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Abstract

Over the past few years, numerous computational models have been developed
to solve Optimal Transport (OT) in a stochastic setting, where distributions are
represented by samples and where the goal is to find the closest map to the ground
truth OT map, unknown in practical settings. So far, no quantitative criterion has
yet been put forward to tune the parameters of these models and select maps that
best approximate the ground truth. To perform this task, we propose to leverage
the Brenier formulation of OT.
Theoretically, we show that this formulation guarantees that, up to sharp a distortion
parameter depending on the smoothness/strong convexity and a statistical deviation
term, the selected map achieves the lowest quadratic error to the ground truth. This
criterion, estimated via convex optimization, enables parameter tuning and model
selection among entropic regularization of OT, input convex neural networks and
smooth and strongly convex nearest-Brenier (SSNB) models.
We also use this criterion to question the use of OT in Domain-Adaptation (DA).
In a standard DA experiment, it enables us to identify the potential that is closest
to the true OT map between the source and the target. Yet, we observe that this
selected potential is far from being the one that performs best for the downstream
transfer classification task.

1 Introduction

Optimal transport (OT) is a tool to compare probability distributions that has found numerous
applications ranging from economics [Galichon, 2016, Chiappori et al., 2010], unsupervised learning
[Sim et al., 2020], shape matching [Feydy et al., 2017], NLP [Chen et al., 2019, Alvarez-Melis and
Jaakkola, 2018] and biology [Schiebinger et al., 2019, Tong et al., 2020]. In its dual form, OT is a
linear maximization problem on functions, which are called potentials, subject to a cost constraint.
When the cost is chosen to be quadratic, the solutions of this problem are convex and their gradient
provide optimal maps that transport one distribution onto the other. In a significant part of the OT
applications, the transport map itself is the object of interest. For instance in Domain-Adaptation,
the source distribution is transported on the target [Courty et al., 2017], for color transfer one color
histogram is transported on the other [Rabin et al., 2014] and in biology, the RNA cell expression
profile is interpolated in time using OT maps [Schiebinger et al., 2019]. Over the past few years,
many models and computational methods [Cuturi, 2013, Genevay et al., 2016, Seguy et al., 2018,
Bonneel and Coeurjolly, 2019, Vacher et al., 2021] were proposed and implemented to estimate
these optimal transport maps. Under regularity assumptions, some of these models were shown to
accurately estimate the original transport map provided the models use optimal parameters [Pooladian
and Niles-Weed, 2021, Manole et al., 2021]. When such results exist, either the parameters to use
are explicit but they are impractical as they rely on generic worst-case bounds, either they involve
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unavailable constants. To the best of our knowledge, no quantitative criterion has yet been devised
to tune the parameters of OT models and later discriminate between calibrated models. The setting
we are interested in is standard in statistical and ML applications, in which probability measures are
only accessible via samples in Euclidean spaces. The goal is to recover, for the quadratic cost, a
potential chosen among different models/parameters that is the closest to the unknown ground truth.
For achieving this task, we put forward the use of the semi-dual functional of OT that we now define.

The semi-dual (Brenier) objective.

The quantitative criterion that we propose is the so-called semi-dual Brenier objective of OT. It is
a convex functional on the space of functions f : Rd → R and is defined for µ, ν two probability
measures on the Euclidean space by, denoting 〈·, ·〉 the pairing between Radon measures and continu-
ous functions, Jµ,ν(f) := 〈f, µ〉 + 〈f∗, ν〉 with f∗ the Fenchel-Legendre transform of f given by
f∗(y) := supx∈Rd x

>y − f(x). Note that for a general cost c, this new objective can be obtained by
replacing one potential by its c-transform in the Kantorovitch dual formulation. Now, whenever f is
convex, its legendre transform can be computed pointwise with an arbitrary precision. Furthermore,
if ν is a finite sum of Dirac masses, the resulting convex problems of J(f) are independent and can
be solved in parallel.

Related works. The problem of evaluating OT models was recently studied by Korotin et al. [2021].
They proposed to generate synthetic ground truth optimal maps using an input convex neural network.
Then, they calibrate various OT models on these ground truth OT maps and compare the performance
of each calibrated OT model by measuring the natural L2 distance between the estimated map and the
ground truth. Their paper gives an interesting perspective on comparing current OT models. However,
their setup requires the knowledge of the ground truth to calibrate the OT models. This limitation can
be overcome for convex potentials as shown in our work.

The use of the Fenchel-Legendre transform can be found in the pioneering paper Brenier [1991]. It
can be shown that this new formulation retains more convexity than the Kantorovitch formulation.
On the theoretical side, this gain was leveraged for uses as diverse as sharp bounds for the problem of
statistical map estimation [Hütter and Rigollet, 2021] or quantitative stability results of the transport
map with respect to the measures [Delalande and Merigot, 2021]. On the numerical side, since the
Fenchel-Legendre transform has linear cost on a grid (Fast Legendre Transform), the semi-dual is
used to design efficient numerical algorithms in low dimension [Jacobs and Léger, 2020]. In the
machine learning community, the semi-dual was proposed by Taghvaei and Jalali [2019] to estimate
convex transport maps parametrized by Input Convex Neural Networks [Amos et al., 2017]. When
n is the sample size, they noticed that instead of the classical O(n2) complexity of OT, this new
formulation leads to an O(n) complexity per iteration as it only requires n-independent computations
of the Legendre transform.

Our contributions. The goal of our paper is to answer the following question: given (f1, · · · , fp),
p convex potentials, how to select the one that minimizes the quadratic error, denoting ∇fi the
gradient of fi, eµ(fi) =

∫
x
‖∇fi(x)− T0(x)‖2dµ(x) , where T0 is the true, unknown, OT map from

µ to ν? A concrete example of this problem would be: we train a Sinkhorn model [Cuturi, 2013]
on samples (µ̂train, ν̂train) with different temperatures (ε1, · · · , εp), giving us empirical potentials
(f̂ε1 , · · · , f̂εp). Given test samples (µ̂test, ν̂test) how to choose the Sinkhorn empirical potential that
minimizes the unknown error (eµ(f̂εi))1≤i≤p? We give an illustration of this problem in Fig. 1.

The main contribution of the paper is to use the empirical semi-dual to answer this question; to the best
of our knowledge, it is the first time that the model selection problem in OT has been addressed. From
a theoretical point of view, in the strongly-convex and smooth setting, we prove that the potential
fi minimizing the empirical semi-dual is the one minimizing eµ up to a sharp multiplicative factor
that depends on the smoothness of the potential and up to an additive statistical deviation term. From
an experimental point of view, we showcase on three synthetic experiments, with an ICNN model
[Taghvaei and Jalali, 2019], a Sinkhorn model [Cuturi, 2013] and a SSNB model [Paty et al., 2020],
that the potential achieving the lowest quadratic error is nearly always selected by the semi-dual. This
consistent behavior enables us to conclude on a concrete ML application of our work: in Domain
Adaptation, a widely accepted approach is to seek for an OT map between a source and a target using
various models/parameters in order to transfer the source’s labels on the unknown target’s labels. The
question whether the OT model is truly relevant for this task has remained unanswered because of the
impossibility to discriminate between candidates close to the "true" OT map and those "far" from it.
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In our last experiment, we bring a partial negative answer to this question: we observe that the map
minimizing the semi-dual, hence the closest to the ground truth OT map, is often far from being the
one that achieves the best label transfer.
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Figure 1: Parameter tuning for stochastic
entropic OT: how to pic εi that best fits
the unknown blue curve?

Assumptions and notations. In this paper X,Y are com-
pact subsets of Rd, µ and ν are probability measures over
X and Y respectively with their n-samples empirical coun-
terparts µ̂, ν̂. We shall denote by supp(µ), supp(ν) the
support of µ and ν respectively. The cost we consider
is the quadratic cost c(x, y) = ‖x − y‖2/2 and shall de-
note q the quadratic function q(x) = ‖x‖2/2. Finally, we
shall call M -smooth any function with an M -Lipschitz
gradient.

2 Brenier formulation of OT

In its dual formulation, the OT problem optimizes over a
pair of continuous functions, called Kantorovitch poten-
tials (φ, ψ) subject to a cost constraint as OTc(µ, ν) =
sup(φ,ψ)〈φ, µ〉 + 〈ψ, ν〉 + ι(φ ⊕ ψ ≤ c) where φ ⊕ ψ

is defined as (φ ⊕ ψ)(x, y) = φ(x) + ψ(y) and ι is the
convex indicator function.

When c is the Euclidean squared distance, we simply denote it by OT. In this case, if one of the two
measures has density w.r.t. the Lebesgue measure, Brenier’s theorem [Brenier, 1991] shows that a
unique optimal map sending µ to ν exists and is given by the gradient of a convex function. If one
further assumes regularity of the underlying densities and convexity of the support of the distributions,
the optimal map gains in regularity.

Theorem 1 (Caffarelli [2000] Theorem 2b.). Assume that µ and ν have C1 densities bounded from
below and above. If µ, ν have compact and convex support, then, defining the Brenier potentials
(f, g) = (q − φ, q − ψ), f and g are C2 convex functions such that ∇f#(µ) = ν and ∇g#(ν) =
µ , where T#(η) is the pushforward of the distribution η by the map T defined as T#(η)(A) =
η(T−1(A)) for all Borel A.

Hence under the assumptions of Theorem 1, the optimal Brenier potentials are both smooth. In
particular, since they are mutual Legendre transform of one and other, they are both also strongly
convex.

The semi-dual Brenier objective for convex potential selection. In the context of statistical OT,
the transport Kantorovitch potentials φ̂, ψ̂ are usually estimated using the dual formulation of OT.
To compare the obtained potentials, one may be tempted to simply evaluate the Kantorovitch linear
objective on a test setKµ̂,ν̂(φ̂, ψ̂) = 〈φ̂, µ̂〉+〈ψ̂, ν̂〉+ ι(φ̂⊕ ψ̂ ≤ c) where µ̂, ν̂ represent independent
samplings of µ, ν.

However in numerous OT models, the learned potentials (φ̂, ψ̂) usually do not respect the cost
constraint and the ι(φ̂ ⊕ ψ̂ ≤ c) term diverges. For instance, in the entropic regularization of OT
the constraint is "loosely" satisfied on the train set since it replaces the hard inequality constraint by
the soft penalization ε〈e

φ⊕ψ−c
ε , µ̂⊗ ν̂〉. It is possible though to remove the cost constraint from the

objective in order to evaluate candidate potentials. Rewriting the Kantorovich dual with the Brenier
potentials gives OT(µ, ν) = 〈q, µ + ν〉 − inf(f,g) 〈f, µ〉 + 〈q, ν〉 + ι(f(x) + g(y) ≥ x>y) where
the optimization is done on f, g ∈ C0, the space of continuous functions. The inequality costraint
implies that g(y) ≥ supx x

>y − f(x) for every x which shows that we can replace g by f∗, the
Fenchel-Legendre transform of f . Therefore, up to moment terms, we get the semi-dual Brenier
formulation inff Jµ,ν(f) = 〈f, µ〉+ 〈f∗, ν〉 . This new nonlinear objective gains in convexity with
respect to the Kantorovitch formulation (see Sec. 3) and now, whenever f is strongly convex, Jµ,ν(f)
is finite and can be efficiently computed on discrete measures using standard convex optimization
algorithms. Hence, if we restrict ourselves to convex f , possibly regularized with the addition
of a small quadratic term, we are provided with a tractable and well-behaved selection criterion:
the potential that minimizes Jµ̂,ν̂ . We show in the next section that, thanks to the extra convexity,
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the minimization of this objective coincides, up to a stochastic term, with the minimization of the
quadratic error eµ(f) =

∫
X
‖∇f(x)− T0(x)‖2dµ.

3 Potentials selection

We give in this section our main theoretical guarantee on model selection via the semi-dual. The
setting we need to consider is the case of M -smooth and γ-strongly convex potentials, assumption
which is discussed below. Let us first recall a stability result which shows that the semi-dual
formulation is upper-bounded and lower-bounded by the quadratic error eµ. When no confusion is
possible, we shall from now on denote Jµ,ν by J .
Lemma 1. Assuming that an optimal convex potential f0 such that T0 = ∇f0 pushes µ onto ν
exists, then if f is M -smooth, denoting J0 = J(f0), we have 1

2M eµ(f) ≤ (J(f) − J0) where
eµ(f) = ‖∇f − T0‖2L2(µ). Conversely, if f is a continuous γ-strongly convex function then J(f)−
J0 ≤ 1

2γ eµ(f) .

This result is derived from Muzellec et al. [2021, Proposition 1], see Appendix for more details. A
similar result can be found in Hütter and Rigollet [2021, Proposition 10] in a slightly less general
form and in Makkuva et al. [2020, Theorem 3.6]. Importantly, note that there is no smoothness
assumption made on the optimal map T0. In contrast, we prove that the smoothness and strong-
convexity assumptions on the candidate f are necessary to lower and upper bound J(f)− J0 with
respect to eµ.

Proposition 1. Take µ ∼ U([− 1
2 ,

1
2 ]) and f0 of the form λq(x) + x with λ ≥ 0. The potential

f(x) = x is indeed convex with Lipschitz gradient and is such that J(f) = +∞ yet eµ(f) = λ2

4 → 0.
Conversely, define the potential g0(x) = |x| + q(x) and for 0 ≤ λ ≤ 1

2 , define gλ = g0(· − λ)
which is indeed strongly convex (and even locally Lipschitz). The difference of semi-duals reads
J(gλ)− J(g0) = 2λ2 − λ3 ∼

λ→0
2λ2 and yet eµ(gλ) = 4λ+ 5λ2 ∼

λ→0
4λ.

The detailed computations are left in Appendix. Equipped with this lemma, we can derive our result.
Proposition 2. Let (f1, · · · , fp) be p potentials and (µ̂, ν̂) be the n-samples empirical counterparts of
(µ, ν). Let i0 be the index of the map that minimizes the empirical semi-dual, i0 = arg mini Jµ̂,ν̂(fi)
and similarly i1 = arg mini eµ(fi). If fi0 is M -smooth and fi1 is γ-strongly convex and if an OT
map from µ to ν exists, then for all 0 < δ < 1 we have with probability at least 1− δ

eµ(fi0) ≤ M

γ
eµ(fi1) + 8MC

√
ln(4/δ)

2n
, (1)

where C = max(Ci0 , Ci1) with Ci = max(‖fi‖X,o, ‖f∗i ‖Y,o) and ‖ · ‖Z,o is defined as ‖g‖Z,o =
supz∈Z g(y)− infz∈Z g(y).

The proof is left in Appendix and is a direct application of the previous stability estimate and the
Hoeffding lemma. The following proposition shows that in the non-stochastic regime n = +∞, our
bound M

γ is tight.

Proposition 3. Take µ ∼ U [0, 1], f0 ≡ 0, g(x) = Mq(x) + x and for ε > 0, take hε(x) =

γq(x) + (ε + αM,γ)x with αM,γ = γ
2

[√
1 + 4(M−γ)

3γ − 1

]
, and where we assumed M ≥ γ. The

potential g is indeed M -smooth and h is indeed γ-strongly convex and we have eµ(g)
eµ(hε)

→
ε→0

M
γ yet

J(g)− J(hε) = − ε
2γ (ε+ 2αM,γ) < 0.

The computations are left in Appendix. The bounds of Proposition 2 being tight in the non-stochastic
setting, it is natural to question the assumptions on the class of potentials, namely M -smoothness
and γ-strong convexity. Let us first mention Theorem 1 readily ensures that in the case where µ, ν
have C1 densities with convex compact support then the optimal potentials satisfy the smoothness
assumptions. Under such conditions on the measures, one should indeed benchmark potentials which
are already smooth and strongly convex. However in practice, we may not have access to potentials
satisfying these conditions.
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A simple idea to satisfy the smoothness assumption is to use the Moreau-Yosida transform Mτ (f) =

infy f(y) + 1
τ q(x − y), which verifies f − L2τ

2 ≤ Mτ (f) ≤ f where L is the Lipschitz constant
of f on ν. The semi-dual shall read 1

2τ eµ(Mτ (f)) ≤ J(Mτ (f)) − J0, however without further
assumptions, we cannot upper-bound the original error eµ(f) as |eµ(Mτ (f))− eµ(f)| may not be in
o(1). The case of strong-convexity has a more favorable behavior. Denoting Qδ(f) = f + δq, we
can apply Lemma 1 and obtain J(Qδ(f)) − J0 ≤ 1

2δ eµ(Qδ(f)). The error can be upper bounded
by eµ(f) + 4δ2〈q, µ〉. Under a local Lipschitz assumption on f∗, J(Qδ(f))− J0 is O(δ), hence we
observe there is a trade-off between the deterioration of the factor in O( 1

δ ) and the bias in O(δ). As a
consequence, we can derive a new stability result, proved in Appendix, when the optimal δ is chosen.
The strong-convexity assumption is relaxed with a local Lipschitz assumption of the conjugate at the
cost of loosing on exponent on the error.
Proposition 4. If f is s.t. f∗ is L-Lipschitz on the support of ν then the semi-dual reads J(f)−J0 ≤
2
√
eµ(f)[L

2

2 + 〈q, µ〉].

Note that at optimality, f∗0 is indeed Lipschitz on the support of ν, yet this condition may be difficult to
enforce in practice. We believe though that sharper/less restrictive stability results could be obtained
via a refined analysis and we postpone this interesting question for future works.

4 Sinkhorn potentials

The Sinkhorn model [Cuturi, 2013], defined as Sε(µ, ν) = supφ,ψ∈C0 〈φ, µ〉 + 〈ψ, ν〉 −
ε〈e

φ⊕ψ−c
ε , µ ⊗ ν〉 is very popular in the OT community. We show in this section that the dis-

crete potentials provided by the empirical Sinkhorn model can indeed be extended to continuous,
convex and smooth potentials. However, their extension is not strongly convex and we prove that the
semi-dual diverges almost surely when evaluted on empirical Sinkhorn potentials; hence we propose
to quadratically regularize the Sinkhorn potentials. From a numerical point of view, we show how to
compute efficiently the semi-dual on this regularized model with a fast converging scheme.

A convex smooth model. Recall that the first-order optimality condition on the Sinkhorn potential
φε gives φε(x) = −ε log(

∫
y
e
ψε(y)−c(x,y)

ε dν(y)). As done for instance in Berman [2018], Pooladian

and Niles-Weed [2021], we use this conidtion to extend the empirical Sinkhorn potentials (φ̂ε, ψ̂ε) =

arg min(φ,ψ) Sε(µ̂, ν̂) on the whole domain Rd. Defining the associated Brenier potentials as f̂ε =

q− φ̂ε, we obtain f̂ε(x) = ε log(
∫
y
eβ̂ε(y)e

x>y
ε dν(y)), where we defined β̂ε(y) = e(1/ε)(ψ̂ε(y)−q(y)).

This shows that the potentials (f̂ε, ĝε) are Log-Sum-Exp (LSE) functions and in particular, they are
convex.

Proposition 5. f̂ε is D2(supp(ν̂))
ε smooth where D(supp(ν̂)) is the diameter of the support of ν̂.

The proof is left in Appendix. While LSE functions are indeed smooth, they are not strongly convex.
The following proposition shows that the semi-dual diverges almost surely on f̂ε.

Proposition 6. Let (f̂ε, ĝε) = (q − φ̂ε, q − ψ̂ε). If ν has continuous density with respect to the
Lebesgue measure we have almost surely 〈f̂∗ε , ν〉 = +∞ .

The proof is left in Appendix. This Proposition implies that evaluating the semi-dual on the empirical
Sinkhorn potentials is ill-posed and it justifies their strong-convexity regularization. To this end, we
considerQδ(f̂ε) = f̂ε+δq with δ > 0 small and shall now read J(Qδ(f̂ε))−J0 ≤ 1

2δ eµ(f̂ε)+O(δ).
We show in the experiments of Sec. 5 that despite this small bias, the selection of empirical Sinkhorn
potentials via the semi-dual criterion still provides satisfactory results.

Self-concordant potentials. Now, even if the Legendre transform can be computed via a standard con-
vex first order minimization algorithm, it will not be effective in practice as the problem is conditioned
by O( 1

δε ). One way to circumvent poor conditioning is to employ second order methods. In the stan-
dard cases, they require costly line-searches however if the function has a generalized self-concordant
structure, we can use a second order algorithm of the form xk+1 = xk − αk(∇2f(xk))−1∇f(xk) ,
where αk is an explicit step size given in Sun and Tran-Dinh [2019, Theorem 2] and that provably
yields a super-linearly convergent algorithm.
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Definition 1. Let α > 0 and f be a C3 convex function. The function f is said to be (α,Mf )
self-concordant if for all (x, u, v) , |(∇3f(x)[v]u)>u| ≤ Mf‖u‖2x‖v‖α−2

x ‖v‖3−α, where ‖u‖2x =

(∇2f(x)u)>u,∇3f(x) is the tensor ( ∂3f
∂xixjxk

)1≤ijk≤d and for a tensor T = (tijk)1≤i,j,k≤n, T [v] =∑p
i=1 viTi with Ti the matrix (tijk)1≤j,k≤n.

Informally, the self-concordance measures how fast the Hessian varies with respect to the metric it
induces.
Proposition 7. The Sinkhorn Brenier potential f̂ε is (2, D(ν̂)

ε ) self-concordant where the diameter D
is defined as D(ν̂) = supy∈ν̂,z∈ν̂ ‖y − z‖2.

The proof is left in Appendix. Fig. 2 shows that the second order scheme is much faster to compute
the Fenchel conjugate on n = 1000 points, with learning rate O( 1

ε ) for the first-order method.

5 Numerical experiments
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Figure 2: Fenchel Conjugate: 1st
order vs 2nd order.

We first introduce two other transport models on which we
perform our numerical experiments.

5.1 Other models

Input Convex Neural Network (ICNN). The convex Brenier
potentials are modeled by (fθ1 , gθ2) two ICNN. Then the model
is trained using a minimax objective minθ1 maxθ2〈fθ1 , µ̂〉 +
1
n

∑n
i=1∇gθ2(yi)

>yi − 〈fθ1 , (∇gθ2)#(ν̂)〉 The maximization
aims at recovering gθ2 ≈ f∗θ1 and the minimization approxi-
mately solves the semi-dual. The implementation is based on
the code of the authors1. Softplus activation layers were used instead of ReLu to obtain less degen-
erated maps. Note that since the weights θ1, θ2 are not controlled, we expect this model to provide
lowly regular maps.

Smooth Strongly convex Nearest Brenier (SSNB). This model estimates the potential f by ap-
proximately solving inff∈F(l,L)

W2((∇f)#(µ̂), ν̂) , where F(l,L) is the set of L-smooth, l-strongly
convex functions. As opposed to the previous model, SSNB provides maps that are very regular (in a
bi-Lipschitz sense).

5.2 The experiments

Synthetic XP. We compare the ability of the models to recover the ground truth transport map using
the semi-dual criterion map for three different distributions in a medium dimension setting d = 8. In
all three cases, the distribution µ is uniform on the cube [0, 1]d and ν is given by (∇f)#(µ) where f
is a convex function ; in virtue of Brenier’s theorem, T = ∇f is the ground truth OT map between µ
and ν. The function f has 3 different forms.

(i) Quadratic: f(x) = 1
2x
>Qx+ x>b where Q = O>DO + 0.25 Id where O is a randomly chosen

orthogonal matrix, D is a random diagonal matrix whose entries are uniform in [0, 1] and b is a
random d-dimensional gaussian. This is a standard benchmark which simply aims at recovering a
translation. (ii) Tensorized: T0(x) = x+ (6− cos(6πx)− 0.2)−1 and T (x) =

∑d
k=1 T0(xk). The

map to learn is more complex but has a low dimensional structure as it pushes independently each
directions. (iii) (Regularized) Log-Sum-Exp: f(x) = tLSE(Ct x + b) + δq(x) where the matrix
C is comprised of 10 centers uniformly chosen in [−1, 1]d, the shift b is a random d-dimensional
gaussian, the temperature t was fixed at 0.3 and the regularizer δ = 0.001. Note that any convex
function can be approximated by such a Log-Sum-Exp [Calafiore et al., 2020]. However, because of
this parametric structure, we expect the Sinkhorn model to be favored.

The training of the models, the semi-dual estimation and the Monte-Carlo approximation of the error
error2 eµ̂(fi) =

∫
‖∇fi(x)− T0(x)‖2dµ̂(x) are done with 3 independent batches of size n = 1024.

1https://github.com/AmirTag/OT-ICNN
2Concentrates in O( 1√

n
) toward the "true" error.
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ICNN Sinkhorn SSNB
eµ(fθi1 ) eµ(fθi0 ) eµ(fθi1 ) eµ(fθi0 ) eµ(fθi1 ) eµ(fθi0 )

Quad 5.11 12.23 (16.13/48) 0.036 0.047 (1.93/5) 0.013 0.014 (1.33/11)
Tens 2.74 2.74 (1.22/48) 0.059 0.119 (2.72/5) 0.006 0.006 (1.0/11)
LSE 1.69 3.02 (17.11/48) 0.006 0.006 (1.68/5) 0.16 0.17 (1.26/11)

Table 1: Parameter tuning for OT models. Each model is trained with different parameters (θi)1≤i≤p
and a parameter θi0 is selected with the semi-dual criterion θi0 = arg mini J(f̂θi). We report the error
eµ(fθi0 ) against eµ(fθi1 ) = mini eµ(fθi); ideally eµ(fθi0 ) = eµ(fθi1 ). The numerator between
brackets corresponds to the rank of the tuned potential with respect to the error eµ: the closer to one,
the better. The denominator corresponds to the number of parameters. In bold the model with the
best performance after being tuned with the semi-dual criterion.

For the computation of the semi-dual, we regularized with +δq the ICNN and Sinkhorn models taking
δ = 1e− 3. Note that the errors are computed on the original potentials, without the regularization
term. Forty-eight combinations of parameters were tested for the ICNN model, five for the Sinkhorn
model and eleven for the SSNB model. More details on the parameters and on the implementation
are given in Appendix.

The results were averaged on fifteen independent runs and are reported on Table 1. The parameters
of each model are tuned with the semi-dual criterion . We denote θi0 the parameter that minimizes
semi-dual and θi1 the parameter that minimizes the error eµ̂. The numerator between brackets
corresponds to the rank of the selected parameter with respect to the error eµ̂; the closer to one the
better. In particular, if θi0 = θi1 we obtain the rank 1. The denominator is number of parameters: for
instance, we tested the Sinkhorn model with five different ε, hence the denominator is 5.

ICNN/Sinkhorn/SSNB
eµ(fi1) eµ(fi0)

Quad 0.013 0.014 (1.33/64)
Tens 0.006 0.006 (1.0/64)
LSE 0.006 0.006 (1.68/64)

Table 2: Model selection for OT: once
the three models are tuned with the semi-
dual, we select one among the three
again with the semi-dual criterion. Note
that the denominator is now equal to the
sum of the number of parameters that we
tested for each model.

In the case of SSNB where the smoothness and strong
convexity parameters are explicitly controlled, the best
parameter is almost always chosen. In the case of the
Sinkhorn model, the regularity decreases for small val-
ues of ε yet the selected potential remains in the top 40%
for the Quadratic and Log-Sum-Exp experiments. Con-
versely, the regularity is not controlled in the ICNN model
yet the selected parameters remains in the top-tier for the
Quadratic and Log-Sum-Exp experiments; as for the Ten-
sorised experiment, the best potential is almost always
selected.

Once the three models are calibrated with the semi-dual,
we select one among them with the same criterion (see
Table 2); note the denominator between brackets is now
equal to the sum of the number of parameters considered
for each model. We observe that the criterion selects the

best or nearly-best transport map. This shows that the Brenier criterion can be both used for calibration
and selection. Fig. 3 plots the semi-dual values against the error in the Log-Sum-Exp experiment and
empirically suggests an even better behavior than best model selection. For the Sinkhorn and SSNB
models, the error strictly increases with the semi-dual value, hence the semi-dual can not only select
but can also directly rank the potentials with respect to the error eµ. For the ICNN model, we do not
observe the same monotone behavior but we still get a positive correlation between the error and the
semi-dual value. This less consistent behavior can be explained once again by the lack of control on
the regularity of the potentials given by the model.
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Figure 3: Empirical Semi-Dual against Quadratic Error on
the LSE experiment. Ideally, the error should strictly increase
with the semi-dual.

Overall, when we compare the models
after being calibrated with the semi-
dual we observe that ICNN always has
the poorest performance. We may not
have chosen the hyperpameters and
the network structures in the best pos-
sible way and the ground truth may
not favour this model.
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The SSNB model performs better by
almost an order of magnitude than
Sinkhorn on the Quadratic and Ten-
sorized experiments. Conversely, as expected, the Sinkhorn model is the best one on the Log-Sum-
Exp experiment. In terms of computation time, the training of the SSNB model takes between one
and three hours and between 30 minutes and one hour for the semi-dual computation on a 120 GB
RAM CPU. ICNN and Sinkhorn take a few minutes and a few seconds respectively for the training
and semi-dual computation on a RTX6000 GPU.

Quad Tens LSE

eµ(fε1) 0.0104 0.0376 0.0005
eµ(fε0) 0.0104 0.0376 0.0005
Rank 1.0/5 1.0/5 1.0/5

Table 3: Parameter tuning for Sinkhorn
model with n = 10000 points. The nu-
merator of the Rank corresponds to the
rank of the potential calibrated with the
semi-dual criterion with respect to the er-
ror eµ: the closer to one, the better. The
denominator corresponds to the num-
ber of parameters. We observe that the
semi-dual accurately tunes the Sinkhorn
model as the best parameter is always
selected.

Thanks to the high scalabilty of Sinkhorn, we repeated
those three experiments on larger batches with n = 10000
averaged on 10 runs. As shown on Table 3, Sinkhorn
recovers the same behavior as SSNB with respect to the
semi-dual. Not only the best parameter ε is always chosen
but also, we show in Appendix that in the Quadratic and
LSE settings, the error increases with the semi-dual.

Before ending this paragraph, we briefly discuss the ef-
fect of the quadratic regularization for the ICNN and
Sinkhorn models. We observed experimentally that with-
out it, the Legendre transform indeed diverged over sev-
eral points. On the other hand, the experiments did
show that the semi-dual accurately selects the best po-
tential even in the presence of the regularizer. We pro-
pose the following informal explanation: we show in
Appendix that J(Qδ(f)) − J0 =

∫
Qδ(f)∗(T0(x)) −

Qδ(f)∗(T (x) + δx) + x>(T (x) + δx − T0(x)) dµ(x).
We can decompose the integration on areas where the orig-
inal potential f∗ is O(1) Lipschitz, where we can expect
|f∗(T (x)) − Qδ(f)∗(T (x) + δx)| = O(δ) and on the remaining area, the integrand behaves like
O( 1

δ ). For instance in the case of the empirical Sinkhorn model whose conjugate is Lipschitz on the

interior of the convex hull of ν̂, we conjecture that J(Qδ(f̂ε))− J0 ≤ Cst
√
eµ(f̂ε) +O(δ + 1

δnα )

where α > 0 3 .

Domain Adaptation. (DA) The goal of DA is to infer unknown labels of a target distribution Xt

using a shifted source distribution Xs with known labels Ys.

In the work of Courty et al. [2017] and many others [Redko et al., 2019, Xu et al., 2020], a map T is
sought between Xs and Xt. Then a classifier c is learned on (T (Xs), Ys) and is used to predict the
unknown labels of the target as c(Xt). Their core assumption is that T should be close to the OT
map between Xs, Xt. Question: is this assumption valid? Is the "true" OT map between Xs and Xt

the one that will achieve the best knowledge transfer? Problem: among all proposed models, how
to assess which map is the closest to the "true" unknown OT map? Using our criterion, we can now
select the parameters and the model that will be closest to this ground truth.

We use the Caltech-office dataset which is a set of images of objects from ten distinct categories
coming from four different sources of various quality: objects found in the online Amazon catalog
(A), objects whose pictures have been taken with a webcam (W), with a high resolution digital SLR
camera (D) and the Caltech-256 dataset (C) which is comprised of Google images. We use all the nine
distinct pairs as source/domain data. As in Courty et al. [2017], in order for the quadratic distance
to be meaningful, we do not use the raw images but feed them to a Decaf [Donahue et al., 2014]
network and extract the features of the last layer and we use a 1-Nearest Neighbors as the classifier.
The models and parameters we use are the same as in the Synthetic experiment. In our setting, the
transport map T is learned on train sets Xtrain

s , Xtrain
t and the semi-dual is evaluated on test sets

Xtest
s , Xtest

t , with 70% of the data for the train and 30% for the test.

3It is shown in Brunel [2014, Equation (2.3)] that if µ has a convex support, the volume of support(µ) \
Hull(µ̂) is upper-bounded by O(n−α). Depending on the shape of the support, it varies between n−1 log(n)d−1

and n−2/(d+1).
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ICNN Sinkhorn SSNB
acc(fi1) acc(fi0) acc(fi1) acc(fi0) acc(fi1) acc(fi0)

A/C 0.41 0.34 (2/48) 0.84 0.82 (3/5) 0.85 0.79 (10/11)
A/D 0.44 0.15 (33/48) 0.87 0.78 (4/5) 0.82 0.8 (5/11)
A/W 0.36 0.07 (48/48) 0.78 0.72 (3/5) 0.79 0.71 (9/11)
C/A 0.47 0.09 (44/48) 0.91 0.82 (5/5) 0.91 0.88 (9/11)
C/D 0.65 0.27 (6/48) 0.9 0.8 (4/5) 0.88 0.82 (10/11)
C/W 0.36 0.34 (3/48) 0.82 0.79 (2/5) 0.83 0.83 (1/11)

Table 4: Potential Selection for Domain-Adaptation. The column acc(fi1) corresponds to the best
(highest) accuracy and acc(fi0) corresponds to the accuracy of the potential selected with the Brenier
criterion. On this Table, the potentials are ranked with respect to the accuracy; the closer to one, the
better the classification. In bold, the highest accuracy after being calibrated with the semi-dual.

The results are reported on Table 4 where only (A) and (W) are used as sources, the rest of the results
are reported in Appendix and exhibit a similar pattern. We denote by i0 the index of the potential
minimizing the empirical semi-dual criterion and by i1 the potential achieving the highest accuracy.
The numerator between bracket corresponds to the rank of the selected potential with respect to the
accuracy obtained when the classifier is learned on (∇f(Xs), Ys); the closer to 1, the better and
in particular, rank(fi1) = 1. We observe that the potential having the lowest accuracy is regularly
selected by the semi-dual, even in the case of the SSNB model for which the semi-dual indicates very
reliably the quality of the transport map. Hence we conclude that for DA, the best mapping for label
transfer is not close to an optimal transport map. We remark that this conclusion is similar to the
results of Korotin et al. [2021] and Stanczuk et al. [2021] who observed that the transport models
which performed best for various ML tasks were not the ones that recover the sharpest OT maps.

6 Conclusion

The semi-dual Brenier formulation of quadratic OT provides us with a feasible criterion for convex
potential selection. If the potentials are convex, this criterion can be computed numerically. Theo-
retically and experimentally, we showed that up to a sharp distortion parameter, the potential that
minimizes the semi-dual is the one whose gradient minimizes the squared error to the ground truth
map. Hence this criterion gives a fair and accurate procedure to benchmark convex OT models and
provides a first step towards parameter tuning for stochastic OT. Regarding ML applications, this
criterion allowed us to bring a first partial negative answer to the question of relevance of OT in DA:
indeed, one may achieve good results in DA using models borrowed from OT literature, yet we claim
that their performance is not correlated with how well they approximate the ground truth OT map
between the source and the target. Possible extensions of our work could include more general cost c
and more general potentials. We believe M -smoothness and γ-strong convexity assumptions could
be alleviated by a careful analysis of the quadratic and Moreau-Yosida regularizations. If not possible,
the question of smoothness parameters selection in stochastic OT is widely open.
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Additional proofs

Proof of Proposition 3

Proof. Recall that the Fenchel-Legendre of a standard Log-Sum-Exp function LSE(x) =
log(

∑n
i=1 e

xi) is given by

LSE∗(y) =

n∑
i=1

yi log(yi) + ι(y ∈ Sn) (2)

= −Ent(y) + ι(y ∈ Sn) , (3)

where Sn is the probability simplex. More generally, defining LSEb(x) = log(
∑n
i=1 e

xi+bi), using
the fact that f∗(·+ τ) = f∗(·)− τ>·, we have

(LSEb)
∗(y) = −Ent(y)− b>y + ι(y ∈ Sn) . (4)

At the optimum, for empirical measures µ̂ = 1
m

∑m
i=1 δxi , ν̂ = 1

n

∑n
i=1 δyi the empirical Sinkhorn

Kantorovitch potentials (φ̂ε, ψ̂ε) are linked as

φ̂ε(x) = −ε log

(
1

n

n∑
i=1

e2
2ψ̂ε(yi)−‖x−yi‖

2

2ε

)
, (5)

hence the Sinkhorn Brenier potential fε can be written as

fε(x) = εLSEbε(Cεx) , (6)

where Cε = (yiε )1≤i≤n ∈ Rn×d and bε,n = ( 2ψε(yi)−‖yi‖2
2ε − log(n))1≤i≤n ∈ Rn. Now recall that

• (εf(·))∗ = εf∗( ·ε ).

• ∀z, (f(A.))∗(z) = inf
Ay=z f

∗(y).

Hence we can deduce

f∗ε (y) = ε inf
C1∆=y
∆∈Sn

−Ent(∆)−∆>bε,n + ι(∆ ∈ Sn) .

In particular if f∗ε is evaluated outside the convex hull of ν̂, it is infinite. Since ν has continuous density,
there almost surely exists (y0, r), r > 0 such that B(y0, r) ⊂ Supp(ν) and B(y0, r)∩Conv(ν̂) = ∅.
In particular, almost surely

〈f∗ε , ν〉 = +∞ . (7)

Proof of Proposition 4

The proof is largely inspired from an article on the online blog of Francis Bach4.

Since the 2-self-concordance is scaling invariant, we shall simply prove that f(x) = LSEb(C.) is
(2, D(C)) self-concordant with b ∈ Rn+, C ∈ Rn×d the matrix whose rows are centers (ci)1≤i≤n
and D(C) = maxij ‖ci − cj‖.

Proof. Defining the (non-normalized) distribution µ = 1
n

∑n
i=1 biδci , we can remark that f is the

normalizing factor of the conditional exponential distribution

h(c|x) ∝ ec
>xdµ(c) (8)

= ec
>x−f(x)dµ(c) . (9)

4https://francisbach.com/self-concordant-analysis-for-logistic-regression/
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The gradient of f is given by

∇f(x) =

∫
cec
>xdµ(c)∫

ec>xdµ(c)
(10)

= Eh(c) , (11)

and using the results of Pistone and Wynn [1999], we have for higher order derivatives

∇pf(x) = Eh(⊗pj=1(c−∇f(x))) , (12)

where for a vector v ∈ Rd, ⊗pj=1v is a tensor Vp in Rdp whose entries are (vi1,··· ,ip). In particular,
applying the formula for p = 3 and denoting H = (c−∇f(x))⊗ (c−∇f(x))

∇3f(x) = Eh[(c−∇f(x))⊗H] . (13)

Using the linearity of the expectation, we have

|(∇3f(x)[v]u)>u| = |Eh[(c−∇f(x))>v × (Hu)>u]| (14)

≤ Eh[|(c−∇f(x))>v| × |(Hu)>u|] . (15)

Since∇f(x) ∈ Conv(C), we have in particular that ‖c−∇f(x)‖ ≤ D(C). Furthermore since H
is a positive matrix, we obtain the following upper-bound

|(∇3f(x)[v]u)>u| ≤ D(C)‖v‖Eh[(Hu)>u] (16)

≤ D(C)‖v‖(∇2f(x)u)>u . (17)

Sinkhorn Brenier potentials are 1
ε -smooth

Proof. Using the notations from above, the Sinkhorn Brenier empirical potentials are of the form
fε = εLSEbε,n(Cε.). Using the formulas from the previous proof, we simply have to bound
Hc,x = (c−∇f(x))⊗ (c−∇f(x))

u>Hc,xu = (u>(c−∇f(x)))2 (18)

≤ ‖u‖22‖c−∇f(x)‖22 . (19)

Since ∇f(x) ∈ Conv( ν̂ε ) and c ∈ Supp( ν̂ε ), we deduce that ‖Hc,x‖op ≤ D2(ν̂)
ε2 , where ‖.‖op is the

spectral norm. In particular ‖∇2f(x)‖op ≤ D2(ν̂)
ε . Hence, if we regularize the Sinkhorn Brenier

potential with δ ‖.‖
2

2 , we obtain a O( 1
δε ) condition number.

Miscellaneous

SSNB algorithm

For l < L, the SSNB model is defined as

inf
f∈Fl,L

W 2
2 ((∇f)#(µ), ν) , (20)

where Fl,L is the set of l-strongly convex, L-smooth functions. For empirical potentials µ̂ =
1
n

∑n
i=1 δxi and ν̂ = 1

m

∑m
i=1 δyi , the authors propose to solve the non-convex problem (20) in an

alternate fashion: for a fixed f ∈ Fl,L, they estimate the transport coupling (Pij) ∈ Rn×m from
(∇f)#(µ̂) to ν̂ by solving the associated linear program (or an entropic approximation) and then,
once the coupling is fixed, they estimate f (pointwise on µ̂) by solving

min
(z1,··· ,zn)∈Rn×d,u∈Rn

∑
ij

Pij‖zi − yj‖22

subject to ui ≥ uj + z>j (xi − xj) +
1

2(1− l/L)

(
1

L
‖zi − zj‖2 +

1

l
‖xi − xj‖22 −

2l

L
(zj − zi)>(xi − xj)

)
,

(21)
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where zi = ∇f(xi) and ui = f(xi). The problem above is a convex Quadratically Constrained
Quadratic Problem and can be numerically solved with CVXPY for instance. However, when such
an option is chosen the n(n− 1) constraints must be computed at each iterations which induces a
large overhead. Instead, we reformulate this problem as a standard linear conic problem of the form
Ax− b ∈ K, with K a fixed cone to be compiled only once.

From QCQP to SOCP First we show how to reformulate a (convex) QCQP without equality
constraints into an SOCP. The standard formulation of a QCQP is

inf
x

1

2
x>Q0x+ c>0 x

s. t.
1

2
x>Qix+ c>i x+ ri ≤ 0, i = 1, · · · , p .

(22)

Introducing the slack variables (t0, t1, · · · , tp) = 1
2 (x>Q0x, x

>Q1x, · · · , x>Qpx), we re-write the
problem as

inf
x,t

t0 + c>0 x

s. t. ti + c>i x+ ri = 0, i = 1, · · · , p

ti ≥
1

2
x>Qix, i = 0, · · · , p .

(23)

Decomposing Qi as Qi = F>i Fi with Fi having p rows, the constraint ti = 1
2x
>Qix becomes

(1, ti, Fix) ∈ Qd+2
r , where Qd+2

r is the rotated (d+ 2)-dimensional Lorentz cone defined as

Qd+2
r = {(x1, x2, · · · , xd+2) s.t. 2x1x2 ≥

d∑
k=1

x2
i+2} . (24)

We obtain a MOSEK-friendly formulation of the QCQP as

inf
x,t

t0 + c>0 x

s. t. ti + c>i x+ ri = 0, i = 1, · · · , p
(1, ti, Fix) ∈ Qd+2

r , i = 0, · · · , p ,

(25)

which has the form Ax − b ∈ K where K is a fixed product of Lorentz cone whose number and
dimensions solely depend on n and d in the case of SSNB. Hence we can compile K only once for
fixed (n, d), which allows us to considerably reduce the overhead.

Decomposition of Qij In the SSNB model the symmetric positive matrices Qij ∈ S+
n(d+1)(R) are

defined up to a common scaling parameter as
qkl = 1 if k = l ∈ {di, · · · (d+ 1)i} ∪ {dj, · · · (d+ 1)j}
qkl = −1 if l = k + dj, k ∈ {di, · · · (d+ 1)i}
qkl = −1 if k = l + dj, l ∈ {di, · · · (d+ 1)i} .

(26)

The matrix Qij is factorized as F>ij Fij with Fij ∈ Rd×n(d+1) defined as{
fkl = 1 if l = k + di, k ∈ {1, · · · , d}
fkl = −1 if l = k + dj, k ∈ {1, · · · , d} . (27)

Models hyperparameters

ICNN We used a 3-layers ICNN with softplus activations. The number of hidden neurons was cho-
sen in {64, 128, 256}, the soft convexity penalty for the potential g and the matching moment/variance
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Figure 4: Empirical Semi-Dual against Quadratic Error on the Quadratic and Log-Sum-Exp experi-
ments for the Sinkhorn model, n = 10000 and d = 8.

penalty were both chosen in {0, 0.001, 0.01, 0.1}. As recommended by the authors, the batch size
was set to 60, the number of epochs was set to 60, the number of inner iterations to approximate the
conjugate was set to 25 and the learning rate is initially set to 1e-4 and is then divided by 2 every
2-epochs.

To compute the semi-dual, we regularized the potential f by adding δ
2‖x‖

2 with δ = 1e-3. The
numerical optimization was done with SciPy with a stopping condition set to 0.001 ; for a lower
stopping criterion, the minimization would not converge.

Sinkhorn The temperature ε was chosen in {0.5, 0.1, 0.05, 0.01, 0.005}. We stopped the training
when the optimality conditions are almost met{

〈 |φε(.) + ε log(
∫
y
e
ψε(y)−c(.,y)

ε dν̂(y))|, µ̂〉 ≤ 1e-5

〈 |ψε(.) + ε log(
∫
x
e
φε(y)−c(x,.)

ε dµ̂(x))|, ν̂〉 ≤ 1e-5 .
(28)

The resulting Sinkhorn Brenier potential f̂ε is regularized with δ
2‖x‖

2, δ = 0.001. When the
semi-dual is computed on a point yi, the stopping criterion is given by

‖∇f̂ε(zt)− yi‖ ≤ 1e-5 , (29)

where zt is the current point of the optimization at time step t.

SSNB The strong convexity parameter l is chosen in {0.2, 0.5, 0.7, 0.9} and the smoothness pa-
rameter L is chosen in {0.2, 0.5, 0.7, 0.9, 1.2} with l < L. The number of iterations in the alternate
minimization is set to 10. The conjugate is computed with a first order scheme with learning rate 1

2L
and is stopped with the same criterion as above.

Additional Experiment Sinkhorn

Increasing n We run 10 times the Quadratic and Log-Sum-Exp experiments with the Sinkhorn
model but with the train/test/eval sets of size n = 10000. The results are reported on Figure
6. Just as for SSNB, the semi-dual can accurately rank the potentials according to their error
eµ(fi) =

∫
‖∇fi(x)− T0(x)‖22dµ(x) where T0 is the ground truth OT map.
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