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Abstract

Over the past few years, numerous computational
models have been developed to solve Optimal Trans-
port (OT) in a stochastic setting, where distributions
are represented by samples. In such situations, the
goal is to find a transport map that has good gener-
alization properties on unseen data, ideally the clos-
est map to the ground truth, unknown in practical
settings. However, in the absence of ground truth,
no quantitative criterion has been put forward to
measure its generalization performance although it
is crucial for model selection. We propose to lever-
age the Brenier formulation of OT to perform this
task. Theoretically, we show that this formulation
guarantees that, up to a distortion parameter that
depends on the smoothness/strong convexity and a
statistical deviation term, the selected map achieves
the lowest quadratic error to the ground truth. This
criterion, estimated via convex optimization, enables
parameter and model selection among entropic regu-
larization of OT, input convex neural networks and
smooth and strongly convex nearest-Brenier (SSNB)
models. Last, we make an experiment questioning
the use of OT in Domain-Adaptation. Thanks to the
criterion, we can identify the potential that is clos-
est to the true OT map between the source and the
target and we observe that this selected potential is
not the one that performs best for the downstream
transfer classification task.

1 Introduction

Optimal transport (OT) is a tool to compare proba-
bility distributions that has found numerous applica-
tions ranging from economics (Galichon, 2016; Chi-
appori et al., 2010), unsupervised learning (Sim et al.,
2020), shape matching (Feydy et al., 2017), NLP
(Chen et al., 2019; Alvarez-Melis and Jaakkola, 2018)
and biology (Schiebinger et al., 2019; Tong et al.,
2020). In its dual form, OT is a linear maximiza-
tion problem on functions, which are called poten-
tials, subject to a cost constraint. When the cost is
chosen to be quadratic, the solutions of this problem
are convex and their gradient provide optimal maps
that transport one distribution onto the other. In a
significant part of the OT applications, the transport
map itself is the object of interest. For instance in
Domain-Adaptation, the source distribution is trans-
ported on the target (Courty et al., 2017), for color
transfer one color histogram is transported on the
other (Rabin et al., 2014) and in biology, the RNA
cell expression profile is interpolated in time using OT
maps (Schiebinger et al., 2019). Over the past few
years, many models and computational methods (Cu-
turi, 2013; Genevay et al., 2016; Seguy et al., 2018;
Bonneel and Coeurjolly, 2019; Vacher et al., 2021)
were proposed and implemented to estimate these op-
timal transport maps. Under regularity assumptions,
some of these models were shown to accurately esti-
mate the original transport map provided the models
use optimal parameters (Pooladian and Niles-Weed,
2021; Manole et al., 2021). When such results exist,
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either the parameters to use are explicit but they
are impractical as they rely on generic worst-case
bounds, either they involve unavailable constants. To
the best of our knowledge, no quantitative criterion
has yet been devised to calibrate the parameters of
OT models and later discriminate between calibrated
models. The setting we are interested in is standard
in statistical and machine learning applications, in
which probability measures are only accessible via
samples in Euclidean spaces. The goal is to recover,
for the quadratic cost, a potential chosen among dif-
ferent models/parameters that has good generaliza-
tion properties and if possible, the closest to the un-
known ground truth. For achieving this task, we put
forward the use of the semi-dual functional of OT
that we now define.

The semi-dual (Brenier) objective. The quan-
titative criterion that we propose is the so-called
semi-dual Brenier objective of OT. It is a convex
functional on the space of functions f : Rd → R and is
defined for µ, ν two probability measures on the Eu-
clidean space by, denoting 〈·, ·〉 the pairing between
Radon measures and continuous functions,

Jµ,ν(f) := 〈f, µ〉+ 〈f∗, ν〉 , (1)

where f∗ is the Fenchel-Legendre transform of f
given by

f∗(y) := sup
x∈Rd

x>y − f(x) . (2)

Note that for a general cost c, this new objective
can be obtained by replacing one potential by its
c-transform in the Kantorovitch dual formulation.
However, this case is particularly attractive in the
case where f is convex since the pointwise computa-
tion of f∗ is a concave maximization problem, which
can be parallelized for different values of y. Indeed, if
ν is a finite sum of m Dirac masses at points yj , For-
mula (1) requires the computation of f∗(yj) which
are m independent concave optimization problems.
Related works. The problem of evaluating OT
models was recently studied by Korotin et al. (2021).
They proposed to generate synthetic ground truth
optimal maps using an input convex neural network.

Then, they calibrate various OT models on these
ground truth OT maps and they compare the per-
formance of each calibrated OT model by measuring
the natural L2 distance between the estimated map
and the ground truth. Their paper gives an inter-
esting perspective on comparing current OT models.
However, their setup requires the knowledge of the
ground truth to calibrate the OT models. This limi-
tation can be overcome for models providing convex
potentials as shown in our work.

The use of the Fenchel-Legendre transform can be
found in the pioneering paper Brenier (1991). It can
be shown that this new formulation retains more con-
vexity than the Kantorovitch formulation. On the
theoretical side, this gain was then leveraged for uses
as diverse as sharp bounds for the problem of sta-
tistical map estimation (Hütter and Rigollet, 2021)
or quantitative stability results of the transport map
with respect to the measures (Delalande and Merigot,
2021). On the numerical side, since the Fenchel-
Legendre transform has linear cost on a grid (Fast
Legendre Transform), the semi-dual is used to de-
sign efficient numerical algorithms in low dimension
(Jacobs and Léger, 2020). In the machine learning
community, the semi-dual was proposed by Tagh-
vaei and Jalali (2019) to estimate convex transport
maps parametrized by Input Convex Neural Net-
works (Amos et al., 2017). When n is the sam-
ple size, they noticed that instead of the classical
O(n2) complexity of OT, this new formulation leads
to an O(n) complexity per iteration as it only re-
quires n-independent computations of the Legendre
transform.

Our contributions. Even if the Brenier semi-
dual is frequently met in the OT literature, it is the
first time that this objective is used for model and
parameter selection. For this purpose, we also use
the extra convexity of the semi-dual that allows us to
prove quantitative bounds for the selection criterion.

The goal of our paper is to answer the following
question: given (f1, · · · , fp), p convex potentials, how
to select the one that minimizes the quadratic error,
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Figure 1: Entropic OT map selection with Brenier
criterion in dimension 8 on 1024 samples for the Ten-
sorized experiment (see Sec.5.2).

denoting ∇fi the gradient of fi,

eµ(fi) =

∫
x

‖∇fi(x)− T0(x)‖2dµ(x) , (3)

where T0 is the true, unknown, OT map from µ to ν
?

1. We prove that the potential that minimizes the
Brenier objective on a test set is the one that
minimizes the error eµ up to a multiplicative fac-
tor that depends on the smoothness of the po-
tential and up to an additive statistical deviation
term.

2. Entropic regularization of OT is a popular ap-
proach and we show this model can be efficiently
adapted to our setup. We propose an efficient,
GPU-friendly numerical scheme to compute the
semi-dual Brenier objective.

3. We showcase on three synthetic experiments,
among three different models, that in practice,
the best transport potential is indeed selected
and we nearly observe a monotone behavior of
the error with respect to the value of semi-dual.

4. We perform a Domain-Adaptation experiment
suggesting that, perhaps counter-intuitively, the
best mapping from the source to the target does

not generate the best performance on the classi-
fication task.

5. In addition to the previous results, we also pro-
vide the first publicly available implementation
of the SSNB model proposed by Paty et al.
(2020). In comparison with their algorithm,
ours has better scaling properties thanks to an
explicit SOCP reformulation of their original
QCQP formulation.

Assumptions and notations In this paper X,Y
are compact subsets of Rd, µ and ν are probability
measures over X and Y respectively with their n-
samples empirical counterparts µ̂, ν̂. We shall denote
by supp(µ), supp(ν) the support of µ and ν respec-
tively.

2 Optimal transport and Bre-
nier formulation

In its dual formulation, the OT problem optimizes
over a pair of continuous functions, called Kan-
torovitch potentials (φ, ψ) subject to a cost constraint
as

OTc(µ, ν) = sup
(φ,ψ)

〈φ, µ〉+ 〈ψ, ν〉+ ι(φ⊕ψ ≤ c) , (D)

where φ⊕ψ is defined as (φ⊕ψ)(x, y) = φ(x) +ψ(y)
and ι is the convex indicator function. When c is
the Euclidean squared distance, we simply denote it
by OT. In this case, if one of the two measures has
density w.r.t. the Lebesgue measure, Brenier’s theo-
rem (Brenier, 1991) shows that a unique optimal map
sending µ to ν exists and is given by the gradient of
a convex function. If one further assumes regular-
ity of the underlying densities and convexity of the
support of the distributions, the optimal map is even
smoother than simply being continuous, as detailed
next.

Theorem 1 (Caffarelli (2000)). Assume that µ and
ν have C1 densities bounded from below and above. If
X,Y are compact and convex sets in Rd, then, defin-

ing the Brenier potentials (f, g) = (‖.‖
2

2 −φ,
‖.‖2

2 −ψ),
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f and g are C2 convex functions such that{
∇f#(µ) = ν

∇g#(ν) = µ ,
(4)

where T#(η) is the pushforward of the distribution η
by the map T defined as T#(η)(A) = η(T−1(A)) for
all Borel A.

The semi-dual Brenier objective for convex
potential selection. In the context of statistical
OT, the transport Kantorovitch potentials φ̂, ψ̂ are
usually estimated using the dual formulation (D). To
compare the obtained potentials, one may be tempted
to simply evaluate the Kantorovitch linear objective
on a test set

Kµ̂,ν̂(φ̂, ψ̂) = 〈φ̂, µ̂〉+ 〈ψ̂, ν̂〉 , (5)

where µ̂, ν̂ represent independent samplings of µ, ν.
Note that the dense inequality constraint ι(φ̂⊕ψ̂ ≤ c)
over X × Y has to be fulfilled. However, in numer-
ous OT models, the learned potentials (φ̂, ψ̂) usually
do not respect this cost constraint. For instance, in
the entropic regularization of OT the constraint is
”loosely” satisfied on the train set since it replaces
the hard inequality constraint by the soft penaliza-

tion ε〈e
c−φ⊕ψ

ε , µ̂ ⊗ ν̂〉. It is possible though to re-
move the cost constraint from the objective in order
to evaluate candidate potentials. Rewriting the Kan-
torovich dual with the Brenier potentials gives

OT(µ, ν) = inf
(f,g)

〈‖.‖
2

2
− f, µ〉+ 〈‖.‖

2

2
− g, ν〉

s. t. f(x) + g(y) ≥ x>y

= 〈‖.‖
2

2
, µ+ ν〉 − inf

(f,g)
〈f, µ〉+ 〈g, ν〉

s. t. f(x) + g(y) ≥ x>y ,

(6)

where the optimization is done on f, g ∈ C0, the
space of continuous functions. The last inequality
implies that g(y) ≥ supx x

>y − f(x) for every x
which shows that we can replace g by f∗, the Fenchel-
Legendre transform of f . Therefore, up to moment
terms, we get the semi-dual Brenier formulation

inf
f
Jµ,ν(f) = 〈f, µ〉+ 〈f∗, ν〉 . (7)

This new nonlinear objective gains in convexity with
respect to the Kantorovitch formulation (see Sec-
tion 3) and now, whenever f is strongly convex,
Jµ,ν(f) is finite and can be efficiently computed on
discrete measures using standard convex optimiza-
tion algorithms. Hence, if we restrict ourselves to
convex f , possibly regularized with the addition of a
small quadratic term, we are provided with a natu-
ral and well-behaved selection criterion: the potential
that minimizes Jµ̂,ν̂ . We show in the next section
that, thanks to the extra convexity, the minimiza-
tion of this objective coincides, up to a stochastic
term, with the minimization of the quadratic error
eµ(f) =

∫
X
‖∇f(x)− T0(x)‖2dµ.

3 Potentials selection

In this section, we show our main result on the se-
lection of potentials. We first start with a standard
result which shows that the semi-dual formulation
gains convexity. More precisely, we show that it is
upper-bounded and lower-bounded by the quadratic
error eµ. A similar result can be found in Hütter
and Rigollet (2021)[Proposition 10] but we give here
a slightly sharper and more general version. When
no confusion is possible, we shall from now on denote
Jµ,ν by J .

Proposition 1. Assuming that an optimal convex
potential f0 such that T0 = ∇f0 pushes µ onto ν
exists, then if f is a γ-strongly convex C1 function
with M -Lipschitz gradient, we have

1

2M
eµ(f) ≤ (J(f)− J(f0)) ≤ 1

2γ
eµ(f) , (8)

where eµ(f) = ‖∇f − T0‖2L2(µ).

We give a short proof hereafter for completeness.

Proof. The semi-dual functional can be rewritten as
J(f) = 〈f, µ〉+〈f∗◦T0, µ〉 . Now, the Fenchel inequal-
ity on f gives for every couple (x, y) ∈ X × Y y>x ≤
f(x) + f∗(y) , and equality holds for y = ∇f(x). To
simplify notations, let us denote T (x) = ∇f(x). We
get

f(x) + f∗(T (x)) = x>T (x) . (9)
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Denoting f0 an optimal potential, the optimal-
ity condition of the OT problem also gives the
equality f0(x) + f∗0 (T0(x)) − x>T0(x) = 0 ,∀x ∈
Supp(µ) the support of µ and by integration J(f0) =∫
x>T0(x)dµ . Therefore, we have

J(f)− J(f0) =

∫
f(x) + f∗(T0(x))− x>T0(x)dµ .

By (9), using f(x) = −f∗(T (x)) + x>T (x) in the
previous equation and recalling that ∇f∗(T (x)) =
x ∀x ∈ X , we get

J(f)− J(f0) =

∫
Df∗(T0(x), T (x))dµ , (10)

where Df∗ is the Bregman divergence associated with
f∗ defined as Dh(x, y) = h(x)−h(y)−(x−y)>∇h(y) .
Recall that if f is a C1 convex function with a M -
Lipschitz gradient, then f∗ is 1

M -strongly convex.
Conversely, if f is a C1 γ-strongly convex function,
then f∗ has 1

γ -Lipschitz gradient. This implies the
results:{

J(f)− J(f0) ≥ 1
2M

∫
‖T0(x)− T (x)‖2dµ

J(f)− J(f0) ≤ 1
2γ

∫
‖T0(x)− T (x)‖2dµ .

(11)

Thanks to these bounds, we prove our main result
on convex map selection in a stochastic setting.

Proposition 2. Let (f1, · · · , fp) be p potentials and
(µ̂, ν̂) be the n-samples empirical counterparts of
(µ, ν). Let i0 be the index of the map that minimizes
the empirical semi-dual, i0 = arg mini Ĵ(fi) and sim-
ilarly i1 = arg mini eµ(fi). If fi0 , fi1 are γ-strongly
convex and M -smooth and if an OT map between µ
and ν exists, then for all 0 < δ < 1 we have with
probability at least 1− δ

eµ(fi0) ≤ M

γ
eµ(fi1) + 8MC

√
ln(4/δ)

2n
, (12)

where C = max(Ci0 , Ci1) with Ci =
max(‖fi‖X,o, ‖f∗i ‖Y,o) and ‖.‖Z,o is defined as
‖g‖Z,o = supz∈Z g(y)− infz∈Z g(y).

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

x0 x1x *

f(x0)

f(x1)

Figure 2: f(x0) < f(x1) but x0 is further from the
minimum than x1 and in particular we have the dis-
tortion (x0 − x∗)2 ≈ M

γ (x1 − x∗)2.

Before starting the proof, we highlight the fact
that the M

γ distortion factor is sharp even in a non-
stochastic setting. As shown by Figure 2, consider
the function f : x 7→ γ

2x
2 if x < 0 and f(x) = M

2 x
2 if

x is positive. f is indeed M -smooth, γ-strongly con-
vex and attains its minimum in x∗ = 0. For ε→ 0, if
we take the points x0 = − 1√

γ +ε and x1 = 1√
M

+ε, we

have that f(x0) < f(x1), and yet (x0−x∗)2
(x1−x∗)2 →

M
γ > 1.

Proof. We begin with splitting Ĵ(fi0)−J(f∗) in non-
stochastic and stochastic terms

Ĵ(fi0)− J(f∗) = J(fi0)− J(f∗) + Ĵ(fi0)− J(fi0) .
(13)

Using Proposition 1, we get the lower bound

Ĵ(fi0)−J(f∗) ≥
1

2M
eµ(fi0) + Ĵ(fi0)−J(fi0) . (14)

By construction, fi0 verifies for all 1 ≤ i ≤ p

Ĵ(fi0)− J(f∗) ≤ Ĵ(fi)− J(f∗)

= J(fi)− J(f∗) + Ĵ(fi)− J(fi) .

Picking i = i1 and using Proposition 1, we obtain

Ĵ(fi0)− J(f∗) ≤
1

2γ
eµ(fi1) + Ĵ(fi1)− J(fi1) . (15)
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Equations (14) and (15) give

eµ(fi0) ≤M
γ
eµ(fi1) + 2M(Ĵ(fi1)− J(fi1)) (16)

+ 2M(J(fi0)− Ĵ(fi0)) . (17)

The Hoeffding lemma gives for all t > 0

P(〈fi, µ̂− µ〉 ≥ t) ≤ exp

(
− 2nt2

‖fi‖2osc,X

)
. (18)

We place ourselves on the event

A =(〈fi1 , µ̂− µ〉 ≥ t) ∪ (〈f∗i1 , ν̂ − ν〉 ≥ t)
∪ (〈fi0 , µ− µ̂〉 ≥ t) ∪ (〈f∗i0 , ν − ν̂〉 ≥ t) .

(19)

We want to set P(A) ≤ δ. By triangle inequality, we
get the upper-bound

P(A) ≤ 4 exp

(
−2nt2

C2

)
, (20)

where C = max(Ci0 , Ci1) and Ci defined as
Ci = max(‖fi‖X,o, ‖f∗i ‖Y,o). Hence setting, t =

C
√

ln(4/δ)
2n , we have with probability at least 1 − δ

eµ(fi0) ≤ M

γ
eµ(fi1) + 8MC

√
ln(4/δ)

2n
. (21)

4 Sinkhorn potentials

The Sinkhorn model (Cuturi, 2013), defined as

Sε(µ, ν) = sup
φ,ψ∈C0

〈φ, µ〉+ 〈ψ, ν〉 − ε〈e
φ⊕ψ−c

ε , µ⊗ ν〉 ,

is very popular in the OT community. We show
in this section that it indeed provides convex and
smooth empirical potentials. Because of the lack of
strong convexity, the semi-dual diverges on these em-
pirical potentials. We show experimentally in Sec-
tion 5 that using a small quadratic regularization
does not degrade the performances of our selection
method. Finally, we show how to efficiently com-
pute the semi-dual on Sinkhorn potentials: from an

algorithmic point of view, we show that they are self-
concordant hence we can employ provably convergent
second order schemes. From a numerical point of
view, we provide GPU memory-friendly routines to
compute their gradients and hessians.

A convex model. In order to compute the semi-
dual, we first need to check whether the Brenier po-
tentials associated with the Sinkhorn model are con-
vex. Recall that the first-order optimality condition
on the Sinkhorn potential φε gives

φε(x) = −ε log(

∫
y

e
ψε(y)−c(x,y)

ε dν(y)) . (22)

Defining, for a quadratic cost c(x, y) = ‖x−y‖2
2 , the

associated Brenier potentials as fε = ‖.‖2
2 −φε(.), we

obtain fε(x) = ε log(
∫
y
eβε(y)e

x>y
ε dν(y)), where we

defined βε(y) = e
2ψε(y)−‖y‖2

2ε . This shows that the
potentials (fε, gε) are Log-Sum-Exp functions and in
particular, they are convex. We draw the attention
on the fact that we shall use (22) as it is classically
done in the literature (Berman, 2018; Pooladian and
Niles-Weed, 2021) to extend the empirical Sinkhorn

potentials (φ̂ε, ψ̂ε) = arg min(φ,ψ) Sε(µ̂, ν̂) that are
originally solely defined on the samples µ̂ and ν̂. As
we shall see later, this very particular parametric
form can be proven useful in the numerical resolution
of the Fenchel-Legendre transform. However, since
Log-Sum-Exp are not strongly convex functions, we
show below that these potentials need to be regular-
ized.

Proposition 3. Let (f̂ε, ĝε) = (‖.‖
2

2 − φ̂ε,
‖.‖2

2 −
ψ̂ε). If ν has continuous density with respect to the
Lebesgue measure we have almost surely

〈f̂∗ε , ν〉 = +∞ . (23)

The proof is left in Appendix. Obviously in such
situation, the theoretical bound of Section 3 does not
apply. Adding a small quadratic regularization of the
form δ

2‖x‖
2 to the potential fε makes the semi-dual

value finite although it implies a bias on the selected
potential. However, we show in Section 5 that it gives
satisfying results in practice.
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Self-concordant potentials. Now, even if the
Legendre transform can be computed via a standard
convex first order minimization algorithm, it will not
be effective in practice. We show in Appendix that
the Sinkhorn potentials are O( 1

ε ) smooth leading to
a O( 1

δε ) condition number on the problem, hence we
need to employ second order methods. The flaw
of these methods is that they require costly line-
searches. However if the function has a generalized
self-concordant structure, we can use a second order
algorithm of the form

xk+1 = xk − αk(∇2f(xk))−1∇f(xk) , (24)

where αk is an explicit step size given in Sun
and Tran-Dinh (2019)[Theorem 2] and that provably
yields a super-linearly convergent algorithm.

Definition 1. Let α > 0 and f be a C3 convex
function. The function f is said to be (α,Mf ) self-
concordant if for all (x, u, v)

|(∇3f(x)[v]u)>u| ≤Mf‖u‖2x‖v‖α−2
x ‖v‖3−α , (25)

where ‖u‖2x = (∇2f(x)u)>u, ∇3f(x) is the tensor

( ∂3f
∂xixjxk

)1≤ijk≤d and for a tensor T = (tijk)1≤i,j,k≤n,

T [v] =
∑p
i=1 viTi with Ti the matrix (tijk)1≤j,k≤n.

Informally, the self-concordance measures how fast
the Hessian varies with respect to the metric it in-
duces.

Proposition 4. The Sinkhorn Brenier potential f̂ε
is (2, D(ν̂)

ε ) self-concordant where the diameter D is
defined as D(ν̂) = supy∈ν̂,z∈ν̂ ‖y − z‖2.

The proof is left in Appendix. Note that we can

obtain the coarser non-stochastic bound D(Supp(ν))
ε .

For instance, if the distributions are contained in the

unit cube, the self-concordant constant will be
√
d
ε .

The Figure 3 shows that the second order scheme
is much faster to compute the Fenchel conjugate on
n = 1000 points, with learning rate O( 1

ε ) for the first
order method.

A GPU-friendly implementation Now that we
can use the algorithm of Sun and Tran-Dinh (2019)
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Second order

Figure 3: Fenchel Conjugate: 1st order vs 2nd order.

with explicit constants to compute the Fenchel trans-
form, we present in this paragraph a GPU-friendly
implementation that parallelizes the updates across
ν̂. Let ν̂ = (y1, · · · , yn) and zj the j-th current point
of the j-th minimization problem

min
z

(f̂ε(z) +
δ

2
‖z‖2)− 〈z, yj〉 . (26)

To design a GPU-friendly algorithm, we must first
compute all the gradients (∇fε(zj))1≤j≤n ∈ Rn×d
simultaneously. The gradient is given by

∇f(zj) =

∑n
i=1 yikij
kj

, (27)

where kij = 1
ne
〈zj ,

yi
ε 〉+βε(zj) and kj =

∑n
i=1 kij . A

naive computation would explicitly store the ”kernel”
kij leading to a O(n2) memory footprint. Instead
we use the Keops library (Feydy et al., 2020) that
symbolically computes kij . The same process is used
for the

∑n
i=1 yikij term. Conversely, we must com-

pute the tensor of the Hessians (∇2fε(zj))1≤j≤n ∈
Rn×d×d. As we show in Appendix, the Hessian is
given by

∇2fε(zj) =
1

ε

(∑n
i=1 yiy

>
i kij

kj
−∇fε(zj)∇f>ε (zj)

)
.

Once again, we use the Keops library to reduce the
memory footprint of

∑n
i=1 yiy

>
i kij to O(nd2).
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5 Numerical experiments

We first introduce two other transport models on
which we perform our numerical experiments.

5.1 Other models

Input Convex Neural Network (ICNN). The
convex Brenier potentials are modeled by (fθ1 , gθ2)
two ICNN. Then the model is trained using a mini-
max objective

min
θ1

max
θ2
〈fθ1 , µ̂〉+

1

n

n∑
i=1

∇gθ2(yi)
>yi−〈fθ1 , (∇gθ2)#(ν̂)〉 .

The maximization aims at recovering gθ2 ≈ f∗θ1 and
the minimization approximately solves the semi-dual.
The implementation is based on the code of the au-
thors1. Softplus activation layers were used instead
of ReLu to obtain less degenerated maps. Note that
since the weights θ1, θ2 are not controlled, we expect
this model to provide lowly regular maps.

Smooth Strongly convex Nearest Brenier
(SSNB). This model estimates the potential f by
solving

inf
f∈F(l,L)

W2((∇f)#(µ̂), ν̂) , (28)

where F(l,L) is the set of L-smooth, l-strongly convex
functions. As opposed to the previous model, SSNB
provides maps that are very regular (in a bi-Lipschitz
sense). The algorithm is based on an alternate min-
imization scheme and the costly steps are Quadrat-
ically Constrained Quadratic Programs (QCQP) of
the form

inf
Z∈Rn×(d+1)

1

2
Z>Q0Z + c>0 Z

s.t
1

2
Z>QijZ + c>ijZ + rij ≤ 0 ,

(29)

where i 6= j, 1 ≤ i, j ≤ n and Qij/Q0 are sparse
matrices. Indeed, one can straightforwardly imple-
ment this QCQP using CVXPY (Diamond and Boyd,
2016) but the resulting problem hardly scales up to

1https://github.com/AmirTag/OT-ICNN

n = 100 as a single iteration takes hours on a 120
GB RAM CPU. The main limitation is the overhead
of the compilation, which is done at each iteration of
the algorithm. Our implementation widely reduces
the time per iteration to a few minutes for n = 1024.
The details of the implementation are given in the
Appendix; it relies on two key points: First, we ex-
plicitly implement the SOCP in MOSEK and in par-
ticular, the factorization of the Qij matrices is made
”by hand”. Second, the resulting cone constraints are
compiled only once for a fixed value of (n, d) and the
resulting problem is explicitly stored.

5.2 The experiments

Synthetic XP. We compare the ability of the mod-
els to recover the ground truth transport map using
the semi-dual criterion map for three different distri-
butions in a medium dimension setting d = 8. In all
three cases, the distribution µ is uniform on the cube
[0, 1]d and ν is given by (∇f)#(µ) where f is a con-
vex function ; in virtue of Brenier’s theorem, T = ∇f
is the ground truth OT map between µ and ν. The
function f has 3 different forms

Quadratic: f(x) = 1
2x
>Qx + x>b where Q =

O>DO + 0.25 Id where O is a randomly chosen or-
thogonal matrix, D is a random diagonal matrix
whose entries are uniform in [0, 1] and b is a random
d-dimensional gaussian. This is a standard bench-
mark which simply aims at recovering a translation.

Tensorized: T0(x) = x + (6 − cos(6πx) − 0.2)−1

and T (x) =
∑d
k=1 T0(xk). The map to learn is more

complex but has a low dimensional structure as it
pushes independently each directions.

(Regularized) Log-Sum-Exp: f(x) = tLSE(Ct x +

b) + δ
2‖x‖

2 where the matrix C is comprised of 10
centers uniformly chosen in [−1, 1]d, the shift b is a
random d-dimensional gaussian, the temperature t
was fixed at 0.3 and the regularizer δ = 0.001. Note
that any convex function can be approximated by
such a Log-Sum-Exp (Calafiore et al., 2020). How-
ever, because of this parametric structure, we expect
the Sinkhorn model to be favored.

The training of the models, the semi-dual esti-
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ICNN Sinkhorn SSNB ICNN/Sinkhorn/SSNB
eµ̂(fi1) eµ̂(fi0) eµ̂(fi1) eµ̂(fi0) eµ̂(fi1) eµ̂(fi0) eµ̂(fi1) eµ̂(fi0)

Q 5.11 12.23 (16.13/48) 0.036 0.047 (1.93/5) 0.013 0.014 (1.33/11) 0.013 0.014 (1.33/64)
T 2.74 2.74 (1.22/48) 0.059 0.119 (2.72/5) 0.006 0.006 (1.0/11) 0.006 0.006 (1.0/64)
L 1.69 3.02 (17.11/48) 0.006 0.006 (1.68/5) 0.16 0.17 (1.26/11) 0.006 0.006 (1.68/64)

Table 1: Potential Selection for best map recovery. Q, T and L stand for the Quadratic, Tensorized and
Log-Sum-Exp experiments respectively. In bold the model that performed best after being calibrated with
the semi-dual criterion. The last column corresponds to the performance of the model selected with the semi-
dual criterion among the 3 calibrated ones. The numerator between brackets corresponds to the rank of the
calibrated/selected potential with respect to the error eµ̂: the closer to one, the better. The denominator
corresponds to the number of potentials among which the chosen one was selected.

mation and the error Monte-Carlo approximation2

eµ̂(fi) =
∫
‖∇fi(x) − T0(x)‖2dµ̂(x) are done with 3

independent batches of size n = 1024. Forty-eight
combinations of hyperparameters were tested for the
ICNN model, five for the Sinkhorn model and eleven
for the SSNB model. More details on the hyperpa-
rameters and on the implementation are given in Ap-
pendix. For each experiment, the results were aver-
aged on fifteen independent runs.

Quad Tensorised Log-Sum-Exp

eµ(fi1) 0.0104 0.0376 0.0005
eµ(fi0) 0.0104 0.0376 0.0005
Rank 1.0/5 1.0/5 1.0/5

Table 2: Potential Selection with Sinkhorn Model
with n = 10000 train/test/eval points. The numer-
ator of the Rank corresponds to the rank of the po-
tential calibrated with the semi-dual criterion with
respect to the error eµ̂: the closer to one, the bet-
ter. The denominator corresponds to the number of
potentials among which the chosen one was selected.
We observe that the best candidate is always chosen
by the semi-dual criterion.

The results are reported on Table 1. First the pa-
rameters of each model are calibrated with the semi-
dual criterion (the three first columns of the Table).
We denote i0 the index of the minimizer of the semi-

2Concentrates in O( 1√
n
) toward the ”true” error.

dual and i1 the index of the potential that achieves
the lowest eµ̂ error. The numerator between brackets
corresponds to the rank of the selected model with
respect to the error eµ̂; the closer to one the better.
In particular, if i0 = i1 we obtain the rank 1. The de-
nominator corresponds to the number of parameters:
for instance, since we tested the Sinkhorn model with
five different temperatures ε, we have a denominator
of 5.
In the case of SSNB where the smoothness and strong
convexity parameters are explicitly controlled, the
best potential is almost always selected. In the case
of the Sinkhorn model, the regularity decreases for
small values of ε yet the selected potential remains
in the top 40% for the Quadratic and Log-Sum-Exp
experiments. Conversely, the regularity is not con-
trolled in the ICNN model yet the selected potential
remains in the top-tier for the Quadratic and Log-
Sum-Exp experiments; as for the Tensorised experi-
ment, the best potential is almost always selected.
Once the three models are calibrated with the semi-
dual, we select one among them with the same crite-
rion (last column of the Table); note the denomina-
tor between brackets is now equal to the sum of the
number of parameters considered for each model. We
observe that the criterion selects the best or nearly-
best transport map. This shows that the Brenier cri-
terion can be both used for calibration and selection.
Figure 4 plots the semi-dual values against the error
in the Log-Sum-Exp experiment and empirically sug-
gests an even better behavior than best model selec-
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Figure 4: Empirical Semi-Dual against Quadratic Error on the Log-Sum-Exp experiment. Ideally, the error
should strictly increase with the semi-dual; because of the distortion factor and the stochasticity stated
in Proposition 2, we may not obtain this ideal behavior. We do obtain it for the SSNB model where the
regularity is well controlled and nearly obtain it for the Sinkhorn model where we can at least control the
gradient. The ICNNOT model behaves more poorly as expected since we do not control explicitly the
regularity of the model.

tion. For the Sinkhorn and SSNB models, the error
strictly increases with the semi-dual value, hence the
semi-dual can not only select but can also directly
rank the potentials with respect to the error eµ. For
the ICNN model, we do not observe the same mono-
tone behavior but we still get a positive correlation
between the error and the semi-dual value. This less
consistent behavior can be explained once again by
the lack of control on the regularity of the potentials
given by the model.

Overall, when we compare the models after be-
ing calibrated with the semi-dual we observe that
ICNN always has the poorest performance. We may
not have chosen the hyperpameters and the network
structures in the best possible way and the ground
truth may not favour this model. The SSNB model
performs better by almost an order of magnitude
than Sinkhorn on the Quadratic and Tensorized ex-
periments. Conversely, as expected, the Sinkhorn
model is the best one on the Log-Sum-Exp experi-
ment. In terms of computation time, the training of
the SSNB model takes between one and three hours
and between 30 minutes and one hour for the semi-
dual computation on a 120 GB RAM CPU. ICNN
and Sinkhorn take a few minutes and a few seconds
respectively for the training and semi-dual computa-

tion on a RTX6000 GPU.
Thanks to the high scalabilty of Sinkhorn, we re-

peated those three experiments on larger batches
with n = 10000 averaged on 10 runs. As shown
on Table 2, Sinkhorn recovers the same behavior as
SSNB with respect to the semi-dual. Not only the
best parameter ε is always chosen but also, we show
in the Appendix that in the Quadratic and Log-Sum-
Exp setting, the error strictly increases with the semi-
dual value.

Domain Adaptation. (DA) In DA, a map T
is sought between a source distribution Xs with its
known labels Ys and a target distribution Xt with
unknown labels. Then a classifier c is learned on
(T (Xs), Ys) and is used to predict the unknown la-
bels of the target as c(Xt). In the work of Courty
et al. (2017) and many others (Redko et al., 2019;
Xu et al., 2020), the core assumption is that T should
be close to the OT map between Xs, Xt. Question:
is this assumption valid? Is the ”true” OT map be-
tween Xs and Xt the one that will achieve the best
knowledge transfer? Problem: among all proposed
models, how to assess which map is the closest to the
”true” unknown OT map? Using our criterion, we
can now select the parameters and the model that
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will be closest to the ground truth.

We use the Caltech-office dataset which is a set of
images of objects from ten distinct categories com-
ing from four different sources of various quality: ob-
jects found in the online Amazon catalog (A), objects
whose pictures have been taken with a webcam (W),
with a high resolution digital SLR camera (D) and
the Caltech-256 dataset (C) which is comprised of
Google images. We use all the nine distinct pairs
as source/domain data. As in Courty et al. (2017),
in order for the quadratic distance to be meaning-
ful, we do not use the raw images but feed them to
a Decaf (Donahue et al., 2014) network and extract
the features of the last layer and we use a 1-NN as
the classifier. The models and parameters we use are
the same as in the Synthetic experiment. In our set-
ting, the transport map T is learned on train sets
Xtrain
s , Xtrain

t and the semi-dual is evaluated on test
sets Xtest

s , Xtest
t , with 70% of the data for the train

and 30% for the test.

The results are reported on Table 3. We denote by
i0 the index of the potential that minimizes the em-
pirical semi-dual criterion and by i1 the potential that

achieves the highest accuracy. The numerator be-
tween bracket corresponds to the rank of the selected
potential with respect to the accuracy obtained when
the classifier is learned on (∇f(Xs), Ys); the closer to
1, the better and in particular, rank(fi1) = 1. We ob-
serve that the accuracy of the potential selected by
the semi-dual is quite random. Worse, the potential
that has the lowest accuracy is regularly selected by
the semi-dual, even in the case of the SSNB model
for which the Brenier criterion indicates very reliably
the quality of the transport map. Hence we conclude
that for DA, the best mapping for label transfer is
not an optimal transport map, at least among our
models. We remark that this conclusion is similar
to the results of Korotin et al. (2021) and Stanczuk
et al. (2021) who observed that the transport models
which performed best for various ML tasks were not
the ones that recover the sharpest OT maps.

6 Conclusion

The semi-dual Brenier formulation of quadratic OT
provides us with a feasible criterion for convex po-

ICNN Sinkhorn SSNB
acc(fi1) acc(fi0) acc(fi1) acc(fi0) acc(fi1) acc(fi0)

A/C 0.41 0.34 (2/48) 0.84 0.82 (3/5) 0.85 0.79 (10/11)
A/D 0.44 0.15 (33/48) 0.87 0.78 (4/5) 0.82 0.8 (5/11)
A/W 0.36 0.07 (48/48) 0.78 0.72 (3/5) 0.79 0.71 (9/11)
C/A 0.47 0.09 (44/48) 0.91 0.82 (5/5) 0.91 0.88 (9/11)
C/D 0.65 0.27 (6/48) 0.9 0.8 (4/5) 0.88 0.82 (10/11)
C/W 0.36 0.34 (3/48) 0.82 0.79 (2/5) 0.83 0.83 (1/11)
D/A 0.5 0.47 (2/48) 0.91 0.78 (5/5) 0.91 0.84 (11/11)
D/C 0.54 0.43 (2/48) 0.83 0.74 (5/5) 0.83 0.75 (9/11)
D/W 0.52 0.28 (11/48) 0.96 0.85 (4/5) 0.99 0.95 (8/11)
W/A 0.48 0.25 (17/48) 0.89 0.78 (4/5) 0.87 0.77 (11/11)
W/C 0.4 0.2 (13/48) 0.77 0.73 (4/5) 0.78 0.74 (10/11)
W/D 0.62 0.51 (2/48) 0.95 0.9 (3/5) 1.0 1.0 (1/11)

Table 3: Potential Selection for Domain-Adaptation. The column acc(fi1) corresponds to the best (highest)
accuracy and acc(fi0) corresponds to the accuracy of the potential selected with the Brenier criterion. On this
Table, the potentials are ranked with respect to the accuracy; the closer to one, the better the classification.
In bold, the highest accuracy after being calibrated with the semi-dual. For Domain-Adaptation the potential
that is closest to an OT map does not yield the best accuracy.
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tential selection. Provided the potentials are convex,
this criterion can be computed numerically. Theo-
retically and experimentally, we showed that up to a
sharp distortion parameter, the potential that mini-
mizes the semi-dual is the one whose gradient min-
imizes the squared error to the ground truth map.
Hence we believe that this criterion provides a fair
and accurate procedure to benchmark convex OT
models and solves the tricky question of hyperparam-
eter tuning in the context of stochastic OT. Possible
extensions could include the treatment of more gen-
eral cost c and more general potentials such as non-
smooth convex or non-convex potentials.
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Additional proofs

Proof of Proposition 3

Proof. Recall that the Fenchel-Legendre of a standard Log-Sum-Exp function LSE(x) = log(
∑n
i=1 e

xi) is
given by

LSE∗(y) =

n∑
i=1

yi log(yi) + ι(y ∈ Sn) (30)

= −Ent(y) + ι(y ∈ Sn) , (31)

where Sn is the probability simplex. More generally, defining LSEb(x) = log(
∑n
i=1 e

xi+bi), using the fact
that f∗(·+ τ) = f∗(·)− τ>·, we have

(LSEb)
∗(y) = −Ent(y)− b>y + ι(y ∈ Sn) . (32)

At the optimum, for empirical measures µ̂ = 1
m

∑m
i=1 δxi , ν̂ = 1

n

∑n
i=1 δyi the empirical Sinkhorn Kan-

torovitch potentials (φ̂ε, ψ̂ε) are linked as

φ̂ε(x) = −ε log

(
1

n

n∑
i=1

e2
2ψ̂ε(yi)−‖x−yi‖

2

2ε

)
, (33)

hence the Sinkhorn Brenier potential fε can be written as

fε(x) = εLSEbε(Cεx) , (34)

where Cε = (yiε )1≤i≤n ∈ Rn×d and bε,n = ( 2ψε(yi)−‖yi‖2
2ε − log(n))1≤i≤n ∈ Rn. Now recall that

• (εf(·))∗ = εf∗( ·ε ).

• ∀z, (f(A.))∗(z) = inf
Ay=z f

∗(y).

Hence we can deduce
f∗ε (y) = ε inf

C1∆=y
∆∈Sn

−Ent(∆)−∆>bε,n + ι(∆ ∈ Sn) .

In particular if f∗ε is evaluated outside the convex hull of ν̂, it is infinite. Since ν has continuous density,
there almost surely exists (y0, r), r > 0 such that B(y0, r) ⊂ Supp(ν) and B(y0, r) ∩ Conv(ν̂) = ∅. In
particular, almost surely

〈f∗ε , ν〉 = +∞ . (35)

Proof of Proposition 4

The proof is largely inspired from an article on the online blog of Francis Bach3.
Since the 2-self-concordance is scaling invariant, we shall simply prove that f(x) = LSEb(C.) is (2, D(C))

self-concordant with b ∈ Rn+, C ∈ Rn×d the matrix whose rows are centers (ci)1≤i≤n and D(C) = maxij ‖ci−
cj‖.

3https://francisbach.com/self-concordant-analysis-for-logistic-regression/
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Proof. Defining the (non-normalized) distribution µ = 1
n

∑n
i=1 biδci , we can remark that f is the normalizing

factor of the conditional exponential distribution

h(c|x) ∝ ec
>xdµ(c) (36)

= ec
>x−f(x)dµ(c) . (37)

The gradient of f is given by

∇f(x) =

∫
cec
>xdµ(c)∫

ec>xdµ(c)
(38)

= Eh(c) , (39)

and using the results of Pistone and Wynn (1999), we have for higher order derivatives

∇pf(x) = Eh(⊗pj=1(c−∇f(x))) , (40)

where for a vector v ∈ Rd, ⊗pj=1v is a tensor Vp in Rdp whose entries are (vi1,··· ,ip). In particular, applying
the formula for p = 3 and denoting H = (c−∇f(x))⊗ (c−∇f(x))

∇3f(x) = Eh[(c−∇f(x))⊗H] . (41)

Using the linearity of the expectation, we have

|(∇3f(x)[v]u)>u| = |Eh[(c−∇f(x))>v × (Hu)>u]| (42)

≤ Eh[|(c−∇f(x))>v| × |(Hu)>u|] . (43)

Since ∇f(x) ∈ Conv(C), we have in particular that ‖c−∇f(x)‖ ≤ D(C). Furthermore since H is a positive
matrix, we obtain the following upper-bound

|(∇3f(x)[v]u)>u| ≤ D(C)‖v‖Eh[(Hu)>u] (44)

≤ D(C)‖v‖(∇2f(x)u)>u . (45)

Sinkhorn Brenier potentials are 1
ε
-smooth

Proof. Using the notations from above, the Sinkhorn Brenier empirical potentials are of the form fε =
εLSEbε,n(Cε.). Using the formulas from the previous proof, we simply have to bound Hc,x = (c−∇f(x))⊗
(c−∇f(x))

u>Hc,xu = (u>(c−∇f(x)))2 (46)

≤ ‖u‖22‖c−∇f(x)‖22 . (47)

Since ∇f(x) ∈ Conv( ν̂ε ) and c ∈ Supp( ν̂ε ), we deduce that ‖Hc,x‖op ≤ D2(ν̂)
ε2 , where ‖.‖op is the spectral

norm. In particular ‖∇2f(x)‖op ≤ D2(ν̂)
ε . Hence, if we regularize the Sinkhorn Brenier potential with δ ‖.‖

2

2 ,
we obtain a O( 1

δε ) condition number.
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Miscellaneous

SSNB algorithm

For l < L, the SSNB model is defined as

inf
f∈Fl,L

W 2
2 ((∇f)#(µ), ν) , (48)

where Fl,L is the set of l-strongly convex, L-smooth functions. For empirical potentials µ̂ = 1
n

∑n
i=1 δxi

and ν̂ = 1
m

∑m
i=1 δyi , the authors propose to solve the non-convex problem (48) in an alternate fashion: for

a fixed f ∈ Fl,L, they estimate the transport coupling (Pij) ∈ Rn×m from (∇f)#(µ̂) to ν̂ by solving the
associated linear program (or an entropic approximation) and then, once the coupling is fixed, they estimate
f (pointwise on µ̂) by solving

min
(z1,··· ,zn)∈Rn×d,u∈Rn

∑
ij

Pij‖zi − yj‖22

subject to ui ≥ uj + z>j (xi − xj) +
1

2(1− l/L)

(
1

L
‖zi − zj‖2 +

1

l
‖xi − xj‖22 −

2l

L
(zj − zi)>(xi − xj)

)
,

(49)

where zi = ∇f(xi) and ui = f(xi). The problem above is a convex Quadratically Constrained Quadratic
Problem and can be numerically solved with CVXPY for instance. However, when such an option is chosen
the n(n − 1) constraints must be computed at each iterations which induces a large overhead. Instead, we
reformulate this problem as a standard linear conic problem of the form Ax− b ∈ K, with K a fixed cone to
be compiled only once.

From QCQP to SOCP First we show how to reformulate a (convex) QCQP without equality constraints
into an SOCP. The standard formulation of a QCQP is

inf
x

1

2
x>Q0x+ c>0 x

s. t.
1

2
x>Qix+ c>i x+ ri ≤ 0, i = 1, · · · , p .

(50)

Introducing the slack variables (t0, t1, · · · , tp) = 1
2 (x>Q0x, x

>Q1x, · · · , x>Qpx), we re-write the problem
as

inf
x,t

t0 + c>0 x

s. t. ti + c>i x+ ri = 0, i = 1, · · · , p

ti ≥
1

2
x>Qix, i = 0, · · · , p .

(51)

Decomposing Qi as Qi = F>i Fi with Fi having p rows, the constraint ti = 1
2x
>Qix becomes (1, ti, Fix) ∈

Qd+2
r , where Qd+2

r is the rotated (d+ 2)-dimensional Lorentz cone defined as
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Qd+2
r = {(x1, x2, · · · , xd+2) s.t. 2x1x2 ≥

d∑
k=1

x2
i+2} . (52)

We obtain a MOSEK-friendly formulation of the QCQP as

inf
x,t

t0 + c>0 x

s. t. ti + c>i x+ ri = 0, i = 1, · · · , p
(1, ti, Fix) ∈ Qd+2

r , i = 0, · · · , p ,

(53)

which has the form Ax − b ∈ K where K is a fixed product of Lorentz cone whose number and dimensions
solely depend on n and d in the case of SSNB. Hence we can compile K only once for fixed (n, d), which
allows us to considerably reduce the overhead.

Decomposition of Qij In the SSNB model the symmetric positive matrices Qij ∈ S+
n(d+1)(R) are defined

up to a common scaling parameter as
qkl = 1 if k = l ∈ {di, · · · (d+ 1)i} ∪ {dj, · · · (d+ 1)j}
qkl = −1 if l = k + dj, k ∈ {di, · · · (d+ 1)i}
qkl = −1 if k = l + dj, l ∈ {di, · · · (d+ 1)i} .

(54)

The matrix Qij is factorized as F>ij Fij with Fij ∈ Rd×n(d+1) defined as{
fkl = 1 if l = k + di, k ∈ {1, · · · , d}
fkl = −1 if l = k + dj, k ∈ {1, · · · , d} .

(55)

Models hyperparameters

ICNN We used a 3-layers ICNN with softplus activations. The number of hidden neurons was chosen
in {64, 128, 256}, the soft convexity penalty for the potential g and the matching moment/variance penalty
were both chosen in {0, 0.001, 0.01, 0.1}. As recommended by the authors, the batch size was set to 60, the
number of epochs was set to 60, the number of inner iterations to approximate the conjugate was set to 25
and the learning rate is initially set to 1e-4 and is then divided by 2 every 2-epochs.

To compute the semi-dual, we regularized the potential f by adding δ
2‖x‖

2 with δ = 1e-3. The numerical
optimization was done with SciPy with a stopping condition set to 0.001 ; for a lower stopping criterion, the
minimization would not converge.

Sinkhorn The temperature ε was chosen in {0.5, 0.1, 0.05, 0.01, 0.005}. We stopped the training when the
optimality conditions are almost met{

〈 |φε(.) + ε log(
∫
y
e
ψε(y)−c(.,y)

ε dν̂(y))|, µ̂〉 ≤ 1e-5

〈 |ψε(.) + ε log(
∫
x
e
φε(y)−c(x,.)

ε dµ̂(x))|, ν̂〉 ≤ 1e-5 .
(56)

17



0.5 1.0 1.5
Test Semi Dual Value

0.00

0.05

0.10

0.15

0.20

0.25

Ev
al

ut
at

io
n 

L2
 e

rro
r o

n 
th

e 
m

ap
s

= 0.5
= 0.1
= 0.05
= 0.01
= 0.005

0.675 0.700 0.725 0.750 0.775
Test Semi Dual Value

0.00

0.01

0.02

0.03

0.04
= 0.5
= 0.1
= 0.05
= 0.01
= 0.005

Figure 5: Empirical Semi-Dual against Quadratic Error on the Quadratic and Log-Sum-Exp experiments
for the Sinkhorn model, n = 10000 and d = 8.

The resulting Sinkhorn Brenier potential f̂ε is regularized with δ
2‖x‖

2, δ = 0.001. When the semi-dual is
computed on a point yi, the stopping criterion is given by

‖∇f̂ε(zt)− yi‖ ≤ 1e-5 , (57)

where zt is the current point of the optimization at time step t.

SSNB The strong convexity parameter l is chosen in {0.2, 0.5, 0.7, 0.9} and the smoothness parameter L
is chosen in {0.2, 0.5, 0.7, 0.9, 1.2} with l < L. The number of iterations in the alternate minimization is set
to 10. The conjugate is computed with a first order scheme with learning rate 1

2L and is stopped with the
same criterion as above.

Additional Experiment Sinkhorn

Increasing n We run 10 times the Quadratic and Log-Sum-Exp experiments with the Sinkhorn model
but with the train/test/eval sets of size n = 10000. The results are reported on Figure 6. Just as for SSNB,
the semi-dual can accurately rank the potentials according to their error eµ(fi) =

∫
‖∇fi(x)−T0(x)‖22dµ(x)

where T0 is the ground truth OT map.
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