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Abstract—In this paper, we analyze the impact of reducing
the Peak to Average Power Ratio (PAPR) of a time domain
Orthogonal Frequency Division Multiplexing (OFDM) signal
before its compression, as required for the transmission of IQ
samples in a Centralized Radio Access Network architecture.
The analysis is performed considering a clipping function for
PAPR reduction. First, the distribution of the clipped OFDM IQ
samples is obtained which in turn allows to derive the threshold
and codebook levels of a non-uniform quantizer optimized for
clipped IQ samples and the number of representation bits for
each quantized levels in the entropy coding stage. Then, we
provide a closed-form expression for the Modulation Error Ratio
of the compressed and clipped OFDM signal. The simulation
results show that the Gaussian quantizer applied to a clipped
signal is not quite robust compared to a quantizer that has been
optimized w.r.t. the distribution of clipped IQ samples, especially
in the low-rate quantization region.

Index Terms—C-RAN, Clipping, Quantization, Entropy cod-
ing, IQ Compression, MER

I. INTRODUCTION

Cloud Radio Access Network (C-RAN) is an attractive
architecture for next generation wireless networks. The C-
RAN architecture is deporting the baseband processing in a
common server in the cloud, called base band unit (BBU),
and transmits the generated digitized IQ samples to the remote
radio unit, i.e. the transmitter, via the fronthaul link [1], [2].
This architecture implies that the physical layer including
the baseband processing and network layer functionalities are
moved to the BBU [3]. A fully-centralized solution offers
high flexibility, low maintenance and operational costs. On the
other hand, the fronthaul link should have a large bandwidth
to transport the high resolution IQ samples generated by the
BBU, and may become the bottleneck of such an architecture.
Optical fiber offers a large bandwidth and can be a natural
solution for IQ transportation, but with the drawback of very
high cost though. Hence, IQ data compression before their
transmission over the capacity-constrained fronthaul link is an
interesting approach to reduce the data rate over the fronthaul
link for the C-RAN architecture.

Several data rate compression techniques have recently been
investigated, each of them presenting a trade-off between
the achievable compression performance, design complexity,
computational delay, and signal distortion [4]. Quantization
and entropy coding are significant approaches in compressing
the data rate over the fronthaul link. In [5], non-uniform quan-
tization based on an iterative gradient algorithm was proposed.

Lloyd-based non-uniform quantizer and entropy coding were
used in [6] to exploit the temporal characteristics of the signal.
Vector quantization was studied in [7] to efficiently exploit
the correlation between samples for an improved compression
rate. However, this gain was at the cost of much higher
computational complexity compared to scalar quantization.

On the other hand, the high Peak to Average Power Ratio
(PAPR) of the Orthogonal Frequency Division Multiplexing
(OFDM) signal remains a major drawback in the imple-
mentation of the OFDM system. Many dedicated algorithms
were introduced in the literature to reduce the PAPR of the
signal. In this paper, we are interested in clipping, the most
straightforward PAPR reduction technique despite being a
distortion approach itself [8].

At the output of the IFFT modulator, OFDM samples are
generally assumed to be Gaussian distributed, thanks to the
central limit theorem, and hence quantization and entropy
coding techniques are optimized on this basis. However,
implementing a PAPR reduction technique changes the IQ
samples distribution. To the best of the authors knowledge, no
studies on the robustness of the Gaussian-optimized quantizer
have been performed considering any of the PAPR reduction
procedures before compression or optimizing the compression
techniques based on the distribution induced by the PAPR
reduction.

Thus, our contribution in this paper can be summarized as
follows. First, the distribution of the clipped IQ samples is de-
rived, taking into account that the clipping is performed at the
amplitude of the signal. The obtained IQ distribution is further
exploited to optimize the compression blocks, i.e. quantizer
and entropy coding, and to obtain a closed-form expression
of the modulation error ratio (MER), hereby modeling the
joint effect of the clipping and quantization operations. Then,
we show through numerical simulations that the compression
techniques optimized for Gaussian distribution are not optimal
when applied to clipped samples and better performance on
the MER can be obtained when using a quantizer optimized
with the true distribution of clipped samples.

The rest of the paper is organized as follows. Section II
describes the system model. Section III details the analytical
study of the clipped signal IQ distribution and the derivation
of the MER. In Section IV, we present numerical simulations
that evaluate the accuracy of our theoretical findings and
emphasize the gain in system MER performance achieved by



Figure 1. Downlink system model of a C-RAN system.

clipped optimized compression techniques. Finally, Section V
concludes the paper.

II. SYSTEM MODEL

The downlink OFDM transmission chain is considered
as depicted in Fig. 1, with Nfft subcarriers and M -QAM
modulation. IQ samples are clipped in order to reduce PAPR
and they are compressed before being transmitted through the
fronthaul link. After the IFFT block, s ∈ CNfft×1 represents
the complex OFDM signal expressed as

s(k) =
1√
Nfft

Nfft−1∑
n=0

s̃(n)e
j2πk n

Nfft , ∀ k = [1, . . . , Nfft]

(1)
where, s̃ = [s̃(0), · · · , s̃(Nfft − 1)] ∈ CNfft×1 is a vector
of QAM symbols modulating the subcarriers. The vector zin

contains the clipped IQ samples before the compression and
zout after the decompression. For Nfft sufficiently large, the
real and imaginary parts of a complex sample s(k), ∀k ∈
{1, · · · , Nfft}, denoted by xs(k) = Re(s(k)) and ys(k) =
Im(s(k)), respectively, are zero-mean Gaussian distributed.
Hence, the magnitude rs(k) = |s(k)| is Rayleigh distributed
and the phase θs(k) = ∠s(k) is uniformly distributed in
[−π, π].

A. Clipping PAPR Reduction Technique

Clipping consists in limiting the high amplitude peaks of the
signal to a certain threshold Vmax without affecting the phase
of the signal. It is a widely used PAPR reduction technique
due to its high simplicity and reduction gain. The clipped time
domain signal zin(k) is

zin(k) =

{
s(k), if |s(k)| < Vmax

Vmaxe
jθs , if |s(k)| ≥ Vmax.

(2)

The amplitude of the signal at the input of the clipper is
distributed as

fRs(r) =
r

σ2
s

e
− r2

2σ2
s , r ∈ [0, +∞[ (3)

where Rs and σs are the random variable (RV) representing
the amplitude of the input signal and its standard deviation,
respectively. Clipping is applied on the signal amplitude as in
(2) and it modifies the amplitude distribution such as [9]

fRin(r) =

{
fRs(r), if r < Vmax

e−Λδ(r − Vmax), if r = Vmax

(4)

where Rin is the RV representing the amplitude of the
signal after clipping. δ(r) is the Dirac distribution, e−Λ is
the probability that the amplitude of s exceeds Vmax, i.e.∫∞
Vmax

fRs(r)dr = e−Λ, and Λ =
V 2

max

2σ2
s

is the clipping ratio.
Despite the simplicity of the clipping technique, it causes
potentially high signal distortions.

B. Compression Techniques

a) Scalar Quantization: Each IQ sample is quantized
to one of the N quantization levels, each represented over
R bits. Scalar N -level non-uniform quantizer (NUQ) can be
optimally designed for a given distribution of samples in the
Minimum Mean Square Error (MMSE) sense based on the
well known Lloyd algorithm (LA) [10]. According to LA,
decision thresholds ti, ∀ i = [1, · · · , N − 1] are

ti =
qi + qi+1

2
, (5)

where, t0 and tN are set to the minimum and maximum
possible values of the signal, respectively. Quantization levels
qi, ∀ i = [1, · · · , N ], are the centroid of each decision region,
e.g. for the in-phase component

qi =

∫ ti
ti−1

xfX(x)dx∫ ti
ti−1

fX(x)dx
, (6)

where fX(x) is the Probability Density Function (PDF) asso-
ciated to the in-phase component x(k) = Re(zin(k)), ∀k, of
the clipped signal.

b) Entropy Coding: Entropy Coding (EC) is a loss-
less compression technique, where additional compression is
gained by eliminating the redundancy from the distribution of
the quantization levels. A large number of bits is used to repre-
sent levels with a low probability of occurrence while a lower
number of bits for the levels of higher probability. Huffman
coding [11] is the most practical EC technique approaching the
Shannon’s lossless source coding theorem. Thus, the average
codeword length assigned to the ith quantization level is

Lqi = −log2

∫ ti

ti−1

fX(x)dx. (7)

C. Performance Metrics

Rate R and MER are the metrics used to evaluate the
performance of the studied model. R is defined as the average
number of bits required to represent a single IQ sample. MER
indicates the distortion experienced by the signal and gives
a figure of merit for system performance by comparing the
actual location of a received sample to its ideal location. It is
defined as the ratio between the power of the original signal
over the distortion introduced to the original signal. Therefore,
the MER of the decompressed signal zout is expressed as
follows:

MER =
E
[
|S|2

]
E [|S − Zout|2]

, (8)

with E(.) is the expectation operator, S and Zout are the RV
representing the IQ samples before the compression and after



decompression, respectively. Through our analysis, signal to
quantization noise ratio (SQNR) will be the metric used to
evaluate the performance of the compression techniques, i.e.
of the quantizer, since EC is distortion-less. In that case, zin

will be considered as the reference signal and SQNR is defined
as

SQNR =
E
[
|Zin|2

]
E [|Zin − Zout|2]

, (9)

where Zin is the RV representing the clipped samples.

III. ANALYTICAL STUDY OF THE OPTIMIZED
COMPRESSION TECHNIQUES FOR A CLIPPED SIGNAL

In this section, we first derive the distribution of the
clipped IQ samples, i.e. fX(x) and fY (y) for the In-phase and
Quadrature-phase parts, respectively. Second, we derive the
parameters of the NUQ and EC blocks for the new distribution
of the signal with reduced PAPR. Finally, based on the derived
IQ distribution, we provide both MER and SQNR closed-
form expressions for system evaluation considering clipping
and quantization distortions.

A. Distribution of the Clipped IQ samples
As reminded in II-A, clipping modifies the signal ampli-

tude without affecting the phase. Thus, ∀k ∈ {1, · · ·Nfft},
rin(k) = |zin(k)| and θin(k) = ∠zin(k) are samples drawn
from two independent random variables, i.e. Rin and Θin,
respectively. Hence, the joint PDF of (Rin,Θin) is the product
of the marginal PDFs, i.e. fRin,Θin(r, θ) = fRin

(r)fΘin
(θ),

which yields:

fRin,Θin(r, θ) =

 r
2πσ2

s
e
− r2

2σ2
s , if r < Vmax

e−Λ

2π δ(r − Vmax), if r = Vmax

(10)

The conversion from polar to Cartesian coordinates of the
complex samples is such that (x, y) = ϕ(r, θ) with:

x = r cos θ r =
√
x2 + y2

y = r sin θ θ = ϕ−1
2 (x, y) ,

(11)

where, ϕ is the one-to-one mapping defined from the set
D = [0, Vmax] × [−π, π] to ∆ = ]−Vmax, Vmax[

2, and
ϕ−1

2 : ]−Vmax, Vmax[
2 7−→ [−π, π] with:

ϕ−1
2 (x, y) =



tan−1
(
y
x

)
, if x > 0

tan−1
(
y
x

)
− π, if x < 0, y < 0

π − tan−1
(
y
x

)
, if x < 0, y ≥ 0

π/2 if x = 0, y > 0.

−π/2 if x = 0, y < 0.

(12)

According to the change of variables Theorem, the joint PDF
of the couple (X,Y ) is

fX,Y (x, y) = |J(x, y)|fRin,Θin
(r(x, y), θ(x, y)) , (13)

where |J(x, y)| is the module of the Jacobian of the mapping
ϕ computed as

|J(x, y)| =

∣∣∣∣∣
∣∣∣∣∣ ∂r∂x ∂r

∂y
∂θ
∂x

∂θ
∂y

∣∣∣∣∣
∣∣∣∣∣ =

1√
x2 + y2

, ∀ (x, y) 6= (0, 0)

(14)

Thus, substituting (10) and (14) into (13), the marginal PDF
of the Cartesian coordinate RV is obtained as

fX(x) =

∫ Vmax

−Vmax

(
1

2πσ2
s

e
− x

2+y2

2σ2
s

+
e−Λ

2π
√
x2 + y2

δ
(√

x2 + y2 − Vmax

))
dy. (15)

Finally, using the integral identity in [12, eq. (1), Sec. 3.321,
p. 336] and adequately rearranging the terms leads to the
following distribution of the In-phase component fX(x)1, i.e.

fX(x) =
1√

2πσ2
s

e
−−x2

2σ2
s erf

(
Vmax√

2σ2
s

)

+
e−Λ

2π

1√
Vmax

2 − x2
, x ∈ ]−Vmax, Vmax[ (16)

where erf(u) = (2/
√
π)
∫ u

0
exp(−t2)dt is the error function.

From this distribution, it comes that without clipping, i.e. when
Vmax → ∞ and thus Λ → ∞, the second term vanishes and
the error function tends to one. This ends with the zero-mean
Gaussian distribution of the OFDM signal, which is expected
from the elimination of the clipping distortion effect.

B. Derivation of Optimized Quantizer and EC Parameters
Based on the PDF of the clipped IQ samples given in (16),

the codebook quantization levels for the real and imaginary
parts can be derived by injecting (16) into (6) using adequate
variable changes along with the integral identity in [12, eq.
(1), Sec. 3.321, p. 336]. This yields,

qi =

σs√
2π

erf
(
Vmax√

2σs

)[
e
−
t2i−1

2σ2
s − e−

t2i
2σ2
s

]
+ e−Λ

2π

[√
V 2

max − t2i−1 −
√
V 2

max − t2i
]

erf
(
Vmax√

2σs

) [
Q
(
ti−1

σs

)
−Q

(
ti
σs

)]
+ e
− Λ

2σ2
s

[
arcsin

(
ti−1

Vmax

)
− arcsin

(
ti

Vmax

)]
, (17)

where Q(u) = (1/
√

2π)
∫∞
u

exp(−v2/2)dv is the Q-function.
Decision thresholds are the mid-points between quantization
levels according to (5). The quantizer is followed by the
entropy coder where the average codeword length assigned to
a quantization level is derived for the clipped IQ PDF based
on (7) as:

Lqi = −log2

(
erf
(
Vmax√

2σs

)[
Q

(
ti−1

σs

)
−Q

(
ti
σs

)]
+e
− Λ

2σ2
s

[
arcsin

(
ti−1

Vmax

)
− arcsin

(
ti

Vmax

)])
.

(18)
Without clipping, i.e. when Vmax →∞ and thus Λ→∞, the
error function tends to one and the exponential term tends to
zero in (17) and (18) and we end up with the parameters of
a quantizer and an entropy coder optimized for a zero-mean
Gaussian distribution analyzed in [13].

1The distribution of the quadrature-phase component, fY (y), derives from
the same steps.



C. Derivation of Asymptotic MER and SQNR

MER in (8) can be shown to be equal to

MER =
E
[
|S|2

]
E [|S − Zout|2]

=
Ps

DC +DQ
, (19)

where Ps = 2σ2
s is the power of a complex Gaussian dis-

tributed signal with standard deviation σs, DC and DQ are the
power of clipping and quantization distortions, respectively,
which are considered as statistically independent [14].

Let us first derive the clipping distortion DC which can be
calculated as follows:

DC = E
[
|S − Zin|2

]
= E

[
(Rs −Rin)2

]
, (20)

Expanding the expectation operator and taking the clipping
definition (2) into consideration leads to

DC = E
[
(Rs −Rin)2

]
=

∫ ∞
Vmax

(rs − Vmax)2fRs(r)dr. (21)

After expanding the squared term and using the integral
identity in [12, eq. (9), Sec. 3.381, p. 346], Dc can be
expressed as:

DC =2σ2
sΓ

(
2,
V 2

max

2σ2
s

)
− 2

3
2σsVmaxΓ

(
3

2
,
V 2

max

2σ2
s

)
+ V 2

maxe
−V

2
max
2σ2
s , (22)

where, Γ(u, v) =
∫∞
v
e−ttu−1dt is the upper incomplete

Gamma function. On the other hand, the asymptotically rate-
distortion function for a non-uniform scalar quantizer is de-
rived in terms of the quantizer input signal PDF and number
of quantization levels N in [15] and known as "Panter and
Dite formula":

D(R) ∼ 2−2R

12

(∫ ∞
−∞

3
√

fX(x)dx

)3

. (23)

As shown previously in III-A, the in-phase and the quadrature-
phase of a clipped complex signal at the input of the quantizer
are identical. Thus, the quantization distortion is the same on
both components, and for complex samples can be derived as

DQ =
2−2R

6

(∫ ∞
−∞

3
√

fX(x)dx︸ ︷︷ ︸
I

)3

. (24)

The evaluation of (24) using the PDF of the clipped IQ samples
given in (16) leads to the following integral derivation,

I =

∫ Vmax

−Vmax

(
1√

2πσs
e−

−x2

2σ2 erf
(
Vmax√

2σs

)

+
e−Λ

2π

1√
Vmax

2 − x2

) 1
3

dx

(25)

Let us assume the following notations

a =
1√

2πσs
erf
(
Vmax√

2σs

)
, b =

1

2σ2
s

, and c =
e−Λ

2π
(26)

Thus, using the generalized Newton binomial theorem [16], I
can be developed as

I =

∫ Vmax

−Vmax

∞∑
k=0

( 1
3

k

)(
ae−bx

2
) 1

3−k
(

c√
V 2

max − x2

)k
dx

=

∞∑
k=0

( 1
3

k

)∫ Vmax

−Vmax

(
ae−bx

2
) 1

3−k
ck(√

V 2
max − x2

)k dx,
(27)

where
(
r
k

)
, is the generalized binomial coefficient defined as(

r
k

)
= (r)k

k! , and (r)k =
∏k−1
n=0(r − n), is the falling factorial.

Rearranging the terms in I leads to

I =

∞∑
k=0

( 1
3

k

)
cka

1−3k
3

∫ Vmax

−Vmax

e−
b(1−3k)

3 x2(√
V 2

max − x2
)k dx

︸ ︷︷ ︸
I1

. (28)

Thus, with proper variable substitution along with the integral
property in [12, eq. (1), Sec. 3.383, p. 347], I1 is solved as

I1 =
1

b
1−k

2

[
B

(
2− k

2
,

1

2

)(
dV 2

max

) 1−k
2

× 1F1

(
1

2
;

3− k
2

;−dV 2
max

)]
with, k ≤ 1,

(29)
where d = b(1−3k)

6σ2 , B(u, v) = 2
∫ 1

0
t2u−1(1 − t2)v−1dt is

the Beta function, and 1F1 is the confluent hyper geometric
function. Finally, substituting I1 into I , filling I into (24), and
with further simplification of the expression, DQ can finally
be expressed as follows:

DQ =
2−2R

6

[
2 3
√
aVmax√
6bσs

1F1

(
1

2
;

3

2
;
−V 2

max

6σ2
s

)
+
−26cVmax

25
√

3
3
√
a2σs

1F1

(
1

2
; 1;

V 2
max

3σ2
s

)]3

.

(30)

Finally, it comes that the MER depends only on the input
signal standard deviation σs, clipping amplitude threshold
Vmax, and the number of bits per sample R.

SQNR allows to assess the distortion caused by the quan-
tizer only and it expresses as

SQNR =
E
[
|Zin|2

]
E [|Zin − Zout|2]

=
Pzin
DQ

, (31)

with DQ given by (30). Pzin is the power of a complex clipped
IQ sample, computed with the distribution in (16), i.e.

Pzin = 2

∫ Vmax

−Vmax

x2fX(x)dx. (32)

Using the integral identity in [12, eq. (5), Sec. 3.321, p. 336]
for the exponential function, Pzin is expressed as

Pzin =
2σ2

s√
π

erf
(
Vmax√

2σs

)[√
π

2
erf
(
Vmax√

2σs

)
− Vmax√

2σs
e
−V

2
max
2σ2
s

]

+
V 2

max

4
e
−V

2
max
2σ2
s . (33)



Figure 2. SQNR vs clipping ratio of a Gaussian quantizer applied on a clipped
signal (dashed lines) w.r.t. the number of bits.

Figure 3. Simulated and analytical PDF of clipped PAPR-reduced IQ samples
for different clipping ratios.

IV. SIMULATION RESULTS AND ANALYSIS

Through our simulations an 8-MHz DVB-T2 frame structure
with 32K FFT mode is considered. We use 103 randomly
generated OFDM symbols with 32768 subcarriers conveying
64-QAM modulation symbols.

A. Gaussian Quantizer Performance Evaluation

Our goal is to assess the robustness of Gaussian-optimized
compression techniques when applied to a clipped signal. The
results are given thanks to the SQNR in order to emphasize
the effect of the quantization block.

Fig. 2 shows the simulated SQNR as a function of the
clipping ratio Λ for different resolutions. The solid lines
represent the optimal performance of the Gaussian quantizer
applied on a Gaussian signal. The dashed lines represent the
SQNR obtained when the Gaussian quantizer is applied on the
clipped IQ samples. We first conclude that using a Gaussian
quantizer on a clipped signal causes a severe degradation
on SQNR. Furthermore, the performance loss increases as
the resolution of the quantizer increases, i.e. as R increases.
Finally and as expected from (16), the higher the clipping

Figure 4. Simulated and analytical MER vs clipping ratio of optimized
compression techniques for different resolutions.

threshold Λ, the smaller the performance loss. This is due to
the convergence of the distribution of clipped IQ samples to a
zero-mean Gaussian distribution when the clipping threshold
is increased, as shown in Fig. 3 from left to right. Thus,
the SQNR curves reach a constant ceiling at high clipping
thresholds.

B. Validity of the MER Expression

In the first place, we validate the obtained clipped IQ
samples distribution in Fig. 3 for different clipping ratios
of 2.6 dB, 4.5 dB, and 7 dB respectively. The analytical
curves perfectly match the simulated ones which proves the
consistency and accuracy of the obtained IQ PDF.

Fig. 4 shows the analytical and simulated MER in function
of the clipping ratio Λ for different resolutions. The analytical
expression of MER perfectly matches the simulation results
at high resolutions, i.e. R ≥ 4, due to the accuracy of
the asymptotic quantization distortion formula in (23) [17].
Moreover, the difference between the theoretical and simulated
MER does not exceed 0.25 dB at low resolution, which
validates the proposed MER expression.

C. Comparison of Gaussian and Optimized Quantizers

Fig. 5 shows MER results for both Gaussian and clipped
optimized compression techniques, i.e. quantizer and EC,
obtained from the proposed analytical study as a function of
the clipping ratio Λ for different resolutions. First of all, MER
increases when increasing the clipping ratio and at high clip-
ping ratio only the quantization distortion affects the system
performance. Second, the higher the clipping ratio, the closer
the signal approaches the zero-mean Gaussian distribution.
Thus, the two types of compression techniques merge to reach
a ceiling, which corresponds to the MER obtained when only
the quantization distortion of a Gaussian-distributed signal at
certain rate is considered. This explains the 6-dB gap between
different rates at high clipping ratios and verifies the famous
6-dB quantization rule [17].

Finally, we observe that using optimized compression tech-
niques on a clipped PAPR-reduced signal produces an im-



Figure 5. MER of Gaussian and optimized compression techniques vs clipping
ratio for different resolutions.

Figure 6. Clipping PAPR-reduction and Gaussian quantizer MSEs vs clipping
ratio for different resolutions.

provement in MER performance at low resolutions and low
clipping ratios, i.e. for a highly clipped signal. However,
the improvement compared to purely Gaussian compression
techniques decreases when resolution increases, reaching ap-
proximately about 0.02 dB when using on average 7 bits
per IQ sample. This could be explained by exploring Fig. 6,
which shows the clipping and Gaussian quantizer distortions
separately for different resolutions. It can be observed that
although the quantizer is not optimized for the clipped input
signal, the quantization distortion is negligible compared to
the clipping distortion at high rates. This is because large
number of quantization levels in a finite quantization region
effectively reduces the quantization distortion to almost 0.006
even if it is not an optimized quantizer. Thus, in both cases,
clipping distortion becomes the only dominant fixed distortion
compared to quantization distortion.

V. CONCLUSION

In this paper, we have studied the effect of reducing the
PAPR of an OFDM signal using clipping before the com-
pression in a C-RAN architecture. First, the distribution of
the clipped IQ samples has been derived. This allowed to

optimize the codebook levels of a non-uniform quantizer and
the average number of bits used in a Huffman encoder. More-
over, a closed-form expression for MER has been provided
taking into account the joint effect of clipping and quantization
operations. Simulation results emphasized the validity of our
findings and showed that the Gaussian-optimized quantizer is
not quite robust when applied to a clipped signal, especially in
the low-rate quantization region. However, this gain has been
shown to significantly decrease in the high-rate region.
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