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ENRICHED NONCONFORMING MULTISCALE FINITE ELEMENT1

METHOD FOR STOKES FLOWS IN HETEROGENEOUS MEDIA2

BASED ON HIGH-ORDER WEIGHTING FUNCTIONS ∗3

Q. FENG† , G. ALLAIRE‡ , AND P. OMNES§4

Abstract. This paper addresses an enriched nonconforming Multiscale Finite Element Method5
(MsFEM) to solve viscous incompressible flow problems in genuine heterogeneous or porous media. In6
the work of [B. P. Muljadi, J. Narski, A. Lozinski, and P. Degond, Multiscale Modeling & Simulation7
2015 13:4, 1146-1172] and [G. Jankowiak and A. Lozinski, arXiv:1802.04389 [math.NA], 2018], a8
nonconforming MsFEM has been first developed for Stokes problems in such media. Based on these9
works, we propose an innovative enriched nonconforming MsFEM where the approximation space10
of both velocity and pressure are enriched by weighting functions which are defined by polynomials11
of higher-degree. Numerical experiments show that this enriched nonconforming MsFEM improves12
significantly the accuracy of the nonconforming MsFEMs. Theoretically, this method provides a13
general framework which allows to find a good compromise between the accuracy of the method and14
the computing costs, by varying the degrees of polynomials.15

Key words. Multiscale Finite Element Method, Crouzeix-Raviart Element, Stokes Flows16

AMS subject classifications. 65N30, 76D07, 76M3017

1. Introduction.18

1.1. Multiscale problems. Modeling of Stokes flows in heterogeneous media19

is a topic of significant interest in many engineering practices, such as reservoir en-20

gineering, flows through fractured porous media, flows in nuclear reactor cores, etc.21

The challenge in numerical simulations of these problems lies in the fact that the so-22

lution contains multiscale features such as spatial scale disparity and requires a very23

fine mesh to resolve all the details. In some engineering circumstances, quantities24

of interest are only related to macroscopic properties of the solution. But fine-scale25

features cannot be omitted in physical models since they can affect significantly the26

macroscopic behavior of the solution. However, solving these problems on a very fine27

mesh can be prohibitively expensive or impossible with today’s computing capacities.28

As a consequence, some model reduction techniques are developed to get reliable so-29

lutions at reasonable computational costs. These methods attempt to resolve scales30

below the coarse mesh scale by incorporating local computations into a global problem31

which is defined only on a coarse mesh.32

1.2. Multiscale methods. A certainly not exhaustive list of Multiscale meth-33

ods includes homogenization based methods [5, 20, 28], upscaling methods [8, 23, 32,34

43], Multiscale Finite Element Methods (MsFEMs) [9, 19, 20, 21, 29, 30], variational35

multiscale methods [2, 31], heterogeneous multiscale methods [17, 28], multiscale finite36

volumes and discontinuous Galerkin methods [3, 14, 26, 34] and so on. MsFEMs were37
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§Université Paris-Saclay, CEA, Service de Thermo-hydraulique et de Mécanique des Fluides,
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2 Q. FENG, G. ALLAIRE, AND P. OMNES

first proposed by [29, 30] and then experienced major advancements in [9, 19, 20, 21].38

This method has been extended to the generalized multiscale finite element method39

in [10, 11, 12, 18]. MsFEMs use a finite element approach and construct special ba-40

sis functions which incorporate the fine scale features of the problem. MsFEMs rely41

on two types of meshes: a global coarse mesh and a collection of local fine meshes.42

The basis functions are constructed by solving local problems on the fine meshes43

with prescribed boundary conditions. Then a coarse-scale problem, involving these44

basis functions, is solved on the coarse mesh. In order to improve the accuracy of45

MsFEMs, the oversampling method [29] was introduced to better approximate the46

boundary conditions in local problems. This gives a nonconforming MsFEM since the47

oversampling introduces discontinuities across coarse elements.48

Another nonconforming method, namely the Crouzeix-Raviart MsFEM, was de-49

veloped for solving the diffusion problem [35, 36, 37], the advection-diffusion problem50

[16], the Stokes problem [33, 40] and the Oseen problem [39] in heterogeneous media.51

More recently, [13] proposes a multiscale hydrid high-order method for highly oscil-52

latory elliptic problems. The method in [13] can be considered as a first attempt at53

generalizing the Crouzeix–Raviart MsFEM to arbitrary orders of approximation. In54

the Crouzeix-Raviart MsFEM, basis functions are constructed associated to coarse55

element edges. The non-conforming nature of the Crouzeix-Raviart element [15] pro-56

vides great flexibility especially in case of randomly placed obstacles. The conformity57

between coarse elements is enforced in a weak sense, i.e., only the average of the58

jump of the function vanishes on the interface between coarse elements. In the case of59

densely placed obstacles, it is very difficult to avoid intersections between interfaces60

of coarse elements and obstacles. In this situation, the Crouzeix-Raviart MsFEM is61

very attractive since it allows the multiscale basis functions to have a natural bound-62

ary condition on coarse element edges, which relaxes the sensitivity of the method to63

complex patterns of obstacles, without using oversampling methods.64

In [40] the Crouzeix-Raviart MsFEM was introduced for Stokes problems in het-65

erogeneous media. In order to improve the accuracy of the method, the authors of [33]66

enriched the approximation space of velocity by adding weighting functions which are67

defined by linear polynomials. The penalization method was applied with high dif-68

fusion and viscosity parameters inside the obstacles, in order to perform numerical69

simulations on simple Cartesian meshes, and local problems are discretized by the70

Q1-Q1 finite element method [4].71

We mention that the method proposed in [13] share some similarities with our72

enriched Crouzeix-Raviart MsFEM in the use of weighting functions defined by poly-73

nomials of higher degrees. But the method in [13] is defined only for elliptic problems74

in the framework of a hybrid high-order method, whereas in our work we develop an75

enriched method for flow problems in the framework of MsFEMs.76

1.3. This paper. We propose an innovative enriched Crouzeix-Raviart MsFEM77

for Stokes flows in heterogeneous media with numerous solid obstacles. In this method,78

both approximation spaces of velocity and pressure are enriched by adding weighting79

functions which are defined by polynomials of higher-degrees. By varying the degrees80

of polynomials, the enriched Crouzeix-Raviart MsFEM allows to find a good com-81

promise between the accuracy of the method and the computing costs. Numerical82

experiments show that the enriched Crouzeix-Raviart MsFEM is significantly more83

accurate than the MsFEM proposed in [33, 40]. In practice, rather than using the84

penalization method as in [33, 40], we perform numerical simulations using body-85

fitted unstructured triangular meshes. Local problems are solved by the finite volume86
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element method [6] in an industrial software TrioCFD [41].87

The paper is organized as follows. The problem formulation is described in sec-88

tion 2. The enriched Crouzeix-Raviart MsFEM is presented in section 3. Section 489

discusses shortly the practical implementations of MsFEMs. In section 5, we present90

some numerical experiments in 2-d (although the method is analysed in space di-91

mension 2 or 3) and compare the accuracy of different variants of Crouzeix-Raviart92

MsFEM. The conclusions are given in section 6.93

Domain Ωε

Obstacles Bε

Boundary of obstacles ∂Bε

Fig. 1: Rectangular domain Ω comprising a fluid domain Ωε perforated by a set of
obstacles Bε

2. Problem formulation. Let Ω ⊂ Rd be a regular bounded open set (with94

d = 2 or 3). As shown in Figure 1, we divide the domain Ω into a fixed solid part95

Bε such that ∂Bε ∩ ∂Ω = ∅ and its complementary fluid part Ωε (here ε denotes a96

small parameter equal to the ratio of the heterogeneities characteristic length with97

the characteristic length of the domain). The steady-state Stokes problem is to find98

the velocity u : Ωε → Rd and the pressure p : Ωε → R solutions to99

−µ∆u+∇p = f in Ωε,(2.1)100

div u = 0 in Ωε,(2.2)101102

where the boundary conditions are given by103

u = 0 on ∂Bε ∩ ∂Ωε,(2.3)104

u = 0 on ∂Ω ∩ ∂Ωε,(2.4)105106

with f a given force per unit volume, and µ the dynamic viscosity.107

The weak formulation. We introduce the spaces V = H1
0 (Ωε)

d
for the velocity,108

M = L2
0 (Ωε) = {p ∈ L2(Ωε) s.t.

∫
Ωε

p = 0}(2.5)109
110

for the pressure and X = V ×M . For simplicity the fluid domain Ωε is assumed111

to be connected in order for the pressure to be uniquely defined in M . The weak112

formulation of the Stokes problem (2.1)–(2.2) reads: find (u, p) ∈ X such that113

c ((u, p) , (v, q)) =

∫
Ωε

f · v, ∀ (v, q) ∈ X,(2.6)114
115

where the bilinear form c is defined by116

c ((u, p) , (v, q)) =

∫
Ωε

(µ∇u : ∇v − p div v − q div u) .117
118
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4 Q. FENG, G. ALLAIRE, AND P. OMNES

The existence and uniqueness of a solution to problem (2.6) is guaranteed by the119

Banach-Nečas-Babuška (BNB) theorem [22]. This theorem states that problem (2.6)120

has a unique solution provided that the bilinear form c is bounded and satisfies the121

so-called inf-sup condition:122

∃α > 0, inf
(u,p)∈X

sup
(v,q)∈X

c ((u, p) , (v, q))

‖u, p‖X ‖v, q‖X
≥ α.(2.7)123

124

Algorithm 3.1 main steps of a multiscale finite element method

1: Partition the domain Ω into a set of coarse elements (coarse mesh)
2: for each coarse element do
3: Partition the coarse element into a fine mesh
4: Construct multiscale basis functions via local problems
5: Compute rigidity matrices locally on the fine mesh
6: end for
7: Assemble global matrices and solve the coarse problem on the coarse mesh
8: for each coarse element do
9: Reconstruct fine-scale solutions on the fine mesh

10: end for

3. Crouzeix-Raviart Multiscale Finite Element Method. Algorithm 3.1125

outlines the main steps of MsFEMs. We present the enriched Crouzeix-Raviart Ms-126

FEM following these steps.

(a) heterogeneous domain Ωε (b) coarse mesh TH and element T

(c) fine mesh Th(T ) (d) reference mesh Th(Ωε)

Fig. 2: Illustration of the heterogeneous domain Ωε, the coarse mesh TH , the fine
mesh Th(T ) of a coarse element T and the reference mesh Th(Ωε).

127

3.1. Discretization of the domain. We discretize the domain Ω into an un-128

structured coarse mesh TH (see Figure 2 (b)) consisting of NH elements (triangles)129
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of width at most H. Let EH denote the set of all edges/faces of TH including those130

on the domain boundary ∂Ω. For the sake of simplicity, we denote elements of EH as131

faces throughout this paper. On each element T ∈ TH , we construct a fine mesh Th(T )132

(see Figure 2 (c)), with cell elements of maximum width h. Typically 0 < h ≤ H and133

Th is fine enough to fully resolve obstacles Bε.134

Note that fine meshes do not need to be matching on their common interfaces,135

which allows to generate them independently and in parallel. If fine meshes do match136

on the interface between coarse elements, their union forms a conforming reference137

mesh Th(Ωε) (see Figure 2 (d)) which is used to compute reference solutions, only138

needed for the validation of MsFEMs.139

Let ωE be the neighborhood of the face E ∈ EH defined by140

ωE =
⋃
j

{Tj ∈ TH | E ⊂ ∂Tj}.(3.1)141

142

When E is in the interior of the domain, ωE is the union of two adjacent elements.143

When E is on the boundary of the domain, ωE is composed of only one element.144

3.2. Crouzeix-Raviart functional spaces. Now we introduce some important145

definitions and notations. For any integer n and any integer 1 ≤ l ≤ d, we denote146

by Pl
n the linear space spanned by l-variate polynomial functions of total degree at147

most n. The dimension of Pl
n is148

N l
n := dim

(
Pl
n

)
=

(
n+ l

n

)
.149

150

For any T ∈ TH , we denote by Pd
n (T ) the restriction to T of polynomials in Pd

n.151

For any E ∈ EH , we denote by Pd−1
n (E) the restriction to E of polynomials of Pd−1

n .152

For the sake of simplicity, we denote Pd
n (T ) and Pd−1

n (E) respectively by Pn (T ) and153

Pn (E).154

Let s be a positive integer and let ωE,i : E → Rd be some vector-valued functions155

associated to each face E ∈ EH for i = 1, · · · , s. Let r be a non-negative integer and156

let ϕT,k : T → Rd be some vector-valued functions associated to each coarse element157

T ∈ TH for k = 1, · · · , r. Let t be a positive integer and let $T,j : T → R be some158

scalar functions associated to each coarse element T ∈ TH for j = 1, · · · , t.159

Hypothesis 3.1. For n = 0, for any T ∈ TH and for any E ∈ EH , we choose160 
s = d : ωE,1 = e1, · · · ,ωE,s = ed,

r = 0,

t = 1 : $T,1 = 1,

(3.2)161

162

where (e1, · · · , ed) is the canonical basis of Rd. For n ≥ 1, for any E ∈ EH and for163

any T ∈ TH , we assume that164

1. s = dNd−1
n and (ωE,i)1≤i≤s is a set of basis functions of (Pn (E))

d
.165

2. r = dNd
n−1 and (ϕT,k)1≤k≤r is a set of basis functions of (Pn−1(T ))

d
.166

3. t = Nd
n and ($T,j)1≤j≤t is a set of basis functions of Pn (T ).167

Remark 3.2. For n = 0 the choice (3.2) of weighting functions implies that the168

enriched Crouzeix-Raviart MsFEM becomes exactly the Crouzeix-Raviart MsFEM169

proposed in [40]. This also corresponds to the so-called CR2 method investigated170

in [33]. Furthermore, in a domain without obstacles, i.e. Bε = ∅, the Crouzeix-Raviart171

MsFEM space with n = 0 becomes the classical Crouzeix-Raviart finite element space.172
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6 Q. FENG, G. ALLAIRE, AND P. OMNES

Remark 3.3. For n = 1 and for the space dimension d = 2, our choice of weighting173

functions is, for any T ∈ TH and for any E ∈ E(T ),174 
ωE,1 = e1, ωE,2 = e2, ωE,3 = nEψE , ωE,4 = τEφE ,

$T,1 = 1, $T,2 = x, $T,3 = y,

ϕT,1 = e1, ϕT,2 = e2,

(3.3)175

176

where ψE and φE are non-vanishing functions in P1(E) with vanishing mean-values on177

E ∩Ωε and (e1, e2) is the canonical basis of R2. In this paper, we have implemented178

and tested only the enriched MsFEM with n = 1 which we denote by CR4 high.179

Remark 3.4. Our choice of weighting functions for n ≥ 1 is driven by the following180

fact: once the polynomial degree for the weighting functions (ωE,i) has been chosen, it181

is seen in (3.13)–(3.15) that the pressure decomposition into resolved and unresolved182

contributions motivates the fact that the boundary trace of the resolved pressure183

belongs (at most) to the span of (ωE,i), and that the space of unresolved velocities184

is orthogonal to (at least) the gradients of the resolved pressures. So our choice,185

although not the only possible one, corresponds to these two limit cases: resolved186

pressures will have the same polynomial (maximal) degree as the set of (ωE,i), and187

unresolved velocities will be (minimally) orthogonal to polynomials one order lower188

than the resolved pressures.189

To construct the approximation spaces of enriched Crouzeix-Raviart MsFEM, we190

define V ext
H differently from that of [33, 40]:191

V ext
H =

{
u ∈

(
L2 (Ωε)

)d
s. t. u |T∈

(
H1 (T ∩ Ωε)

)d
for any T ∈ TH ,

u = 0 on ∂Bε,
∫
E∩Ωε [[u]] · ωE,j = 0 for all E ∈ EH , j = 1, · · · , s

}
,192

193

where [[u]] denotes the jump of u across an internal face and [[u]] = u on ∂Ω. The194

space V ext
H enhances the natural velocity space

(
H1

0 (Ωε)
)d

so that we have at our195

disposal discontinuous vector fields across faces of the coarse mesh TH . Therefore V ext
H196

is not included in
(
H1

0 (Ωε)
)d

, the MsFEM is nonconforming and the homogeneous197

boundary condition is only weakly enforced.198

The extended velocity-pressure space is defined as

Xext
H = V ext

H ×M

with M defined by (2.5). We want to decompose Xext
H into a direct sum of a finite di-199

mensional subspace XH containing coarse scales and an infinite dimensional subspace200

X0
H containing unsolved fine scales, i.e., Xext

H = XH ⊕X0
H . This will be achieved in201

Theorem 3.15.202

Taking into account Hypothesis 3.1, we first define the infinite dimensional space203

X0
H as follows.204

Definition 3.5. The velocity-pressure space X0
H is defined as a subspace of Xext

H

by
X0

H = V 0
H ×M0

H , with
205

V 0
H =

{
u ∈ V ext

H s. t.
∫
E∩Ωε u · ωE,j = 0,

∫
T∩Ωε u ·ϕT,k = 0,

∀T ∈ TH , ∀E ∈ EH , j = 1, · · · , s, k = 1, · · · , r.

}
,(3.4)206

M0
H =

{
p ∈M s. t.

∫
T∩Ωε

p$T,j = 0, ∀T ∈ TH , j = 1, · · · , t
}
.(3.5)207

208
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It is important to stress that enriching only the set of edge weights ωE,j seems209

insufficient: indeed, in that case, a given function u vanishing on the edges of any210

T would belong to the unresolved fine scales whatever the number of edge weights,211

but imposing the condition
∫
T∩Ωε u · ϕT,k = 0 for an increasing number of triangle212

weights will reduce the norm of its component in the unresolved subspace.213

Besides, for any T ∈ TH , we define M0
H (T ) by214

M0
H(T ) =

{
p ∈ L2 (T ∩ Ωε) s. t.

∫
T∩Ωε

p$T,i = 0, i = 1, · · · , t
}
.(3.6)215

216

Definition 3.6. The velocity-pressure space XH is defined as a subspace of Xext
H ,217

being the ”orthogonal” complement of X0
H with respect to the bilinear form cH (., .) as218

follows:219

(uH , pH) ∈ XH ⇐⇒ (uH , pH) ∈ Xext
H such that220

cH ((uH , pH) , (v, q)) = 0, ∀ (v, q) ∈ X0
H ,(3.7)221222

where cH (., .) is defined by223

cH((uH , pH), (v, q)) =
∑

T∈TH

∫
T∩Ωε

(µ∇uH : ∇v − pH div v − q div uH) .224

225

Remark 3.7. The word ”orthogonal” is written between quotes since the bilinear226

form cH (., .) is not a scalar product (not positive definite).227

Definition 3.8. Define functional spaces MH and VH by228

MH = {q ∈M s. t. q |T ∈ Pn(T ), ∀T ∈ TH} ,(3.8)229

VH =


v ∈ V ext

H : ∀T ∈ TH , ∃ζT ∈M0
H(T ) such that

−µ∆v +∇ζT ∈ span {ϕT,1, · · · ,ϕT,r} in T ∩ Ωε

div v ∈ span {$T,1, · · · , $T,t} in T ∩ Ωε

µ∇vn− ζTn ∈ span {ωE,1, · · · ,ωE,s} on E ∩ Ωε ∀E ∈ E(T )

 ,(3.9)230

231

where E (T ) is the set of faces composing ∂T .232

Remark 3.9. Clearly, MH , defined by (3.8), is orthogonal to M0
H , defined by (3.5),233

in the set M .234

Remark 3.10. In Sections 3.3 and 3.5 it will be proved that VH is finite-dimensio-235

nal and spanned by velocity fields associated to each element T ∈ TH and weight236

ϕT,k with 1 ≤ k ≤ r on the one hand and to each edge E ∈ EH and weight ωE,i with237

1 ≤ i ≤ s on the other hand.238

Lemma 3.11. In definition (3.9), the pressure ζT is uniquely defined for a given239

velocity v ∈ VH . Therefore, gluing together the pressures ζT on all triangles T ∈ TH240

yields a single function πH (v) ∈M0
H such that πH (v) = ζT on any triangle T ∈ TH .241

The operator πH : VH →M0
H is linear and continuous.242

Proof. For a given v ∈ VH , we rewrite definition (3.9)243

−µ∆v +∇ζT =

r∑
k=1

λT,k ϕT,k in T ∩ Ωε,244

div v ∈ span {$T,1, · · · , $T,t} in T ∩ Ωε,245

v = 0 on ∂Bε ∩ T,246

µ∇vn− ζTn ∈ span {ωE,1, · · · ,ωE,s} on E ∩ Ωε, ∀E ∈ E(T ).247248
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8 Q. FENG, G. ALLAIRE, AND P. OMNES

for some vector λT = (λT,1, · · · , λT,r). Let us show that the pressure ζT ∈ M0
H(T )249

and the vector λT are uniquely defined. Assume there exist
(
ζT1 , λ

1
T

)
∈M0

H(T )× Rr250

and
(
ζT2 , λ

2
T

)
∈ M0

H(T ) × Rr satisfying the system of equations above for the same251

velocity v. In other words,252

∇ζT1 =

r∑
k=1

λ1
T,kϕT,k + µ∆v,253

∇ζT2 =

r∑
k=1

λ2
T,kϕT,k + µ∆v.254

255

Subtracting these equations, we obtain256

∇
(
ζT1 − ζT2

)
=

r∑
k=1

(
λ1
T,k − λ2

T,k

)
ϕT,k.257

258

The fact ϕT,k ∈ (Pn−1 (T ))
d

implies that
(
ζT1 − ζT2

)
∈ Pn(T ). At the same time,259 (

ζT1 − ζT2
)
∈M0

H(T ) defined by (3.6) which is orthogonal to Pn (T ). Thus we deduce260

that ζT1 = ζT2 and then λ1
T = λ2

T . Therefore we conclude that there exists an operator261

πH : VH → M0
H such that ζT = [πH (v)]|T . Moreover, πH is obviously linear and,262

since VH is finite-dimensional, πH is continuous.263

Theorem 3.12. Using the notations of Definition 3.8, let us introduce the space264

XH = span {(uH , πH (uH) + p̄H) ,uH ∈ VH , p̄H ∈MH} .(3.10)265266

Then it coincides with the subspace XH defined in (3.7), namely267

XH = XH .(3.11)268269

270

Proof. We first prove the inclusion XH ⊂ XH . Let (uH , pH) ∈ XH in the sense271

of definition (3.7), i.e. ∀ (v, q) ∈ X0
H :272

cH((uH , pH), (v, q)) =
∑

T∈TH

∫
T∩Ωε

(µ∇uH : ∇v − pH div v − q div uH) = 0.

(3.12)

273

274

Let p̄H ∈ MH be the orthogonal projection of pH on MH , and let p′H = (pH − p̄H).275

The fact that MH and M0
H are orthogonal implies that276

pH = p̄H + p′H with p̄H ∈MH and p′H ∈M0
H .277278

By virtue of this decomposition, the term concerning pH in (3.12) can be decomposed279

as280 ∑
T∈TH

∫
T∩Ωε

pH div v =
∑

T∈TH

∫
T∩Ωε

p̄H div v +
∑

T∈TH

∫
T∩Ωε

p′H div v.(3.13)281

282

Now we compute the first term in the right hand side of (3.13). Integrating by parts283

on each triangle T yields:284 ∫
T∩Ωε

p̄H div v =

∫
∂(T∩Ωε)

v · np̄H −
∫
T∩Ωε

v · ∇p̄H , ∀v ∈ V 0
H .(3.14)285

286
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Since p̄H ∈ MH , definition (3.8) implies that for any T ∈ TH , p̄H |T ∈ Pn (T ). Thus,287

for any E ∈ E (T ), p̄H |E n ∈ (Pn(E))
d

= span {ωE,1, · · · ,ωE,s}, according to Hy-288

pothesis 3.1. Then, since v ∈ V 0
H , definition (3.4) implies that289 ∫

∂(T∩Ωε)

v · np̄H = 0.290

291

Then (3.14) reduces to292 ∫
T∩Ωε

p̄H div v = −
∫
T∩Ωε

v · ∇p̄H .293
294

As p̄H |T ∈ Pn(T ), it is obvious that∇p̄H = 0 for n = 0 and that∇p̄H ∈ (Pn−1(T ))
d

=295

span {ϕT,1, · · · ,ϕT,r} on T ∈ TH for n ≥ 1, according to Hypothesis 3.1. Then, since296

v ∈ V 0
H , definition (3.4) implies that297 ∫

T∩Ωε

p̄H div v = −
∫
T∩Ωε

v · ∇p̄H = 0.298
299

As a result, (3.13) reduces to300 ∑
T∈TH

∫
T∩Ωε

pH div v =
∑

T∈TH

∫
T∩Ωε

p′H div v301

302

and (3.12) reduces to: ∀ (v, q) ∈ X0
H ,303

cH ((uH , pH) , (v, q)) =
∑

T∈TH

∫
T∩Ωε

(µ∇uH : ∇v − p′H div v − q div uH) = 0.

(3.15)

304

305

In a second step, choosing the test function v = 0 and, for a given element306

T ∈ TH , the test function q ∈M0
H with q vanishing outside T , (3.15) becomes307 ∫
T∩Ωε

q div uH = 0.308
309

By definition (3.5) of M0
H , this implies that310

(div uH)|T ∈ span {$T,1, · · · , $T,t} i.e. (div uH)|T ∈ Pn (T ) in T ∩ Ωε,(3.16)311
312

thanks to Hypothesis 3.1.313

In a third step, we observe that for any face E ∈ E(T ), there exist some (not314

unique) functions vE,i ∈
(
H1 (T ∩ Ωε)

)d
, i = 1, · · · , s such that315 

∫
F∩Ωε vE,i · ωF,j = δE,F δi,j , ∀F ∈ E(T ), ∀j = 1, · · · , s,∫
T∩Ωε vE,i ·ϕT,l = 0, ∀l = 1, · · · , r,
vE,i = 0, on ∂Bε ∩ T.

(3.17)316

317

We also observe that there exist (not unique) functions vT,k ∈
(
H1 (T ∩ Ωε)

)d
, k =318

1, · · · , r such that319 
∫
F∩Ωε vT,k · ωF,j = 0, ∀F ∈ E(T ), ∀j = 1, · · · , s,∫
T∩Ωε vT,k ·ϕT,l = δk,l, ∀l = 1, · · · , r,
vT,k = 0, on ∂Bε ∩ T.

(3.18)320

321
322
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Remark 3.13. One may construct such functions as follows. Let θ be a given non-323

vanishing positive function in H1
0 (T ∩ Ωε). Then, functions vT,k are sought under324

the form (
∑

1≤k′≤r
zk,k′ϕT,k′)θ. They evidently satisfy the first and last line of (3.18)325

and, for any k, coefficients zk,k′ are chosen such that
∑

1≤k′≤r
ak′,l zk,k′ = δk,l for all326

l = 1, · · · , r, with ak′,l =
∫
T∩Ωε θϕT,k′ · ϕT,l. This is a square linear system which327

has a unique solution since (v,w) 7→
∫
T∩Ωε θv ·w is a scalar product on (Pn−1(T ))

d
328

and (ϕT,k)1≤k≤r a basis of that space. Next, for a given face E ∈ E(T ), considering329

a function θE ∈ H1
0 (E ∩ Ωε) a similar process leads to functions ṽE,i defined on330

E ∩ Ωε, vanishing on ∂(E ∩ Ωε) and such that
∫
E∩Ωε ṽE,i · ωE,j = δi,j . Extending331

these functions by 0 on the other faces F 6= E of T and on ∂Bε ∩ T , they belong to332

H1/2(∂(T ∩ Ωε)) and can be lifted to functions of H1(T ∩ Ωε) still denoted by ṽE,i333

and which verify by construction the first and third lines of (3.17). We conclude by334

setting vE,i = ṽE,i −
∑

1≤k≤r
akvT,k with ak =

∫
T∩Ωε ṽE,i ·ϕT,k.335

We denote by V (T ) the set of functions in
(
H1 (T ∩ Ωε)

)d
vanishing on ∂Bε ∩ T :336

V (T ) =
{
v ∈

(
H1(T ∩ Ωε)

)d
such that v = 0 on ∂Bε ∩ T

}
.(3.19)337

338

We now check that the space V (T ) can be decomposed as339

V (T ) = V∫ 0(T )⊕ span {vE,i, vT,k, ∀E ∈ E(T ), i = 1, · · · , s, k = 1, · · · , r}340
341

where342

V∫ 0(T ) =

{
v ∈

(
H1(T ∩ Ωε)

)d
:
∫
F∩Ωε v · ωF,j = 0,

∫
T∩Ωε v ·ϕT,l = 0,

v = 0 on ∂Bε ∩ T, ∀F ∈ E(T ), j = 1, · · · , s, l = 1, · · · , r.

}
.(3.20)343

344

Indeed, the fact that these two subspaces are in direct sum is obvious. Next, we345

decompose any v ∈ V (T ) into346

v = ṽ +
∑

E∈EH

s∑
i=1

βE,ivE,i +

r∑
k=1

βT,kvT,k.(3.21)347

348

Choosing349

(3.22) βE,i =

∫
E∩Ωε

v · ωE,i and βT,k =

∫
T∩Ωε

v ·ϕT,k,350

one may easily check that ṽ ∈ V∫ 0(T ).351

Now, for a given T and a given v ∈ V (T ), let ṽ be the function which is equal to ṽ352

on T ∩Ωε as constructed in (3.21), and equal to 0 elsewhere. Hence, since ṽ ∈ V∫ 0(T ),353

it holds that ṽ ∈ V 0
H . Taking q = 0 and v = ṽ in (3.15) we obtain354

cH ((uH , pH) , (ṽ, 0)) =

∫
T∩Ωε

(µ∇uH : ∇ṽ − p′H div ṽ) = 0.(3.23)355
356

Substituting ṽ defined in (3.21) into (3.23), we obtain357 ∫
T∩Ωε

(µ∇uH : ∇v − p′H div v) =

r∑
k=1

βT,k

∫
T∩Ωε

(µ∇uH : ∇vT,k − p′H div vT,k)358

+
∑

E∈E(T )

s∑
i=1

βE,i

∫
T∩Ωε

(µ∇uH : ∇vE,i − p′H div vE,i) .(3.24)359

360
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Denoting for any E ∈ E(T ), i = 1, · · · , s and k = 1, · · · , r361

λE,i =

∫
T∩Ωε

µ∇uH : ∇vE,i − p′H div vE,i,362

λT,k =

∫
T∩Ωε

µ∇uH : ∇vT,k − p′H div vT,k,363
364

and using the definition of βE,i and βT,k given by (3.22), equation (3.24) can be365

written as366 ∫
T∩Ωε

(µ∇uH : ∇v − p′H div v) =
∑

E∈E(T )

s∑
i=1

λE,i

∫
E∩Ωε

v · ωE,i367

+

r∑
k=1

λT,k

∫
T∩Ωε

v ·ϕT,k,(3.25)368

369

which holds for any v ∈ V (T ) defined in (3.19). In (3.25), considering an arbitrary370

v that vanishes on all edges E ∈ E(T ) and integrating by parts in the left-hand side,371

we obtain the following strong form:372

−µ∆uH +∇p′H =

r∑
k=1

λT,kϕT,k in T ∩ Ωε.(3.26)373

374

Then by writing the variational formulation of (3.26) for v ∈ V (T ) and comparing375

with (3.25), we deduce that376

µ∇uHn− p′Hn ∈ span {ωE,1, · · · ,ωE,s} on E ∩ Ωε ∀E ∈ E(T ).(3.27)377378

Finally, combining equations (3.16), (3.26) and (3.27), we obtain379

−µ∆uH +∇p′H =

r∑
k=1

λT,k ϕT,k in T ∩ Ωε,380

div uH ∈ span {$T,1, · · · , $T,t} in T ∩ Ωε,381

uH = 0 on ∂Bε ∩ T,382

µ∇uHn− p′Hn ∈ span {ωE,1, · · · ,ωE,s} on E ∩ Ωε, ∀E ∈ E(T ).383384

Using Lemma 3.11, the pressure p′H = πH (uH) and the vector λT = (λT,1, . . . , λT,r)385

are both uniquely determined by uH . We recall that the pressure pH is defined by386

pH = p̄H + p′H . Thus we proved that (uH , pH) defined in (3.7) belongs to the space387

defined by (3.10), i.e. XH ⊂ XH .388

Reciprocally, we now prove that (uH , pH) ∈ XH defined by (3.10), with pH =389

p̄H + πH (uH), also satisfies relation (3.7). The first step is to remark that (uH , pH)390

in indeed in Xext
H ; the fact that pH belongs to M is obvious, and the fact that uH391

belongs to V ext
H comes from the definition of VH itself. As far as the ”orthogonality”392

relation in (3.7) is concerned, since uH ∈ VH then Lemma 3.11 shows that there exist393
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a unique ζT = πH (uH) ∈M0
H(T ) and a unique (λT,1, · · · , λT,r) ∈ Rr such that394

−µ∆uH +∇ζT =

r∑
k=1

λT,kϕT,k in T ∩ Ωε,(3.28)395

div uH ∈ span {$T,1, · · · , $T,t} in T ∩ Ωε,(3.29)396

uH = 0 on ∂Bε ∩ T,(3.30)397

µ∇uHn− ζTn ∈ span {ωE,1, · · · ,ωE,s} on E ∩ Ωε, ∀E ∈ E(T ).(3.31)398399

Equation (3.31) shows that for any E ∈ E(T ), there exist λE,1, · · · , λE,s ∈ R such400

that401

µ∇uHn− ζTn =

s∑
i=1

λE,iωE,i on E ∩ Ωε, ∀E ∈ E(T ).402

403

Taking the scalar product of (3.28) with any v ∈ V 0
H , integrating by parts and making404

use of the equations above, we obtain405 ∫
T∩Ωε

µ∇uH : ∇v −
∫
T∩Ωε

ζT div v =

r∑
k=1

λT,k

∫
T∩Ωε

ϕT,k · v406

+
∑

E∈E(T )

s∑
i=1

λE,i

∫
E∩Ωε

ωE,i · v.(3.32)407

408

Then, definition (3.4) of V 0
H implies that409 ∫

T∩Ωε

ϕT,k · v = 0 and

∫
E∩Ωε

ωE,i · v = 0.410
411

Thus (3.32) reduces to412 ∫
T∩Ωε

µ∇uH : ∇v −
∫
T∩Ωε

πH(uH)|T div v = 0.(3.33)413
414

Besides, for p̄H ∈MH , integration by parts yields415 ∫
T∩Ωε

p̄H |T div v =

∫
∂(T∩Ωε)

v · np̄H |T −
∫
T∩Ωε

v · ∇p̄H |T , ∀v ∈ V 0
H .416

417

Definition (3.8) of MH implies that p̄H |T ∈ Pn(T ) , so that ∇p̄H |T ∈ (Pn−1(T ))
d

418

for n ≥ 1 and ∇p̄H |T = 0 for n = 0. We also have that the restriction of np̄H |T419

to E ∈ E(T ) belongs to (Pn(E))
d
. Making use of Hypothesis 3.1, definition of V 0

H420

implies that421 {∫
∂(T∩Ωε)

v · np̄H |T = 0∫
T∩Ωε v · grad p̄H |T = 0

=⇒
∫
T∩Ωε

p̄H |T div v = 0.(3.34)422

423

Moreover, for any uH ∈ VH , div uH ∈ span {$T,1, · · · , $T,t}. The fact that424

M0
H(T ) is orthogonal to span {$T,1, · · · , $T,t} implies that for any q ∈M0

H(T )425 ∫
T∩Ωε

q div uH = 0.(3.35)426
427
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As a result, summing (3.33), (3.34) and (3.35), we obtain that ∀ (v, q) ∈ X0
H , and428

for all T ∈ TH429 ∫
T∩Ωε

µ∇uH : ∇v −
∫
T∩Ωε

(
πH(uH)|T + p̄H |T

)
div v −

∫
T∩Ωε

q div uH = 0,430
431

Now by definition pH |T = πH(uH)|T + p̄H |T on each element T ∈ TH . Summing432

the equation above on all elements T ∈ TH , we obtain that for any (v, q) ∈ X0
H ,433 ∑

T∈TH

∫
T∩Ωε

µ∇uH : ∇v −
∑

T∈TH

∫
T∩Ωε

pH div v −
∑

T∈TH

∫
T∩Ωε

q div uH = 0.434

435

which exactly means that (uH , pH) ∈ XH , and therefore XH ⊂ XH . Consequently,436

equality (3.11) is proved.437

3.3. Local problems defined by Stokes equations. Now we construct some438

functions associated to elements or faces of the coarse mesh, we shall prove in sec-439

tion 3.5 that they form a basis of the resolved space VH . From their definitions below,440

they evidently belong to V ext
H .441

The strong form. We first construct functions associated to faces of the coarse442

mesh. For any E ∈ EH , for i = 1, · · · , s, find the function ΦE,i : Ωε → Rd, the443

pressure πE,i : Ωε → R such that ΦE,i and πE,i vanish outside the coarse element(s)444

Tk ⊂ ωE (defined by (3.1)) for k ∈ {1, 2} (only one coarse element if E ∈ ∂Ω) and445

solve on Tk:446 

−µ∆ΦE,i +∇πE,i ∈ span {ϕTk,1, · · · ,ϕTk,r} in Tk ∩ Ωε,

div ΦE,i ∈ span {$Tk,1, · · · , $Tk,t} in Tk ∩ Ωε,

µ∇ΦE,in− πE,in ∈ span {ωF,1, · · · ,ωF,s} on F ∩ Ωε, ∀F ∈ E(Tk),

ΦE,i = 0 on ∂Bε ∩ Tk,∫
F∩Ωε ΦE,i · ωF,j =

{
δij , F = E

0, F 6= E
∀F ∈ E (Tk) , ∀j = 1, · · · , s,∫

Tk∩Ωε ΦE,i ·ϕTk,l = 0 ∀l = 1, · · · , r,∫
Tk∩Ωε πE,i ·$Tk,m = 0 ∀m = 1, · · · , t.

(3.36)447

448

Then, we construct functions associated to elements of the coarse mesh. For each449

T ∈ TH , for k = 1, · · · , r, the support of the function ΨT,k is reduced to T ∩ Ωε. We450

find ΨT,k : Ωε → Rd and πT,k : Ωε → R by solving on T :451 

−µ∆ΨT,k +∇πT,k ∈ span {ϕT,1, · · · ,ϕT,r} in T ∩ Ωε,

div ΨT,k ∈ span {$T,1, · · · , $T,t} in T ∩ Ωε,

µ∇ΨT,kn− πT,kn ∈ span {ωF,1, · · · ,ωF,s} on F ∩ Ωε, ∀F ∈ E(T ),

ΨT,k = 0 on ∂Bε ∩ T,∫
F∩Ωε ΨT,k · ωF,j = 0 ∀F ∈ E (T ) , ∀j = 1, · · · , s,∫
T∩Ωε ΨT,k ·ϕT,l = δkl ∀l = 1, · · · , r,∫
T∩Ωε πT,k ·$T,m = 0 ∀m = 1, · · · , t.

(3.37)452

453

The weak form. The weak form of (3.36) is as follows. Let ns = s×Card(E(Tk)).454

For any E ∈ EH , for i = 1, · · · , s, on the coarse element Tk ⊂ ωE for k ∈ {1, 2} (only455

one coarse element if E ∈ ∂Ω), find ΦE,i ∈
(
H1 (Tk ∩ Ωε)

)d
such that ΦE,i = 0 on456
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∂Bε ∩ Tk, πE,i ∈ L2 (Tk ∩ Ωε), (λF,j)F∈E(Tk),j=1,··· ,s ∈ Rns and (λTk,l)l=1,··· ,r ∈ Rr457

by solving:458



∫
Tk∩Ωε µ∇ΦE,i : ∇v −

∫
Tk∩Ωε πE,i div v +

∑
F∈E(Tk)

s∑
j=1

λF,j

∫
F∩Ωε v · ωF,j =

r∑
l=1

λTk,l

∫
Tk∩Ωε ϕTk,l · v, ∀v ∈

(
H1 (Tk ∩ Ωε)

)d
such that v = 0 on ∂Bε ∩ Tk,∫

Tk∩Ωε q div ΦE,i = 0, ∀q ∈M0
H(Tk),∑

F∈E(Tk)

s∑
j=1

µF,j

∫
F∩Ωε ΦE,i · ωF,j = µE,i, ∀(µF,j)F∈E(Tk),j=1,··· ,s ∈ Rns ,

r∑
l=1

µl

∫
Tk∩Ωε ΦE,i ·ϕTk,l = 0, ∀(µl)l=1,··· ,r ∈ Rr,∫

Tk∩Ωε πE,i ·$Tk,m = 0, ∀m = 1, · · · , t.

(3.38)

459

460

The weak form of (3.37) is as follows. Recall that ns = s × Card(E(T )). For461

k = 1, · · · , r, find ΨT,k ∈
(
H1 (T ∩ Ωε)

)d
such that ΨT,k = 0 on ∂Bε ∩ T , πT,k ∈462

L2 (T ∩ Ωε), (λF,j)F∈E(T ),j=1,··· ,s ∈ Rns and (λT,l)l=1,··· ,r ∈ Rr by solving463



∫
T∩Ωε µ∇ΨT,k : ∇v −

∫
T∩Ωε πT,k div v +

∑
F∈E(T )

s∑
j=1

λF,j

∫
F∩Ωε v · ωF,j =

r∑
l=1

λT,l

∫
T∩Ωε ϕT,l · v, ∀v ∈

(
H1 (T ∩ Ωε)

)d
such that v = 0 on ∂Bε ∩ T,∫

T∩Ωε q div ΨT,k = 0,∀q ∈M0
H(T ),∑

F∈E(T )

s∑
j=1

µF,j

∫
F∩Ωε ΨT,k · ωF,j = 0, ∀(µF,j)F∈E(Tk),j=1,··· ,s ∈ Rns ,

r∑
l=1

µT,l

∫
T∩Ωε ΨT,k ·ϕT,l = µT,k, ∀(µT,l)l=1,··· ,r ∈ Rr,∫

T∩Ωε πT,k ·$T,m = 0, ∀m = 1, · · · , t.

(3.39)

464

465

3.4. Well-posedness of local problems. We prove that the local problems466

(3.36) and (3.37) are well-posed. Choosing a coarse element T ∈ TH , let nT be the467

number of edges composing ∂T and ns = nT × s be the dimension of the vector468

containing Lagrange multipliers (λF,j) for all F ∈ E(T ) and j = 1, · · · , s. Moreover,469

r is the dimension of the Lagrange multiplier vector (λT,l) for l = 1, · · · , r. We470

introduce the velocity space471

VT =
{
v ∈

(
H1 (T ∩ Ωε)

)d
, v = 0 on ∂Bε ∩ T

}
,472

473

as well as M0
H(T ), the pressure space defined by (3.6). The variational formulation of474

local problems (3.38) and (3.39) are of the form :475

Find (u, p, (λF,j) , (λT,l)) ∈ VT ×M0
H(T )× Rns × Rr such that476

âT (u,v) + bT (v, p) + cE
(
v,
(
λTF,j

))
+ dT (v, (λT,l)) = 0, ∀v ∈ VT(3.40)477

bT (u, q) = 0, ∀q ∈M0
H(T )(3.41)478

cE (u, (µF,j)) = `1 ((µF,j)) , ∀(µF,j) ∈ Rns ,(3.42)479

dT (u, (µT,l)) = `2 ((µT,l)) , ∀ (µT,l) ∈ Rr.(3.43)480481
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where the bilinear forms are defined by482

âT (u,v) =

∫
T∩Ωε

µ∇u : ∇v,483

bT (v, p) = −
∫
T∩Ωε

p div v,484

cE (v, (λF,j)) =
∑

F∈E(T )

s∑
j=1

λF,j

∫
F∩Ωε

v · ωF,j ,485

dT (v, (µT,l)) =

r∑
l=1

µT,l

∫
T∩Ωε

v ·ϕT,l,486

487

and where the linear forms `1 and `2 are defined by

`1 ((µF,j)) = µE,i , `2((µT,l)) = 0 for (3.38) and

`1 ((µF,j)) = 0 , `2((µT,l)) = µT,k for (3.39).

System (3.40)–(3.43) is called a twofold saddle point problem in the literature and488

can be viewed as a single saddle point problem defined on VT ×
(
M0

H(T )× Rns × Rr
)
.489

By introducing the following bilinear form490

∀ (v, (p, (λF,j) , (λT,l))) ∈ VT ×
(
M0

H(T )× Rns × Rr
)

491

b̃T (v, (p, (λF,j) , (λT,l))) = bT (v, p) + cE (v, (λF,j)) + dT (v, (λT,l)) ,492493

system (3.40)–(3.43) can be reformulated as494

âT (u,v) + b̃T (v, (p, (λF,j) , (λT,l))) = 0, ∀v ∈ VT ,(3.44)495

b̃T (u, (q, (µF,j) , (µT,l))) = `1((µF,j)) + `2((µT,l)),(3.45)496

∀ (q, (µF,j) , (µT,l)) ∈M0
H(T )× Rns × Rr.497498

Now we can apply the inf-sup theory to prove the well-posedness of (3.44)–(3.45).499

It is easy to check that the bilinear forms âT and b̃T are both continuous over their500

spaces of definition. Additionally, the linear forms `1 and `2 are also continuous.501

Moreover, the bilinear form âT is coercive over the velocity kernel of the bilinear form502

b̃T , since this kernel, for all n ≥ 0, contains vector functions which, at least, have503

mean values that vanish on the edges (or faces) of T , and this implies a Poincaré-like504

inequality.505

Finally, it remains only to prove that the bilinear form b̃T (., .) satisfies the fol-506

lowing inf-sup condition: there exists α̃ > 0 such that ∀ (p, (λF,j) , (λT,l)) ∈M0
H(T )×507

Rns × Rr508

sup
v∈VT

b̃T (v, (p, (λF,j) , (λT,l)))(
‖p‖L2(T∩Ωε) + ‖(λF,j)‖+ ‖(λT,l)‖

)
‖v‖H1(T∩Ωε)

≥ α̃.(3.46)509

510

To check the inf-sup condition for b̃T (., .), for any p ∈ M0
H(T ), (λF,j) ∈ Rns and511

(λT,l) ∈ Rr, we would like to find a velocity field v ∈ VT and a polynomial q ∈ Pn(T )512

such that513

− div v = p+ q,(3.47)514 ∫
F∩Ωε

v · ωF,j = λF,j , ∀F ∈ E(T ), j = 1, · · · , s,(3.48)515 ∫
T∩Ωε

v ·ϕT,l = λT,l ,∀l = 1, · · · , r.(3.49)516
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Indeed, in that case we would have (since (p, q)T∩Ωε = 0)517

(3.50) b̃T (v, (p, (λF,j) , (λT,l))) = ‖p‖2L2(T∩Ωε) + ‖(λF,j)‖2 + ‖(λT,l)‖2 .518

Note that it is necessary to include a polynomial q ∈ Pn(T ) in (3.47); if not, for any519

q′ ∈ Pn(T ), we would have520

(3.51) (div v, q′) = 0 =
∑
F

∫
F∩Ωε

v · (q′n)−
∫
T∩Ωε

v · ∇q′.521

Since (q′n)|F ∈ span{ωF,j , j = 1, · · · , s} and ∇q′ ∈ span{ϕT,l, l = 1, · · · , r}, then522

(3.51) with (3.48) and (3.49) would imply that the sets (λF,j)F∈E(T ),j=1,··· ,s and523

(λT,l)l=1,··· ,r could not be arbitrary.524

Using functions (3.17) and (3.18), we may look for v under the following form525

(3.52) v =
∑

F∈E(T )

s∑
j=1

λF,jvF,j +
r∑

l=1

λT,lvT,l +w526

with w ∈ VT verifying527

− div w = p̃,(3.53)528 ∫
F∩Ωε

w · ωF,j = 0, ∀F ∈ E(T ), j = 1, · · · , s,(3.54)529 ∫
T∩Ωε

w ·ϕT,l = 0 ,∀l = 1, · · · , r.(3.55)530

where
p̃ = p− (a−Πna),

and Πn is the L2(T ∩ Ωε) orthogonal projection on Pn(T ) and a is defined by

a = −
∑

F∈E(T )

s∑
j=1

λF,j div vF,j−
r∑

l=1

λT,l div vT,l.

Moreover, in (3.47), we chose q = Πna. Note that p̃ is orthogonal to Pn since this is531

the case for both p and (a−Πna).532

The standard inf-sup condition (with constant β > 0) is equivalent to the fact533

that for any q̃ ∈ L2
0(T ∩ Ωε), there exists w0 ∈

(
H1

0 (T ∩ Ωε)
)d ⊂ VT such that534

div w0 = q̃ and ‖w0‖H1(T∩Ωε) ≤ β||q̃||L2(T∩Ωε). We pick such a w0 for the particular535

case q̃ = p̃ since p̃ is orthogonal to Pn and thus belongs to L2
0(T ∩ Ωε). Since p̃536

depends continuously on p and a and since a depends continuously on the sets of λF,j537

and λT,l (recall that vF,j and vT,l are given functions), then w0 depends continuously538

on p and on the sets of λF,j and λT,l. Moreover, such a w0 automatically verifies539

boundary conditions (3.54) since it vanishes on the boundary. The sequel of the proof540

is performed for the case d = 3; the case d = 2 can be performed in a similar way, the541

only difference being that there are two curl operators when d = 2, one that applies542

on vector fields and returns a scalar field, and the other that acts conversely. Let G543

be a given open ball included in T ∩Ωε, we shall look for w under the following form:544

(3.56) w = w0 +∇× z,545
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in which z will be a smooth function compactly supported in G (and thus ∇× z will546

be in
(
H1

0 (T ∩ Ωε)
)d

) such that547

(3.57)

∫
T∩Ωε

∇× z ·ϕT,l =

∫
G
z · ∇ ×ϕT,l = −

∫
T∩Ωε

w0 ·ϕT,l ,∀l = 1, · · · , r.548

Let us now prove that it is possible to construct such a function z. We start by549

proving that the equalities in (3.57) will be verified for all l = 1, · · · , r if they are550

verified on a subset of indices. For this, let us consider the curl operator551

∇× : (Pn−1)d 7→ (Pn−2)d552

and denote by R(∇×) its range and rc := dimR(∇×) the dimension of this range.553

Like for any linear operator in finite dimensions, it holds that:554

(3.58) (Pn−1)d = Ker(∇×) ⊕ Span(ϕT,lk),555

where (ϕT,lk)1≤k≤rc is a subset of (ϕT,l)1≤l≤r such that (∇×ϕT,lk)1≤k≤rc is a basis556

of R(∇×). We now prove that if the equalities in (3.57) are verified for all l = lk,557

with 1 ≤ k ≤ rc, then they will be verified for all 1 ≤ l ≤ r. Indeed, taking into558

account (3.58) and since it can easily be proved that Ker(∇×) = ∇(Pn), then if l 6= lk559

it holds that there exists r ∈ Pn and a set of real numbers (αk) such that560

ϕT,l = ∇r +
∑

1≤k≤rc

αkϕT,lk .561

According to this decomposition, we have on the one hand562 ∫
G
z · ∇ ×ϕT,l =

∑
1≤k≤rc

αk

∫
G
z · ∇ ×ϕT,lk = −

∑
1≤k≤rc

αk

∫
T∩Ωε

w0 ·ϕT,lk563

since (3.57) is assumed to hold true for all lk, with 1 ≤ k ≤ rc. On the other hand,564

we have565

−
∫
T∩Ωε

w0 ·ϕT,l = −
∫
T∩Ωε

w0 · ∇r −
∑

1≤k≤rc

αk

∫
T∩Ωε

w0 ·ϕT,lk566

so that (3.57) will hold for the index l if
∫
T∩Ωε w0 · ∇r vanishes for any r ∈ Pn. This567

is indeed the case since568 ∫
T∩Ωε

w0 · ∇r = −
∫
T∩Ωε

div w0 r = −
∫
T∩Ωε

p̃ r = 0569

because p̃ is orthogonal to Pn and r ∈ Pn.570

Setting ψk := ∇ × ϕT,lk , the conclusion of the first part of this proof is that it571

is sufficient to construct a function z, regular enough and compactly supported in G572

such that (3.57) is satisfied for all indices lk, namely573

(3.59)

∫
G
z ·ψk = −

∫
T∩Ωε

w0 ·ϕT,lk ,∀k = 1, · · · , rc.574

Choosing a positive non-vanishing smooth scalar function θ with compact support575

in G, we look for the function z under the form576

z =

 ∑
1≤i≤rc

ziψi

 θ,577
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with a set of real numbers (zi) with i = 1, · · · , rc. Then, (3.59) reduces to finding a578

vector (zi) such that579

(3.60)
∑

1≤i≤rc

(∫
G
θψi ·ψk

)
zi = −

∫
T∩Ωε

w0 ·ϕT,lk ,∀k = 1, · · · , rc.580

This is a square linear system of size rc which has a unique solution since581

(p, q) 7→
∫
G
θ p · q582

is a scalar product on R(∇×) and (ψk) a basis of that space. Moreover, since this is583

a finite dimensional linear system, the dependence of the coefficients zi, and thus of584

the function ∇×z with respect to the right-hand side in (3.60), and thus with respect585

to w0, is continuous.586

As a conclusion, we have constructed a function w under the form (3.56) which587

verifies (3.53)–(3.54)–(3.55). We have shown that, by construction, bothw0 and∇×z588

depend linearly and continuously on p, λF,j and λT,l. Therefore, this is also the case589

for v defined from w by (3.52). Thus from (3.50), we conclude that (3.46) holds with590

a constant α̃ > 0. This continuity constant may of course depend on ε, in a way which591

is out of the scope of this article.592

3.5. Basis of the space VH .593

Theorem 3.14. The functions ΦE,i for E ∈ EH and i = 1, · · · , s defined by their594

restrictions (3.36) over each element Tk whose boundary includes E and ΨT,k for595

T ∈ TH and k = 1, · · · , r defined by (3.37) form a basis of VH defined by (3.9). In596

other words,597

VH = span {ΦE,i,ΨT,k, E ∈ EH , T ∈ TH , i = 1, · · · , s, k = 1, · · · , r}(3.61)598599

and {ΦE,i, E ∈ EH , i = 1, · · · , s} ∪ {ΨT,k, T ∈ TH , k = 1, · · · , r} forms a linearly600

independent family.601

Proof. First of all, it is easy to verify that

{ΦE,i, E ∈ EH , i = 1, · · · , s} ∪ {ΨT,k, T ∈ TH , k = 1, · · · , r}

forms a linearly independent family.602

Then, let us prove (3.61). It is obvious that functions ΦE,i, for E ∈ EH and603

i = 1, · · · , s defined by (3.36) and ΨT,k for T ∈ TH and k = 1, · · · , r defined by (3.37)604

all belong to VH . Consequently, we have605

span {ΦE,i, ΨT,k, E ∈ EH , T ∈ TH , i = 1, · · · , s, k = 1, · · · , r} ⊂ VH606607

Reciprocally, let u ∈ VH ; definition of VH implies that on each T ∈ TH , there608

exist a unique ζT ∈ M0
H(T ) and a unique vector (λT,1, · · · , λT,r) ∈ Rr that satisfy609

(3.28)–(3.31). We introduce v and σ as follows:610

v = u−
∑

T∈TH

r∑
k=1

(∫
T∩Ωε

u ·ϕT,k

)
ΨT,k −

∑
E∈EH

s∑
i=1

(∫
E∩Ωε

u · ωE,i

)
ΦE,i,611

σ =
∑

T∈TH

ζT −
∑

T∈TH

r∑
k=1

(∫
T∩Ωε

u ·ϕT,k

)
πT,k −

∑
E∈EH

s∑
i=1

(∫
E∩Ωε

u · ωE,i

)
πE,i.612

613
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For any T ∈ TH , it is easy to check that the restrictions of v and σ to T verify:614

−µ∆v +∇σ ∈ span {ϕT,1, · · · ,ϕT,r} in T ∩ Ωε(3.62)615

div v ∈ span {$T,1, · · · , $T,t} in T ∩ Ωε(3.63)616

µ∇vn− σn ∈ span {ωF,1, · · · ,ωF,s} on F ∩ Ωε, ∀F ∈ E(T )(3.64)617

v = 0 on ∂Bε ∩ T618 ∫
E∩Ωε

v · ωE,i = 0 ∀E ∈ E(T ), ∀i = 1, · · · , s(3.65)619 ∫
T∩Ωε

v ·ϕT,l = 0 ∀l = 1, · · · , r(3.66)620 ∫
T∩Ωε

σ ·$T,j = 0 ∀j = 1, · · · , t(3.67)621
622

Equation (3.62) implies that there exists (λT,1, · · · , λT,r) ∈ Rr such that623

−µ∆v +∇σ =

r∑
l=1

λT,lϕT,l.(3.68)624

625

Choosing v as the test function in the variational formulation of (3.68) implies626

that627

∫
T∩Ωε

µ|∇v|2 −
∫
T∩Ωε

σ div v =

r∑
l=1

λT,l

∫
T∩Ωε

ϕT,l · v +

∫
∂(T∩Ωε)

(µ∇vn− σn) · v.

(3.69)

628

629

It is straightforward to deduce from (3.63) and (3.67) that630 ∫
T∩Ωε

σ div v = 0.631
632

Then equation (3.66) implies that633

r∑
l=1

λT,l

∫
T∩Ωε

ϕT,l · v = 0.634

635

Combining equations (3.64) and (3.65), we can deduce that636 ∫
∂(T∩Ωε)

(µ∇vn− σn) · v = 0.637

638

Finally, equation (3.69) reduces to639 ∫
T∩Ωε

|∇v|2 = 0,640
641

which implies that v is constant on T ∩ Ωε. With (3.66), we deduce that v = 0.642

Thus we have proved that643

VH ⊂ span {ΦE,i,ΨT,k, E ∈ EH , T ∈ TH , i = 1, · · · , s, k = 1, · · · , r} .644645

Consequently, combing the results above, we have proved that646

VH = span {ΦE,i, ΨT,k, E ∈ EH , T ∈ TH , i = 1, · · · , s, k = 1, · · · , r} .647648
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We conclude that any function VH can be represented as649

∀uH ∈ VH , uH =
∑

E∈EH

s∑
i=1

uE,iΦE,i +
∑

T∈TH

r∑
k=1

uT,kΨT,k.650

651

An explicit formulation of the linear operator πH (see Lemma 3.11) is652

∀uH ∈ VH , πH (uH) =
∑

E∈EH

s∑
i=1

uE,iπE,i +
∑

T∈TH

r∑
k=1

uT,kπT,k.(3.70)653

654

3.6. Decomposition of the space Xext
H . Subsection 3.2 results in the following655

decomposition.656

Theorem 3.15. The space Xext
H can be decomposed as:657

Xext
H = XH ⊕X0

H ,658659

where X0
H is defined in Definition 3.5 and XH is defined in Definition 3.6.660

Proof. This theorem is proved in two steps:661

(i) Xext
H = XH +X0

H , (ii) XH ∩X0
H = {0} .662663

We start by proving step (i). First, by definition XH and X0
H are both subsets of664

Xext
H . Next, we prove that Xext

H ⊂ XH + X0
H , i.e. for any (u, p) ∈ Xext

H , there exist665

(uH , pH) ∈ XH ,u
0 ∈ V 0

H and p0 ∈M0
H such that666

u = uH + u0, p = pH + p0.(3.71)667668

In order to prove this, we consider a given (u, p) ∈ Xext
H and we first pick any669

triangle T ∈ TH ; then we consider the velocity space V∫ 0(T ) defined by (3.20), we670

recall the definition of M0
H(T ) by (3.6) and we consider the following problem: Find671 (

u0, p0
)
∈ V∫ 0(T )×M0

H(T ) such that672

∫
T∩Ωε

(
µ∇u0 : ∇v − p0 div v

)
=

∫
T∩Ωε

(µ∇u : ∇v − p div v) , ∀v ∈ V∫ 0(T )

(3.72)

673 ∫
T∩Ωε

q div u0 =

∫
T∩Ωε

q div u, ∀q ∈M0
H(T ).(3.73)674

675

This problem has a unique solution because:676

(a) (u,v) 7→
∫
T∩Ωε (µ∇u : ∇v) is coercive on V∫ 0(T ),677

(b) the existence of a functionw ∈ VT satisfying (3.53)–(3.54)–(3.55) with a linear678

and continuous dependence with respect to an arbitrary p̃ ∈M0
H(T ) proves the inf-sup679

condition for the divergence operator over the couple of spaces V∫ 0(T )×M0
H(T ).680

By gluing together
(
u0, p0

)
on each element T ∈ TH , we obtain that

(
u0, p0

)
∈681

V 0
H ×M0

H . Consequently, we have proved that for any (u, p) ∈ Xext
H , there exists682 (

u0, p0
)
∈ X0

H such that683

cH
((
u0, p0

)
, (v, q)

)
= cH ((u, p) , (v, q)) , ∀ (v, q) ∈ V 0

H ×M0
H .684685

Thus, defining uH and pH by686

uH = u− u0, pH = p− p0,687688
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we get that (uH , pH) satisfies689

cH ((uH , pH) , (v, q)) = 0, ∀ (v, q) ∈ V 0
H ×M0

H690691

and we deduce by Definition 3.6 that (uH , pH) ∈ XH . Finally, we conclude that692

Xext
H = XH +X0

H .693

Now it remains to prove step (ii), namely that XH∩X0
H = {0}. Let (u, p) ∈ XH∩694

X0
H , then this implies that for each T ∈ TH , p|T belongs at the same time to Pn(T ) ac-695

cording to (3.8), and to its orthogonal according to definition (3.6) and Hypothesis 3.1.696

This implies that p = 0. Next, Definition 3.6, implies that cH ((u, p) , (u, p)) = 0,697

which reduces to
∫
T∩Ωε µ∇u : ∇u = 0, leading to u = 0 which finishes this part of698

the proof.699

3.7. Coarse-scale problem. The coarse-scale formulation of the Stokes prob-700

lem (2.1)–(2.2) reads: find (uH , pH) ∈ XH such that701

cH ((uH , pH) , (v, q)) = (f ,v) , ∀ (v, q) ∈ XH .702703

Theorem 3.12 implies that pH can be decomposed as pH = πH (uH) + p̄H with704

πH (uH) ∈ M0
H and p̄H ∈ MH . It is easy to verify that (πH (uH) ,div v) = 0 for all705

uH ,v ∈ VH . The problem above can thus be reformulated as: find uH ∈ VH and706

p̄H ∈MH such that707

aH (uH ,v) + bH (v, p̄H) = FH (v) , ∀v ∈ VH ,(3.74)708

bH (uH , q) = 0, ∀q ∈MH ,(3.75)709710

where711

aH (uH ,v) =
∑

T∈TH

∫
T∩Ωε

µ∇uH : ∇v,712

bH (v, p̄H) = −
∑

T∈TH

∫
T∩Ωε

p̄H div v,713

FH (v) =
∑

T∈TH

∫
T∩Ωε

f · v.714

715

Theorem 3.16. The space VH and the space MH have the following relation716

divH VH = MH ,717718

where div H is the broken divergence operator defined triangle by triangle:

(divH v)|T = div v|T .

719

Proof. We prove first that divH VH ⊂ MH . For any v ∈ VH , for any T ∈ TH , it
holds that div v|T ∈ Pn (T ) thanks to (3.9) and Hypothesis 3.1. It thus remains to
prove that divH v ∈M , which reduces to prove that∫

Ωε

divH v = 0.
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This is true. Indeed, since VH ⊂ V ext
H , definition of V ext

H implies that
∫
E∩Ωε [[v]]·n = 0,720

and we thus deduce that721 ∫
Ωε

divH v =
∑

T∈TH

∫
T∩Ωε

div v =
∑

T∈TH

∫
∂(T∩Ωε)

v · n =
∑

E∈EH

∫
E∩Ωε

[[v · n]] = 0.722

723

Hence we have proved that divH VH ⊂MH .724

Reciprocally, we now prove that MH ⊂ divH VH . For any q ∈ MH , definition of725

MH shows that q ∈ L2
0 (Ω). Thus, there exists v ∈

(
H1

0 (Ωε)
)d

such that div v = q.726

Since
(
H1

0 (Ωε)
)d ⊂ V ext

H , Theorem 3.15 implies that v can be decomposed as727

v = vH + v0
H with vH ∈ VH , v0

H ∈ V 0
H .(3.76)728729

For any element T ∈ TH , let $T ∈ Pn (T ). Integration by parts gives:730 ∑
T∈TH

∫
T∩Ωε

$T div vH =
∑

T∈TH

∫
∂(T∩Ωε)

$TvH · n−
∑

T∈TH

∫
T∩Ωε

vH · ∇$T731

732

Substituting vH defined in (3.76) into this equation, we obtain733 ∑
T∈TH

∫
T∩Ωε

$T div vH =
∑

T∈TH

∫
∂(T∩Ωε)

$T

(
v − v0

H

)
· n734

−
∑

T∈TH

∫
T∩Ωε

(
v − v0

H

)
· ∇$T(3.77)735

736

The fact that $T ∈ Pn (T ) implies that n$T ∈ (Pn(T ))
d

and ∇$T ∈ Pn−1(T ).737

Then, definition of V 0
H by (3.4), Hypothesis 3.1 implies that738 ∫

∂(T∩Ωε)

v0
H · n$T = 0,

∫
T∩Ωε

v0
H · ∇$T = 0.739

740

Finally (3.77) reduces to741 ∑
T∈TH

∫
T∩Ωε

$T div vH =
∑

T∈TH

∫
∂(T∩Ωε)

$Tv · n−
∑

T∈TH

∫
T∩Ωε

v · ∇$T742

=
∑

T∈TH

∫
T∩Ωε

$T div v743

=
∑

T∈TH

∫
T∩Ωε

q$T .744

745

Since vH ∈ VH , we know by (3.9) that, on T , div vH ∈ Pn(T ). Moreover,746

q ∈ Pn(T ) and $T is arbitrary in Pn(T ) in the above equality. Thus, we deduce747

that q|T = (div vH)|T and so q = divH vH . Thus MH ⊂ divH VH . Consequently,748

combining the results above, we conclude that divH VH = MH .749

Making use of Theorem 3.16, it is trivial to deduce from (3.75) that div uH = 0750

in T ∩Ωε for T ∈ TH . We can thus eliminate the pressure unknown from (3.74)–(3.75)751

by introducing a subspace of VH :752

ZH = {v ∈ VH such that divH v = 0, ∀T ∈ TH} .753754
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Therefore (3.74)–(3.75) is equivalent to: find uH ∈ ZH such that755 ∑
T∈TH

∫
T∩Ωε

µ∇uH : ∇v =
∑

T∈TH

∫
T∩Ωε

f · v, ∀v ∈ ZH756

757

The existence and uniqueness of a solution uH to this problem is guaranteed758

by the coercivity of the bilinear for over VH . Then the existence and uniqueness of759

pressure p̄H follows from the fact that divH VH = MH . As a result, we have proved760

that (3.74)–(3.75) has one and only one solution (uH , p̄H) ∈ VH ×MH .761

To solve the coarse-scale problem on the coarse mesh, we approximate the non-762

homogeneous Dirichlet boundary condition uH = 0 defined by (2.4) in a weak form:763 ∫
E∩∂Ω

uH · ωE,j = 0, ∀E ∈ EH ∩ ∂Ω, j = 1, · · · , s.764
765

3.8. Reconstruction of fine-scale solutions. After obtaining coarse solutions766

uH = (uE,1, · · · ,uE,s)E∈EH and p̄H = (p̄H |T )T∈TH , we reconstruct on any coarse767

element T ∈ TH fine-scale solutions by:768

uH |T =
∑

E∈E(T )

s∑
i=1

uE,iΦE,i +

r∑
k=1

uT,kΨT,k,769

pH |T =
∑

E∈E(T )

s∑
i=1

uE,iπE,i +

r∑
k=1

uT,kπT,k + p̄H |T .770

771

4. Implementation issues and comparisons to previous methods. We772

implement MsFEMs in a CFD software called TrioCFD [41] developed by the CEA. In773

TrioCFD, incompressible Navier-Stokes equations are discretized by the finite volume774

element method [6, 7], which is a certain combination of the finite element method775

[22, 27] and the finite volume method [24, 42]. The main idea is to approximate776

fluxes on the boundary of control volumes by replacing unknowns by a finite element777

approximation. The finite volume element method consists of two meshes: a primal778

mesh and a dual mesh. Equations are discretized by volume integrals on the dual779

mesh and unknowns are discretized into a finite element space on the primal mesh.780

In our work, we implement the CR4 high MsFEM where weighting functions are781

defined by (3.3). Local problems (3.36)–(3.37) are solved by the finite volume element782

method where the velocity and pressure are discretized by the P1 nonconforming/P1783

element. The coarse-scale problem is implemented using (3.74)–(3.75), with a stan-784

dard orthogonal basis of the fully discontinuous Pn(T ) space for the pressure and the785

basis of VH that was constructed in subsection 3.5 for the velocity. The global matrix786

can be computed in parallel over multiple processors and remains sparse since the787

supports of these basis functions are local.788

We want to compare the accuracy of CR4 high to that of MsFEMs proposed789

originally in [33, 40]. Thus we implement also the CR2 and CR3 MsFEMs defined790

in [33]. The CR2 method is the original method of [40] and corresponds to the choice791

n = 0 of the present article. The CR3 method is obtained by enriching the edge792

weighting functions:793

ωE,1 = e1, ωE,2 = e2, ωE,3 = nEψE ,794795

where ψE is a non-vanishing function in P1(E) with vanishing mean-value on E ∩Ωε796

and (e1, e2) is the canonical basis of R2. We also investigate the CR4 method which797
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enriches the CR3 method to reach the full [P1(E)]2 weighting space on the edges:798

ωE,1 = e1, ωE,2 = e2, ωE,3 = nEψE , ωE,3 = τEφE ,799800

where nEψE , τEφE are the same as those in (3.3). In all these methods, the pressure801

weighting function is limited to $T,1 = 1, and we recall that ϕT,k for k = 1, · · · , r are802

only defined in the enriched MsFEM and do not exist in CR2, CR3 and CR4. The idea803

in comparing CR4 and CR4 high is to show that enriching only the edge weighting804

functions ωE,i is not enough to significantly enhance the accuracy of the scheme. We805

also need to add constraints in the triangle in order to make the non-resolved space806

V 0
H (3.4) smaller and smaller.807

Unknowns in local problems of CR2, CR3 and CR4 are discretized by the P1808

nonconforming/P0 element. Reference solutions are computed by the same finite809

volume element method. Instead of using the penalization technique and Cartesian810

meshes as in [33, 40], we impose the no-slip condition directly on obstacles and nu-811

merical simulations are performed on body-fitted unstructured meshes.812

Enriching the basic CR2 method by additional coarse basis functions rather than813

using finer meshes is an alternative to reduce the computational error, just like p814

enrichment is an alternative to h refinement in standard finite elements. Both ap-815

proaches imply growing costs which have to be compared to guide a choice between816

both approaches. In order to detail this (for d = 2), let us consider a coarse mesh817

made up of nT triangles with nE edges. Then, Table 1 displays the number of un-818

knowns that will be necessary for the different methods; for the sake of comparison,819

the asymptotic relationship nE ≈ 3
2nT will be used. We conclude from this table that

Table 1: Number of unknowns in the different methods

Field
Method

CR2 CR3 CR4 CR4 high
Pressure nT nT nT 3nT
Velocity 2nE 3nE 4nE 4nE + 2nT

Total nT + 2nE nT + 3nE nT + 4nE 5nT + 4nE
Asympt. total 4nT 5.5nT 7nT 11nT

820
using CR4 high is worth the additional complexity as soon as it is at least 11

4 times821

more accurate than CR2, or twice as accurate as CR3, on a given mesh.822

5. Numerical simulations. We consider Stokes flows in a two-dimensional823

open channel Ω = [0 ≤ x ≤ 2, 0 ≤ y ≤ 1], where the heterogeneity is represented by824

arbitrary placements of solid obstacles. Three-dimensional numerical simulations were825

also carried out with CR2 and CR3 and can be found in [25]. As shown in Figure 3,826

case A contains 26 obstacles of width ε = 0.015 and case B contains 100 obstacles827

of width ε = 0.003. Case B corresponds to a denser distribution of obstacles and828

is similar somehow to a homogenization setting, while case A with fewer and bigger829

obstacles is not so close to an asymptotic homogenized regime. We assign µ = 1 and830

f = 0. The parabolic inflow boundary condition u = y (1− y) e1 is imposed at the831

inlet. The Neumann boundary condition µ∇u · n − pn = 0 is imposed at the outlet832

and the no-slip condition is applied on other boundaries. In numerical convergence833

studies, we fix the element size h of fine meshes and vary only the element size H of834

coarse meshes. We ensure that h � ε < H. The element size h is small enough to835
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case A case B

Fig. 3: Two computational domains with square obstacles

(a) CR2 2×4 (b) CR3 2×4

(c) CR4 2×4 (d) CR4 high 2×4

(e) reference

Fig. 4: |u| contours of Stokes flows in case B computed on the coarse mesh 2×4

well capture small obstacles in the media. We are interested only in the case in which836

H > ε, since the opposite case H < ε is covered by classical finite element methods837

and MsFEMs are not needed.838

For case B, Figure 4, Figure 5 and Figure 6 show the velocity contours computed839

respectively by CR2, CR3, CR4 and CR4 high on various coarse meshes as well as the840

reference solution. Figure 7, Figure 8 and Figure 9 show the pressure computed by841

CR2, CR3, CR4 and CR4 high on various coarse meshes and the reference pressure.842

The reference solution is computed on a mesh containing 2,000,000 elements with an843

average element size h = 0.00025. Globally, we observe that the velocity and pressure844

computed by MsFEMs converge to the reference solutions. It is shown that CR3 is845

much more accurate than CR2 whereas CR4 is only slightly better than CR3. It is846
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(a) CR2 4×8 (b) CR3 4×8

(c) CR4 4×8 (d) CR4 high 4×8

(e) reference

Fig. 5: |u| contours of Stokes flows in case B computed on the coarse mesh 4×8

(a) CR2 8×16 (b) CR3 8×16

(c) CR4 8×16 (d) CR4 high 8×16

(e) reference

Fig. 6: |u| contours of Stokes flows in case B computed on the coarse mesh 8×16
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(a) CR2 2×4 (b) CR3 2×4

(c) CR4 2×4 (d) CR4 high 2×4

(e) reference

Fig. 7: Pressure of Stokes flows in case B computed on the coarse mesh 2×4

evident that both the velocity and pressure computed by CR4 high are significantly847

more accurate than those given by other MsFEMs. As shown in Figure 4 and Figure 7,848

CR4 high already captures most of the important flow features on the 2×4 coarse849

mesh and the solution is in good agreement with the reference solution. Table 2850

and Table 3 present the error study of different MsFEMs on various coarse meshes,851

relatively to the reference fine-scale solution (in L2 norm). Figure 10 shows the852

numerical convergence of velocity computed by different MsFEMs in both case A and853

B. We observe a converging trend of the velocity and the pressure in both case A and854

case B. It is observed that these methods have the same rate of convergence, which855

is about 1 in case A and a bit lower in case B. The enriched MsFEM does not show a856

larger rate of convergence than lower-order methods. We only mention that a related857

high-order method proposed in [13] proves an error in the energy norm that behaves858

like
√
ε+Hn+1 +

√
ε
H for smooth solutions of periodic elliptic problems with highly859

oscillating coefficients. Ref. [1] additionally considers the effect of the fine mesh on the860

error. These theoretical results and the numerical results presented in these references861

show that it is not easy to isolate the sole effect of refining H; this issue needs further862

investigation. In the present work, the errors of MsFEMs are relatively small even on863

coarse meshes with a rather large (H/ε) ratio and errors of CR4 high are much smaller864

than those of other MsFEMs. For a fair comparison, one should refer to Table 1 which865

takes into account the additional complexity of CR4 high with respect to the other866

methods. We conclude that it is always advantageous to implement CR4 high rather867

than CR2, and that the comparison with CR3 depends on the test case, on the mesh868

and on the considered variable (pressure or velocity).869
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(a) CR2 4×8 (b) CR3 4×8

(c) CR4 4×8 (d) CR4 high 4×8

(e) reference

Fig. 8: Pressure of Stokes flows in case B computed on the coarse mesh 4×8

Table 2: Error analysis of Stokes flows in case A

Config.
L2 Rel. U L2 Rel. P

CR2 CR3 CR4 CR4 high CR2 CR3 CR4 CR4 high
2×4 0.334 0.210 0.190 0.091 0.475 0.212 0.146 0.096
4×8 0.174 0.072 0.065 0.039 0.321 0.144 0.083 0.055
8×16 0.061 0.026 0.022 0.015 0.173 0.075 0.044 0.034
16×32 0.030 0.014 0.011 0.006 0.116 0.056 0.025 0.020

From Table 2 and Table 3, Case B seems to be more difficult in that the errors870

with respect to the fine scale reference solution are larger in that case. This may be871

due to the larger number of obstacles which generate richer flow patterns.872

6. Conclusions. An innovative enriched Crouzeix-Raviart MsFEM has been873

proposed for solving Stokes flows in highly heterogeneous media with solid obstacles.874

This method has been validated in numerical experiments by comparing to Crouzeix-875

Raviart MsFEMs originally proposed in [33, 40]. Local problems are implemented876

in TrioCFD using the finite volume element method where physical unknowns are877

discretized by the P1 nonconforming/P0 or P1 nonconforming/P1 element. Instead878

of using the penalization method, the no-slip condition is imposed on obstacles and879

numerical simulations are performed on body-fitted unstructured meshes.880

Numerical experiments show a good converging trend of solutions computed by881

MsFEMs to reference solutions. In particular, it has been shown that the enriched882
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(a) CR2 8×16 (b) CR3 8×16

(c) CR4 8×16 (d) CR4 high 8×16

(e) reference

Fig. 9: Pressure of Stokes flows in case B computed on the coarse mesh 8×16

Table 3: Error analysis of Stokes flows in case B

Config.
L2 Rel. U L2 Rel. P

CR2 CR3 CR4 CR4 high CR2 CR3 CR4 CR4 high
2×4 0.478 0.301 0.274 0.159 0.595 0.315 0.281 0.227
4×8 0.329 0.185 0.158 0.114 0.556 0.289 0.249 0.189
8×16 0.189 0.096 0.084 0.061 0.449 0.232 0.164 0.130
16×32 0.116 0.055 0.045 0.030 0.307 0.184 0.118 0.102

Crouzeix-Raviart MsFEM with n = 1 is significantly more accurate than Crouzeix-883

Raviart MsFEMs proposed in [33, 40]. A clear perspective is to perform an error884

analysis in order to obtain the relation between the error and the order of the approx-885

imation n. Besides, it would be interesting to implement the enriched MsFEM with886

n = 2, n = 3 and so on, and then compare the enriched method with other Crouzeix-887

Raviart MsFEMs. In addition, when there is no obstacle and if the elements of the888

mesh (in 2D) are triangles, then the method presented here shares a large number889

of features with the non-conforming finite elements presented in [38]: pressures are890

fully discontinuous Pn functions, velocities contain the non-conforming Pn+1 space891

and the degrees of freedom are the same, as can be seen from [38, page 298]; further892

investigation is needed to check whether these two methods are the same.893

The enriched Crouzeix-Raviart MsFEM proposed in this paper can easily be ex-894

tended to Oseen flows (see [25] for more details) which is a step further toward the895
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Fig. 10: Numerical convergence of MsFEMs in case B

nonlinear Navier-Stokes flows, which is the ultimate goal of this study. It would896

be interesting to test whether the enriched MsFEM could significantly improve the897

accuracy of the method proposed in [39] for Oseen flows in heterogeneous media.898
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