would be interesting to implement the enriched MsFEM with
n =2, n =3 and so on, and then compare the enriched method with other Crouzeix-
Raviart MsFEMs. In addition, when there is no obstacle and if the elements of the
mesh (in 2D) are triangles, then the method presented here shares a large number
of features with the non-conforming finite elements presented in [38]: pressures are
fully discontinuous P, functions, velocities contain the non-conforming P, 1 space
and the degrees of freedom are the same, as can be seen from [38, page 298]; further
investigation is needed to check whether these two methods are the same.

The enriched Crouzeix-Raviart MsFEM proposed in this paper can easily be ex-
tended to Oseen flows (see [25] for more details) which is a step further toward the
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Fig. 10: Numerical convergence of MsFEMs in case B

nonlinear Navier-Stokes flows, which is the ultimate goal of this study. It would
be interesting to test whether the enriched MsFEM could significantly improve the
accuracy of the method proposed in [39] for Oseen flows in heterogeneous media.
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