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Abstract. Sound morphing stands out among the sound transformation
techniques in the literature due to its creative and research potential. The
aim of sound morphing is to gradually blur the categorical distinction
between the source and target sounds by blending sensory attributes.
As such, the focus and ultimate challenge of most sound morphing tech-
niques is to interpolate across dimensions of timbre perception to achieve
the desired result. There are several sound morphing proposals in the lit-
erature with few open-source implementations freely available, making it
difficult to reproduce the results, compare models, or simply use them in
other applications such as music composition, sound design, and timbre
research. This work describes how to morph musical instrument sounds
with the sinusoidal model using the sound morphing toolbox (SMT), a
freely available and open-source piece of software. The text describes the
audio processing steps required to morph sounds with the SMT using a
step-by-step example to illustrate the need for and the result of each step.
The SMT contains implementations of a sound morphing algorithm in
MATLAB ® that were designed to be as easy as possible to understand
and use, giving the user control over the result and full customization.

Keywords: Sound morphing · Musical instruments · Sinusoidal model
· Musical timbre.

1 Introduction

Sound morphing has found creative, technical, and research applications in
the literature. In music composition, sound morphing allows the exploration
of the sonic continuum [32]. Notable examples include Jonathan Harvey’s Mor-
tuos Plango, Vivos Voco [18], Michael McNabb’s Dreamsong [22], and Trevor

? This project has received funding from the European Union’s Horizon 2020 research
and innovation program under the Marie Sk lodowska-Curie grant agreement No
831852 (MORPH)

https://www.prism.cnrs.fr/
https://www.cirmmt.org/


2 M. Caetano

Wishart’s Red Bird [32]. These morphs were achieved by hand. Ideally, given the
input sounds, sound morphing should allow automatically setting input param-
eters that control the morph to achieve the desired result [28]. Sound morphing
is also used in audio processing, sound synthesis, and sound design. Tellman et
al. [30] proposed a sound morphing technique based on sinusoidal modeling (SM)
that is intended to improve the performance of a sample-based synthesizer by
morphing between sounds of the same instrument to obtain intermediate pitches,
dynamics, and other effects. Fitz et al. [12] use an SM called Loris to morph
sounds. Sound morphing techniques have been used to investigate different as-
pects of timbre perception. Grey and Gordon [16] investigated the perceptual
effect of exchanging the shape of the spectral energy distribution between pairs of
musical instrument sounds. More recently, Carral [10] used spectral morphing to
determine the just noticeable difference in timbre for trombone sounds. Sieden-
burg et al. [27] investigated the acoustic and categorical dissimilarity of musical
timbre with morphing. However, these results are difficult to reuse, re-purpose,
and build upon because seldom do we find freely available or open-source imple-
mentations of the morphing algorithms used in the literature.

Currently, there are commercial morphing implementations available, such
as Symbolic Sound’s Kyma 3, SoundMorph’s Time Flux 4, Melda Production’s
MMorph 5, and Zynaptic’s Morph 6. These commercial products typically have
stable and bug-free implementations that can be controlled via a graphical user
interface (GUI). However, besides the price, disadvantages such as little flexibil-
ity (i.e., control) and scarce technical information prevent their wider adoption
in academic circles. A notable exception is Kyma, an implementation of the
SM dubbed Loris [12] integrated in a full-fledged sound design environment.
However, composers and researchers alike need to be able to understand the al-
gorithms employed and control several parameters of the transformation. There
also exist closed-source implementations based on algorithms whose technical
details can be found in publications. Ircam’s Diphone Studio 7 uses the SM to
morph between sounds. Trevor Wishart’s Sound Loom 8 also allows morphing
sounds. These are controlled via a GUI and the manuals typically contain little
technical information because composers are the target user.

There are freely available open-source morphing implementations, such as
Google Magenta’s NSynth 9, Mike Brookes’s Voicebox 10, and Hideki Kawahara’s
STRAIGHT 11 and SparkNG 12. However, these find limited use in musical in-
strument sound morphing. NSynth uses a neural network synthesizer trained on

3 http://kyma.symbolicsound.com/
4 https://www.soundmorph.com/product/24/timeflux
5 https://www.meldaproduction.com/MMorph
6 http://www.zynaptiq.com/morph/
7 http://anasynth.ircam.fr/home/english/software/diphone-studio
8 http://www.trevorwishart.co.uk/slfull.html
9 https://magenta.tensorflow.org/nsynth-instrument

10 http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html
11 https://github.com/HidekiKawahara/legacy STRAIGHT
12 https://github.com/HidekiKawahara/SparkNG
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Fig. 1: Overview of the morphing procedure in the SMT

a dataset with sounds from commercial sample libraries instead of recordings
from acoustic musical instruments. Voicebox, STRAIGHT, and SparkNG were
optimized for speech and their performance with musical instrument sounds re-
mains untested. Dedicated sound models usually perform poorly on other acous-
tic sources.

This article describes the sound morphing toolbox (SMT), which contains
MATLAB ® implementations of modeling and transformation algorithms used
to morph musical instrument sounds. The SMT is open-source and freely avail-
able 13, making it highly flexible, controllable, and customizable by the user.
The contribution of this work is the use of a practical example to illustrate the
audio processing steps in the SMT to less technically inclined users (such as
composers or researchers without the technical background) so these users un-
derstand the impact of technical decisions (i.e., parameter values) in the final
result. This manuscript is an extended version of [7] presented at CMMR 2019 14.
The figures have been updated along with the text to provide more detailed in-
formation about the SMT and the algorithms within. The next sections take
the reader through the audio processing steps involved in morphing with the
SMT, which are illustrated with figures and citations to the reference implemen-
tations. Section 2 presents an overview of the SMT and the source and target
sounds used throughout the rest of the text. Section 3 shows the time-scaling
algorithm, Section 4 describes the sinusoidal model used, Section 5 describes pa-
rameter interpolation, followed by resynthesis in Section 6 and finally morphing
in Section 7.

2 Overview

Figure 1 shows an overview of sound morphing with the SMT. Figure 1 (a) shows
the general morphing procedure and Fig. 1 (b) shows the audio processing steps

13 https://github.com/marcelo-caetano/sound-morphing
14 https://cmmr2019.prism.cnrs.fr/
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in the SMT. The SMT automatically morphs between a source sound S and a
target sound T by setting the morphing parameter α that varies between 0 and 1.
Only S is heard when α = 0, whereas only T is heard when α = 1. Intermediate
values of α correspond to morphed sounds M with different combinations of S
and T . For example, setting α = 0.5 produces a morph that is halfway between S
and T . Fig. 1 (a) shows that, firstly, S and T are modeled to obtain a parametric
representation Š and Ť . Next, correspondence between Š and Ť is established,
followed by interpolation and resynthesis.

In Fig. 1 (b), we see a representation of the audio processing operations
behind these steps in the SMT. First, both S and T are time-scaled to the same
duration. Next, the SMT performs sinusoidal analysis of Š and Ť , producing
the sets of parameters {AS , fS} and {AT , fT }, namely, the amplitudes A and
frequencies f of the sinusoids corresponding to Š and Ť . Correspondence in the
SMT requires partial tracking and only the harmonics are interpolated because S
and T are assumed to be nearly harmonic musical instrument sounds. The SMT
establishes correspondence between harmonics of the same order and interpolates
the amplitudes A and frequencies f using α to obtain {AM , fM}, which are used
to synthesize the morphed sound M .

2.1 Source and Target Sounds

In what follows, the signal processing steps in the SMT corresponding to Fig. 1 (b)
are explained and illustrated with an example for α = 0.5. Figure 2 shows S on
the left column and T on the right column used throughout the rest of the text.
The top row of Fig. 2 shows the waveforms, the middle row shows the spec-
trograms, and the bottom row shows a zoomed-in segment of the waveform to
highlight the periodicity of S, a C#3 note played forte on an accordion, and
of T , a C3 note played fortissimo on a tuba. The text contains instructions to
listen to sounds corresponding to specific figures. Listen to source orig.wav for
Fig. 2 (a) and to target orig.wav for Fig. 2 (b).

3 Time-Scale Modification (TSM)

The first step is to use time-scale modification (TSM) [11] to establish temporal
correspondence between S and T , which simply guarantees that both have the
same duration. In the SMT, the TSM algorithm implemented is synchronized
overlap-add with fixed synthesis (SOLA-FS) [19]. SOLA-FS uses local waveform
similarity with an adaptable analysis step and a fixed synthesis step (see [19]
for details). Figure 3 illustrates the result of performing TSM with the SOLA-
FS algorithm by comparing the original waveforms against two transformations,
namely a time stretch by a factor of two and a time compression by the same
factor, which can be expressed as 1/2. The purpose of Fig. 3 is to show that
the waveforms are preserved whether the duration is doubled or halved. More
importantly, with the exception of the sound duration and other time-varying
attributes such as the attack time, tremolo and vibrato, the overall sound quality
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Fig. 2: Source (Accordion C#3 forte) and Target (Tuba C3 fortissimo) sounds
used throughout the text to exemplify the audio processing steps in the SMT.
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Fig. 4: Time-scaled versions Š of the source sound and Ť of the target sound.

is preserved after the transformations. Listen to the sounds source tsm2X.wav
and target tsm2X.wav for the doubled sounds, and source tsm05X.wav and tar-
get tsm05X.wav for the halved sounds.

In the SMT, the morphing parameter α sets the final duration of the morphed
sound (see [6] for details). Here, α = 0.5 so the duration of M will be halfway
between that of S and T , as shown in Fig. 4. Figures 4 (a) and 4 (b) show Š and
Ť respectively, which are S and T time-scaled. Note that the duration of both Š
and Ť is the same. Listen to source tsm alpha.wav and target tsm alpha.wav and
compare with the original sounds. The next step is to use sinusoidal modeling
(SM) to represent the oscillatory modes of Š and Ť .

4 Sinusoidal Modeling (SM)

Currently, the SMT represents musical instrument sounds with the SM, which
models a waveform as a sum of time-varying sinusoids parameterized by their
amplitudes A, frequencies f , and phases θ [21,26]. The time-varying sinusoids,
called partials, represent how the oscillatory modes of the musical instrument
change with time, resulting in a flexible representation with perceptually mean-
ingful parameters. The parameters completely describe each partial, which can
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be manipulated independently. So the original waveform is represented by the
set of time-varying A, f , and θ for each partial, greatly reducing the amount
of information required to represent it. The estimation of parameters is called
sinusoidal analysis and the process of recreating a waveform from the param-
eters of sinusoidal analysis is called sinusoidal resynthesis. After the analysis
step, sound transformations can be performed as changes of the parameter val-
ues prior to resynthesis. In what follows, the mathematical formalization of the
SM is described.

The waveform of a sound is represented as s (n), where n is the sample index
and there are L samples in total. Then, sound s (n) is divided into frames with
a window function w (n) with D samples, so D is the length of the frame and
usually D ≤ L. Inside each frame m, the waveform s (n,m) = w (n−m) s (n)
is s (n) seen through w (n−m), where m is the integer number of samples by
which the center of the window w (n) is shifted. The SM [21,26] assumes that,
inside each frame m, s (n,m) can be modeled as

s (n,m) = w (n−m)

Q∑
q=1

Aq (n,m) cos θq (n,m) + e (n,m) , (1)

where Q is the number of sinusoids, Aq (n,m) is the time-varying amplitude and
θq (n,m) is the time-varying phase of sinusoid q, and e (n,m) is the modeling
error or residual. Assuming that s (n,m) is relatively stationary inside each
frame m, eq.(1) can be written as

s (n,m) = w (n−m)

Q∑
q=1

Aq cos (ωq n+ φ) + e (n,m) , with ωq = 2π
fq
fs
, (2)

where fq is the frequency in Hz and fs is the sampling frequency in samples per
second. Therefore, inside stationary frames, each time-varying sinusoid q can be
approximated by a stationary sinusoid with constant amplitude Aq and linear
phase ωqn+ φ.

4.1 Sinusoidal Analysis

The aim of sinusoidal analysis is to use a set of time-varying sinusoids to represent
the waveforms Š and Ť when added together (hence the name additive synthe-
sis [29]). In the SMT, sinusoidal analysis uses spectral modeling [21,26], which
comprises peak picking and parameter estimation. Prior to sinusoidal analysis,
the short-time Fourier transform (STFT) is calculated as the discrete Fourier
transform (DFT) of each frame m of s (n,m) [24]. For each of these frames, the
peaks of the magnitude spectrum (peak picking) are associated with underlying
sinusoids whose parameters are estimated (parameter estimation) and later con-
nected across frames in the partial tracking step. The DFT s (n,m) from eq.(2)
is

S (k,m) =

Q∑
q=1

AqW (ωk − ωq) + E (ω) , (3)
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where W (ωk) is the DFT of the window w (n) and E (ω) is the DFT of the
modeling error e (n,m). Therefore, in the frequency domain, each sinusoid ap-
pears as the DFT of the window w (n) scaled in amplitude by Aq and shifted in
frequency by ωq. The magnitude of W (ωk) has a main lobe used to estimate Aq
and ωq and side lobes that introduce spectral distortion and estimation bias [17].

An important requirement to estimate Aq and ωq using eq. (3) is spectral
resolution [17,26]. Spectral resolution is the requirement that each individual
sinusoid appear as an independent spectral peak. Two sinusoids with frequencies
f1 and f2 can be individually resolved in the magnitude spectrum if the frame
size D obeys

D ≥ B fs
f1 − f2

, (4)

where D is the length of the analysis window in samples, fs is the sampling
frequency in samples per second, and B is the bandwidth of the window, or
simply the width of the main lobe in samples (see [17] for more information and
tabulated values for several commonly used analysis windows). In practice, D
must be large enough to ensure spectral resolution. Nearly harmonically related
sinusoids have the property that fh ≈ hf0, where f0 is the fundamental frequency
in Hertz and h is an integer that defines the partial number. Thus, adjacent
harmonics are separated by f0 and the condition in eq. (4) becomes

D ≥ Bfs
f0
. (5)

For the Hann window, B = 4 bins [17]. In the SMT, the fundamental
frequency f0 is estimated with SWIPE [9]. In the example, C3≈ 131 Hz and
C#3≈ 138 Hz and fs = 44.1 kHz, so D = max{1279, 1347} samples. The size of
the DFT was N = 2048 (the power of two immediately greater than D, achieved
by zero padding), and the hop size H = D/2 (50% overlap).

Peak Picking In practice [21,26], Aq and ωq are estimated from peaks in the
magnitude spectrum |S (k)|, where the frame index m has been omitted to sim-
plify the notation. A peak is a local maximum of the magnitude spectrum [26],
defined as a sample of the DFT spectrum whose magnitude is greater than both
its immediate neighbors. At DFT bin k, |S (k)| is a peak if |S (k − 1)| < |S (k)| >
|S (k + 1)|. Figure 5 illustrates the peak-picking algorithm in the SMT [21,26].
The top row shows the spectrogram of Š and Ť and the bottom row shows the
position of the spectral peaks (i.e., their frequencies f) as dots on top of the
spectrogram. Inside each frame m, the SMT returns the Pmax spectral peaks
with the highest amplitude, so Pmax sets the maximum number of peaks per
frame. In Fig. 5 (c) and Fig. 5 (d), Pmax = 80.

Peak Selection After peak picking, the information used to represent the mag-
nitude of the STFT is greatly reduced from N frequency bins per frame to
Pmax = 80 peaks per frame. This can be visually confirmed by comparison of
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(a) Spectrogram. (b) Spectrogram.

(c) Peak picking. (d) Peak picking.

Fig. 5: Illustration of the peak picking algorithm.

Fig. 5 with Fig. 6. The spectrogram shown in Fig. 5 (a) and Fig. 5 (b) is re-
duced to the spectral peaks shown in Fig. 6 (a) and Fig. 6 (b) as the peak
frequencies f with their corresponding amplitudes A. The spectrogram of Fig. 5
illustrates the magnitude of the STFT. When both the magnitude and the phase
(or equivalently the real part and the imaginary part) of the STFT are used,
the STFT can be inverted to recover the original waveform (i.e., the forward
and inverse STFT form an identity transform pair [24]). When only the spec-
tral peaks are kept, the rest of the information is lost. Fig. 6 only illustrates
the peaks of the magnitude spectrum, but Sec. Parameter Estimation below
explains how the corresponding phase values are retrieved. Section 6 explores
in more detail how to resynthesize a waveform using only spectral peaks with
the SM. At this point, we will assess the perceptual impact of removing all
this information from the STFT. Listen to source sin allpeak synthPI.wav and
target sin allpeak synthPI.wav and compare with the original sounds.

Additionally, the SMT allows to further reduce the information in the repre-
sentation with two different thresholds that set the minimum amplitude level (in
dB) of the selected peaks. Across all frames, peaks below the absolute threshold
% are removed. Inside each frame, the relative threshold ρ removes peaks whose
amplitude is ρ below the maximum level of the frame. In Figs. 6 (c) and 6 (d),
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(a) All spectral peaks. (b) All spectral peaks.

(c) Selected spectral peaks. (d) Selected spectral peaks.

Fig. 6: Illustration of the peak selection step.

ρ = −76 dB and % = −96 dB. Visual comparison of Figs. 6 (a) and 6 (b) shows the
difference. Note, however, that there is virtually no perceptual difference. Listen
to source sin thres synthPI.wav and target sin thres synthPI.wav and compare
first with source sin allpeak synthPI.wav and target sin allpeak synthPI.wav and
then with the original sounds.

Parameter Estimation In the SMT, the values of the parameters of the SM
(A, f , and θ) are estimated using either nearest-neighbor estimation [21] or
refined by interpolation. The estimation of the amplitudes A and frequencies f is
refined by quadratic interpolation [29,26] of the peaks of the magnitude spectrum
over a linear [26], a logarithmic [29], or a power [31] scale. The estimation of
the phase θ uses linear interpolation [29] over the unwrapped phase spectrum.
Figure 7 illustrates quadratic interpolation, which fits a parabola to each spectral
peak in the magnitude spectrum to refine the estimation of A and f . Linear
interpolation is shown in Fig. 8 as fitting a straight line to the unwrapped phase
spectrum to refine the estimation of θ at the refined frequency estimation f .



12 M. Caetano

2050 2100 2150 2200

Frequency (Hz)

0

0.2

0.4

0.6

0.8

1

1.2
Linear Amplitude Mainlobe

Magnitude

Parabola

Samples

Estimation

Bin

(a) Linear scaling.

2060 2070 2080 2090 2100 2110 2120 2130 2140 2150

Frequency (Hz)

0.2

0.4

0.6

0.8

1

1.2
Linear Amplitude Zoom

Magnitude

Parabola

Samples

Estimation

Bin

(b) Linear scaling.

2050 2100 2150 2200

Frequency (Hz)

-4

-3

-2

-1

0

1

Logarithmic Amplitude Mainlobe
Magnitude

Parabola

Samples

Estimation

Bin

(c) Log scaling.

2060 2070 2080 2090 2100 2110 2120 2130 2140 2150

Frequency (Hz)

-0.6

-0.4

-0.2

0

0.2

0.4
Logarithmic Amplitude Zoom

Magnitude

Parabola

Samples

Estimation

Bin

(d) Log scaling.

2050 2100 2150 2200

Frequency (Hz)

0

0.2

0.4

0.6

0.8

1

1.2
Power Amplitude Mainlobe

Magnitude

Parabola

Samples

Estimation

Bin

(e) Power scaling.

2060 2070 2080 2090 2100 2110 2120 2130 2140 2150

Frequency (Hz)

0.6

0.7

0.8

0.9

1

1.1

1.2
Power Amplitude Zoom

Magnitude

Parabola

Samples

Estimation

Bin

(f) Power scaling.

Fig. 7: Illustration of quadratic interpolation of amplitude and frequency. The
figure shows the effect of scaling the magnitude spectrum in the estimation of
the amplitudes and frequencies of the underlying sinusoids.
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Magnitude Scaling Figure 7 shows the main lobe of the Hann window [17]
(zoomed-in on the right) modulated by a sinusoid with Aq = 1 and fq = 2100 Hz
under linear magnitude scaling in 7 (a) and 7 (b), log magnitude scaling in 7 (c)
and 7 (d), and power magnitude scaling in 7 (e) and 7 (f). The column on the left
of Fig. 7 shows that the shape of the main lobe of W (ωk) changes radically under
these different scalings. The column on the right emphasizes how the parabolic
fit changes under the different scales. In Fig. 7, the solid line represents the
main lobe of the window (in a continuous frequency representation such as the
discrete-time Fourier transform), the vertical dotted lines mark the position of
the frequency bins k, and the DFT samples are illustrated as * where the bins k
cross the main lobe. The spectral peak will be notated as Ŝ (k) to simplify the
notation. Nearest-neighbor estimation [21] uses Aq = Ŝ (k) and fq = k

N fs, where
N is the size of the DFT. In practice, the frequency bin corresponding to the
spectral peak is used, as illustrated in Fig. 7 by *. The DFT samples are discrete
frequency values fs/N Hz apart whereas the analyzed frequency fq is continuous.
In practice, fq can be anywhere between two samples of the DFT, resulting in
spectral leakage, which is basically the appearance of a spectral peak in more
that one bin of the DFT (the lobes in Fig. 7 are typical illustrations of spectral
leakage). Consequently, nearest-neighbor estimation leads to estimation errors
of up to half a bin [26,31] with the DFT. The SMT uses quadratic interpolation
of spectral peaks to address the bias inherent in nearest neighbor estimation [1].

As shown in Fig. 7, quadratic interpolation fits a parabola (dashed line in

Fig. 7) to [k − 1, k, k + 1] and
[
Ŝ (k − 1) , Ŝ (k) , Ŝ (k + 1)

]
. Quadratic interpola-

tion improves the accuracy of stimation of both Aq and fq by using the vertex of

the parabola as refined estimation. Linear scaling uses Ŝ (k) = |S (k)|, log scaling
uses Ŝ (k) = log10|S (k)|, and power scaling uses Ŝ (k) = |S (k)|p. Figure 7 (c)
shows that the parabola fits the log-scaled main lobe better than the linear case
in Fig. 7 (a). However, there is still frequency and amplitude estimation error.
Figure 7 (e) visually confirms the finding that power scaling improves the fit
over log scaling [31]. However, power scaling is currently limited to D = N with
N being a power of two, which limits the selection of D. The example in this
article uses log magnitude scaling and selection of D according to eq. (5).

Phase Unwrapping Figure 8 shows the phase spectrum of the modulated
zero-phase Hann window from Fig. 7. The left column of Fig. 8 shows the prin-
cipal value of the phase −π < ϑ ≤ π and the right column of Fig. 8 shows the
unwrapped phase θ = ϑ ± 2πl, where l ∈ N. The solid line in Fig. 8 represents
the phase spectrum (principal value and unwrapped), the vertical dotted lines
mark the position of the frequency bins k, the DFT samples are illustrated as *,
and the dashed line shows the linear fit. As Fig. 8 (a) shows, the principal value
of the phase is discontinuous because it is confined to the interval −π < ϑ ≤ π.
Phase unwrapping, shown in Fig. 8 (b), corrects the phase ϑ by adding multiples
of ±2π whenever the discontinuity ξ is ξ ≥ π. Note that there is no linear phase
component because the analysis window is zero phase [25], so the effect of phase
unwrapping is equivalent to keeping track of complete cycles. Figure 8 (c) and



14 M. Caetano

1500 2000 2500 3000

Frequency (Hz)

-1.5

-1

-0.5

0

0.5

1

1.5

2
Phase (Zoom Out)

Phase

Line

Samples

Estimation

Bin

(a) Principal value.

1400 1600 1800 2000 2200 2400 2600 2800 3000 3200

Frequency (Hz)

-250

-200

-150

-100
Unwrapped Phase (Zoom Out)

Phase

Line

Samples

Estimation

Bin

(b) Unwrapped phase.

2000 2050 2100 2150 2200

Frequency (Hz)

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5
Phase

Phase

Line

Samples

Estimation

Bin

(c) Principal value.

2000 2050 2100 2150 2200

Frequency (Hz)

-240

-239

-238

-237

-236

-235

-234

-233
Unwrapped Phase

Phase

Line

Samples

Estimation

Bin

(d) Unwrapped phase.

2060 2080 2100 2120 2140 2160

Frequency (Hz)

-1.2

-1.15

-1.1

-1.05

-1
Phase (Zoom In)

Phase

Line

Samples

Estimation

Bin

(e) Principal value.

2060 2080 2100 2120 2140 2160

Frequency (Hz)

-240

-239.8

-239.6

-239.4

-239.2

-239
Unwrapped Phase (Zoom In)

Phase

Line

Samples

Estimation

Bin

(f) Unwrapped phase.

Fig. 8: Illustration of linear interpolation of phase. The figure shows the effect of
unwrapping the phase in the estimation of the phases of the underlying sinusoids.
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Fig. 8 (d) show the phase spectrum around the estimated frequency f0 ≈ 2100 Hz
and both Fig. 8 (e) and Fig. 8 (f) zoom in to emphasize the fit of the straight
dashed line. Linear interpolation does not seem to visually improve the estima-
tion of phase over nearest-neighbor estimation. However, phase unwrapping is
important for an accurate representation of the phase θ.

At this point, the sounds Š and Ť are represented by the set of parameters A,
f , and θ resulting from sinusoidal analysis. Each sound was divided into overlap-
ping frames, and then the DFT of these frames is calculated (i.e., the STFT). For
each frame m, peaks of the magnitude spectrum are associated with underlying
sinusoids whose parameters Aq (m), fq (m), and θq (m) are estimated. Across the
frames m, sinusoids with time-varying amplitude Aq (n) and phase θq (n) can be
synthesized and added to create the sinusoidal component of Š and Ť separately
as described in [21]. Section 6.1 shows the resultant sinusoidal component as
well as the modeling error e (n) from eq. (1), referred to as resynthesis by pa-
rameter interpolation (PI). It is important to note that only the time-varying
amplitudes and phases are used in PI resynthesis. The frequencies are used to
reconstruct the time-varying phase with the aid of the estimated θq (m) used
as anchors [21]. However, as Fig. 1 illustrates, morphing requires a single set of
intermediate parameters that would result in a perceptually intermediate sound
upon resynthesis. Morphing with the SM is achieved by interpolating A and f
from Š and Ť across time. However, the anchors θq (m) cannot be interpolated
because the interpolated time-varying phase would not correspond to the in-
terpolated time-varying frequency [3,4,23], so the mismatch between temporal
variation of phase and frequency would result in audible artifacts. Therefore, the
estimated phase values θ from Š and Ť are discarded in the SMT. Section 6.2
provides details on how the morph M is resynthesized via phase reconstruction
by frequency interpolation [20].

Partial Tracking The spectral peaks returned from the peak-picking step (af-
ter further parameter estimation) do not result in a set of continuous partials
because there is no mechanism to ensure temporal continuity. Figure 9 shows the
final peaks returned from the parameter estimation step connected by lines. In-
side each frame, spurious spectral peaks appear and later disappear (due mainly
to interference by nearby peaks and sidelobe interaction), resulting in the dis-
continuous “spectral lines” in Figs. 9 (c) and 9 (d). The SMT uses a partial
tracking algorithm to convert the discontinuous spectral lines seen in Fig. 9 into
the continuous partial tracks shown in Fig. 10. The partial tracking algorithm
implemented in the SMT is based on the peak continuation algorithm proposed
by McAuley and Quatieri [21], so it simply collects peaks within a frequency
threshold ∆p into continuous tracks. In Fig. 10, ∆p = f0/4, where f0 is the
fundamental frequency of Š or Ť . Note the difference between Figs. 9 and 10,
especially the zoomed-in panels on the bottom. After partial tracking, the par-
tials present continuous temporal trajectories, seen as fairly straight horizontal
lines across. Once again we might want to assess the perceptual impact of the
partial tracking algorithm. Listen to source sin partrack synthPI.wav and tar-
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Fig. 9: Spectral peak continuation prior to partial tracking. The top row shows
the spectral peaks connected by lines to illustrate the temporal discontinuity.
The bottom part shows a zoomed-in part of the top row.

get sin partrack synthPI.wav to hear the result of resynthesis using the original
phase θ and all the partial tracks. Compare with source sin thres synthPI.wav
and target sin thres synthPI.wav, which use essentially the same information
(i.e., the selected spectral peaks) but not yet organized into partial tracks.

4.2 Harmonic Selection

The next step after partial tracking is to select the harmonics of the funda-
mental frequency f0. The harmonic selection step eliminates mainly the par-
tials resulting from spurious frequency peaks while keeping the harmonically re-
lated partials, called harmonics. In the SMT, harmonics are the partials whose
median frequencies over time are harmonically related to the fundamental f0
within an interval ∆h. This nearly harmonic relation can be expressed as fh =
hf0 ± ∆h, where fh is the harmonic of order h. Figure. 11 shows the result of
harmonic selection on the partial tracks from Fig. 10 with ∆h = 10 Hz. Listen
to source sin harm synthPI.wav and target sin harm synthPI.wav to hear the
result of resynthesis using the original phase and only the harmonics.
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Fig. 10: The result of partial tracking. The top row shows the spectral peaks
from Fig. 9 reorganized as partial tracks. The partial tracking algorithm ensures
temporal continuity, as illustrated by the zoomed-in regions on the bottom row.

5 Interpolation

Prior to interpolation, the SMC establishes correspondence between harmonics
using the harmonic number h. Then, the frequencies are interpolated in cents
(see [6] for details) and the amplitudes can be interpolated linearly or in decibels.
The interval in cents c between two frequencies f1 and f2 is c = 1200 log2 (f1/f2),
so an intermediate frequency fα is given by

fα = f12
(1−α) log2

(
f2
f1

)
. (6)

Equivalently, fα can be obtained as

fα = f22
α log2

(
f1
f2

)
. (7)

Both equations (6) and (7) yield the same value for fα, so either one may be used.
Naturally, they can also be combined as in [7]. Similarly, for the amplitudes, the
interval in dB between A1 and A2 is dB = 10 log10 (A1/A2) and an intermediate
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Fig. 11: Only the partials whose frequencies are nearly harmonically related to
the fundamental remain. Compare with Fig. 10. See text for details.

amplitude Aα is given by

Aα = A110
(1−α) log10

(
A2
A1

)
(8)

or

Aα = A210
α log10

(
A1
A2

)
. (9)

Again, these expressions are equivalent and can also be combined as in [7].
Linear interpolation of amplitudes is achieved as Aα = αA1 + (1− α)A2. In the
example, logarithmic interpolation of amplitudes from eq. (8) was used. After
all frequencies and amplitudes have been interpolated, the set of interpolated
harmonics is resynthesized to obtain the final morph.

6 Resynthesis

Currently, the SMT has three resynthesis methods implemented, namely overlap-
add (OLA) [15,14], parameter interpolation (PI) [21], and phase reconstruction
by frequency integration (PRFI) [20]. Both OLA and PI require the phases θ
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Fig. 12: Source sound is Accordion C#3 forte and Target Sound is Tuba C3
fortissimo

along with A and f to re-synthesize a waveform that is similar to the original
both objectively and perceptually [29]. PRFI reconstructs the phase by inte-
grating the frequency tracks across time [20], resulting in a waveform that is ob-
jectively different from the original but perceptually similar [29]. As previously
stated in Section 4.1, the sinusoidal morphing procedure currently implemented
in the SMT only interpolates A and f , so PRFI is used to synthesize the morph
M . PRFI results in waveforms that look different than the original but sound
similar. The next section explores further the consequences of PI resynthesis
with the original phase and PRFI resynthesis with phase reconstruction.

6.1 Resynthesis with the Original Phase

Figure 12 shows a comparison of the waveforms of S (on the left) and T (on
the right) resynthesized with the original phase θ (PI resynthesis) using all spec-
tral peaks (top row) or only the harmonics (bottom row). Each panel of Fig. 12
shows both the sinusoidal component (in gray) and the residual (in black). The
residual is simply the subtraction of the sinusoidal component from the original
waveform. Thus, the residual results from the information in the original wave-
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form missed by the sinusoidal component. The energy present in the residual is
an indication of how well the sinusoidal model captures the oscillatory behav-
ior of S and T , where the lower the residual energy the better the model. The
modeling residual is commonly assumed to be noise that was not captured by
the sinusoidal component because sinusoids are not a compact representation of
noise [8]. For musical instrument sounds, the residual commonly captures noise
from the sound production mechanism such as the hammer striking the strings
on the piano, the plectrum plucking the strings on the harpschord, bowing on the
violin, blowing into the flute, among many other vibration mechanisms. Mechan-
ical noise is intrinsic to the sounds produced by acoustic musical instruments,
so the residual is commonly modeled as filtered white noise and added back into
the sinusoidal component. Caetano et al. [8] investigated if there is oscillatory
energy left in the residual from sinusoidal analysis and concluded that the resid-
ual is not perceptually equivalent to filtered white noise, further noting that the
differences may lie in the phase spectrum.

Figure 12 reveals that, visually, the difference between using all spectral peaks
and only the harmonics is barely noticeable. Naturally, the perceptual difference
is also important, so listening to the sounds might reveal perceptual differences
that are not visible in the waveforms shown in Fig. 12. The sinusoidal component
of Fig. 12 (a) corresponds to source sin thres synthPI.wav and the residual to
source res thres synthPI.wav. The original residual source res thres synthPI.wav
is much softer than the sinusoidal component, so source res16dB thres synth.wav
is the same sound normalized to −16 dB RMS. Similarly, for Fig. 12 (b), the
sinusoidal component is target sin thres synthPI.wav and the residual is tar-
get res thres synthPI.wav, normalized in target res16dB thres synth.wav. Finally,
for the harmonic resynthesis of Fig. 12 (c), listen to the sinusoidal component
source sin harm synthPI.wav and the residual source res harm synthPI.wav (nor-
malized in source res16dB harm synthPI.wav). For Fig. 12 (d), listen to the si-
nusoidal component target sin harm synthPI.wav and to the residual component
target res harm synthPI.wav (normalized in target res16dB harm synthPI.wav).

6.2 Resynthesis via Phase Reconstruction

Figure 13 shows a comparison of the resynthesized waveforms of S and T with
the original phase θ (PI resynthesis) and via phase reconstruction (PRFI resyn-
thesis). The left column shows the source sound Š and the right column shows
the target sound Ť . The top row shows both Š and Ť resynthesized using all
spectral peaks and the bottom row shows resynthesis using only the harmon-
ics. In all panels, the grey waveform uses the original phase θ (PI resynthesis)
and the black waveform uses PRFI. Figure 13 illustrates the role of the origi-
nal phase in the SM. For example, Fig. 13 (a) and Fig. 13 (b) show that the
resynthesized waveform is different when the original phase θ is discarded and a
new phase θ̂ is reconstructed by integrating the time-varying frequencies of the
partials [20]. For sound morphing, it is more important to determine if PRFI
resynthesis results in a waveform that is perceptually different from the one us-
ing the original phase. Listen to source sin thres synthPI.wav for the resynthesis
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Fig. 13: Comparison of different resynthesis methods in the SMT.

with the original phase and to source sin thres synthPRFI.wav for the resynthe-
sis with the reconstructed phase in Fig. 13 (a). Similarly, for Fig. 13 (a), listen
to target sin thres synthPI.wav and to target sin thres synthPRFI.wav.

Additionally, Fig. 13 shows the impact of harmonic selection in the SMT.
Most pitched musical instruments are designed to present clear modes of vibra-
tion that are nearly harmonic [13]. The piano is a notorious exception where
the stiffness of the strings results in slightly inharmonic notes [2]. Neverthe-
less, the majority of pitched acoustic musical instruments produces sounds with
most of the oscillatory energy concentrated around harmonics of the funda-
mental frequency. Therefore, the harmonic selection step is not expected to re-
sult in perceptually different sounds than keeping all spectral peaks. Listen to
source sin harm synthPI.wav and source sin harm synthPRFI.wav to compare
the waveforms shown in Fig. 13 (c). For the waveforms shown in Fig. 13 (d),
listen to target sin harm synthPI.wav and to target sin harm synthPRFI.wav.

7 Morphing

Finally, the morph is achieved by resynthesizing the set of interpolated param-
eters M with PRFI, as shown in Fig. 14. Figure 14 (a) shows the waveform and
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Fig. 14: Morphed musical instrument sound. The left-hand side shows the wave-
form and the right-hand side shows the spectral peaks with their corresponding
amplitudes.

Fig. 14 (b) shows the spectral peaks of the morph. Visually, it is more intuitive to
use the spectral peaks than the waveforms to confirm that M is indeed intermedi-
ate between S and T . For example, it is not visually intuitive that the waveform
of Fig. 14 (a) is perceptually halfway between those of Fig. 2 (a) and Fig. 2 (b).
However, visual comparison between Fig. 14 and Fig. 6 reveals that the spectral
peaks in Fig. 14 (b) correspond to intermediate peaks between those of Fig. 6 (c)
and Fig. 6 (d). Naturally, for sound morphing, the perceptual comparison is more
important than the visual intuition. Listen to the original sounds source orig.wav
and target orig.wav and then to accordion tuba morph alpha05.wav to assess if
M is indeed perceptually intermediate between S and T .

8 Conclusions and Perspectives

This work has described how to use the Sound Morphing Toolbox (SMT) to
morph musical instrument sounds with the sinusoidal model. The audio pro-
cessing steps were illustrated with figures and citations to the reference imple-
mentations. The SMT is open-source and freely available under a GNU3 license.
Time-varying morphs [6] will be incorporated into a future version. Future de-
velopment of the SMT will also add a GUI and an implementation of the hybrid
source-filter model and the sophisticated sound morphing algorithm that uses
it [5]. Finally, the SMT is currently an alpha release with possible bugs in the
code due to limited testing. Adoption and use of the SMT by the community is
encouraged to provide usability testing and bug corrections that might lead to
a beta release.
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