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Abstract 
 

Computational models have become an essential part of exploratory protocols in cell 
biology, as a complement to in vivo or in vitro experiments. These virtual models have the 
twofold advantage of enabling access to new types of data and validate complex theories. The 
design of mechanically functionalized biomaterials or scaffolds, to promote cell proliferation 
and invasion in the absence or in the complement of synthetic chemical coatings, can certainly 
benefit from these hybrid testing approaches. The underlying fundamental process of cell 
migration and in particular its dependence on the cell mechanical/geometrical environment 
remains crudely understood. Currently at least two theories explain the migration patterns 
observed by cells on curved topographies, involving either polymerization dynamics of actin or 
assembly dynamics of focal adhesions. We recently proposed a third mechanism relying on 
nucleus mechanosensitivity, which has been tested extensively experimentally and 
computationally. We now explore the hypothesis that nucleosensitivity could be a mechanism 
for cells to optimally find microenvironments suited for mitosis, providing mechanical stability 
and relaxation. By means of a computational mechanical model with intracellular structure 
detail, we investigate how the complex interplay between this new migration mechanism and 
the microenvironment topography can lead to more relaxed cells and organelles. To go further, 
we simulated in this study cell migration via a novel protocol in silico which generates 
dynamical ripple wave on a deformable substrate and changes topography over time. This kind 
of in silico protocols based on a new understanding of cell migration and nucleosensitivity 
could, therefore, inform the design of optimized scaffold topographies for cell invasion and 
proliferation. 

1. Introduction 

1.1. Intertwined computational-experimental protocols  
Computational physical models are large sets of equations that describe a controlled, 

reduced version of an experiment. Unlike analytical models, computational ones can integrate 
a more significant part of the complexity of living systems, as computational resources and 
methods allow to solve numerous and complex equations on large and heterogeneous 
systems. Nevertheless, in silico models remain far from the full complexity of in vivo 
experiments, and their validity relying on various assumptions can always be questioned. In 
vitro models are a first step toward breaking down the physics of living systems, disentangling 
that complexity, but in silico ones constitute a step further. Hypothesized multiple physics and 
the multiple scales involved in the mechanisms regulating the behavior of living systems can 
easily be integrated and tested as desired within in silico models. They have become an 
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essential tool in theoretical biophysics, complementary to in vivo and in vitro models 
[Mogilner09, Rodriguez13, Rens17]. Indeed, in silico models enable integrating more 
complexity in a controlled way. For example, in discerning the origin of observed biological 
behavior, in silico models enable to sort active regulatory mechanism from passive physics 
[Nickaeen19, Winkler19]. In silico models also provide complementary data, hardly accessible 
with in vitro and even less in vivo models: (i) at different scales, very small ones, for example, 
using methods solving the mechanics of clouds of electrons [Zink13] (ii) and of different type, 
quantities that cannot be measured directly, called internal state variables in thermodynamics, 
among which forces and stresses can be found for example [Milan16]. 
 

1.2. Biomaterials design for tissue engineering  
The design of biocompatible materials for tissue engineering requires understanding how 

cells and materials interact to promote cell proliferation and invasion. Cell biology and more 
specifically migration are conditioned by the scaffold (or substrate) physics, which constitute a 
set of cues relying on chemistry [Zigmond73, Dillon95], electromagnetics [Adley83] and 
mechanics [Isenberg09]. These physics play a role on multiple scales predominantly ranging 
from the characteristic scale of electrons, up to at least the characteristic scale of the cell. 
However, it is not possible yet to exclude larger scales, as macroscopic thermodynamical 
effects could certainly influence cell mechanobiology [Isenberg09]. Unravelling the interplay 
between these different cues at different scales and cell migration would certainly enable to 
engineer optimal biomaterials.  
 

1.3. The example of MAPS: could topography cause invasion? 
Recently developed biocompatible scaffolds made of a microporous annealed particle 

(MAP) gel display promising levels of cell invasion and proliferation [Griffin15, Darling18]. MAP 
gels are an example of biomaterial making use of the newly understood cell signaling cues. 
The mechanical properties of the gel can be tuned to steer the differentiation of cells depending 
on the type of tissue to repair Annealing particles of controlled sizes also enable to tune stability 
and therefore biodegradability of the scaffold. Nevertheless, the higher orders of cell invasion 
and proliferation are hardly explained by these features of the gels. More generally, 
microporous scaffolds tend to induce similar enhanced cell migration rates. In the meantime, 
recent pieces of research have highlighted in vitro and confirmed in silico how the geometry 
and the topography of the substrate can direct migration [Clark91, Doyle09, Czeisler16]. 
Specifically, the mechanical instability conveyed by convex topographies [Vassaux17, 
Pieuchot18] is shown to promote cell motility [Vassaux19]. Could a link more substantial than 
a correlation between the observed enhanced invasion and the topographical cue be 
established here? Potentially, causation involving underlying cell mechanics? 
 

2. Understanding cell migration in interaction with extracellular 
topography 

2.1. Current theories and in silico models used to explore them 

Cells have evolved multiple mechanisms to migrate in interaction with their environment. 
For instance, we reported recently a new cellular ability, which we termed “curvotaxis” that 
enables the cells to respond to cell-scale curvature variations, a ubiquitous trait of cellular 
biotopes [Pieuchot18]. Ascertaining enhanced invasion as a consequence of the specific 
geometry of microporous scaffolds lacks a mechanistic explanation of how cell migration is 
systematically influenced by the curvature of the underneath substrate. Topography and 
curvature influence cell physics provoking local confinement at cell-scale or below, from which 



originates cell polarization. At least three theories have been developed in the last two years 
and supported by means of computational models [Winkler19, Vassaux19, Schakenraad19]: 
 

a) Topography as confinement of actin polymerization during cell migration 
Winkler et al. (2019) have shown that confinement breaks down the symmetry of actin 

polymerization in the cytoskeleton, and therefore favors a particular direction of the 
extension of the lamellipodium. This mechanism is endorsed by simulating physiological 
migration patterns using a continuum phase-field model of a single adherent cell and its 
internal actin organization. Actin ordering and polymerization seen as key factors of cell 
motility is not a recent discovery [Mogillner09], however, as a source of persistence in 
confined environments definitely is. Even pieces of evidence in epithelia show a correlation 
between actin organization and topography, actin flowing away from parts of the 
cytoskeleton exposed to convex curvatures [Chen19]. 

 

b) The nucleus pushed away from convex topography indicates the direction for cell 
migration to more relax region 

We have rather focused on the role of the nucleus in [Vassaux19]. Confinement is 
shown to polarize the nucleus position inside the cell and we hypothesized that nucleus 
internal motility is a precursor of migration guidance. We had recently proved a correlation 
between the direction of nucleus motility and the direction of cell migration on sinusoidal 
surfaces (Fig. 1) [Pieuchot18]. We simulated cell adhesion on sinusoidal surfaces using 
our particle-based model of a single adherent cell with an explicit description of the nucleus 
[Vassaux17, Adhsc18]. Simulations indicated a decentering of the nucleus toward the 
valleys of the sinus, which are concave regions of lower pressure (Fig. 2). We integrated 
secondly the mechanism of cell migration in the direction of intracellular nucleus 
displacement. Cell model reached concave regions whatever is its initial deposit location 
(Fig. 3). Simulations of persistent migration away from convex topographies and 
stabilization on symmetric concave niches supported our theory. This nucleus 
mechanosensitive mechanism could explain the intensive cell invasion and proliferation 
observed in MAP scaffolds, in which cells are solely exposed to convex surfaces. 

 



 
 
Figure 1: in vitro observations of cell cultured on surfaces with sinusoidal topography (a). Cell 
migration trajectories remain in valleys and avoid peaks (b) of the sinusoidal topography 
viewed by side (c). Later, cells tend to stabilize their position in concave regions (d). 
Mechanical hypothesis to explain cell migration on sinus: curvature gradient breaks 
homogeneity in the compressive stress exerted by the cytoskeleton on the nucleus (f). The 
nucleus moves to lower pressure region. Then the cell migrates in the direction of nucleus 
movement so that the nucleus is in the center of the cell (g). Reproduced under the terms of 
the CC-BY 4.0 license [Pieuchot18]. 
 
 
 



 
 
Figure 2: Final displacements of the nucleus in the cell model depending on cell location on 
the sinus (a).  Nucleus motion in cell model adhering on a peak (b) Nucleus motion in the 
opposite direction of greater traction force on the substrate. Reproduced under the terms of 
the CC-BY 4.0 license [Vassaux19]. 
 
 

 
 
Figure 3: Simulation of cell migration following the curvature-induced nucleus displacement. 
The cell model stabilizes when the nucleus stabilizes, the both in the center of the concave 
region. Reproduced under the terms of the CC-BY 4.0 license [Vassaux19]. 
 

c) Cell migration between obstacles as brownian particle movement involving repelling 
force  

Schakenraad et al. (2019) have actually led an investigation of cell migration one scale 
above, to which the cell is modelled as an active Brownian particle, assuming that the influence 
of the environment’s topography is cell-type independent. Cells consist of rigid disks with a 
finite area, imposed with a self-propelling velocity. The magnitude of the imposed velocity is 
constant, and its direction is defined as fluctuating randomly with some persistence. Cell 
migration is simulated on a substrate paved with obstacles which simply exert a repelling force 
modifying the overall cell motion, but not the imposed velocity. Schakenraad et al. (2019) have 
shown that the observed guidance of migration on such substrates could be caused entirely 
by the spatial modulation of obstacles, cells crudely migrating toward less confined spaces, 
independently organelles mechanosensitivity. 

 
These 3 theories we presented hereabove are all valid, have redundancies and grey 

areas, therefore not mutually exclusive, but need to be sorted. These theories illustrate 
separate mechanisms of guided migration in anisotropic environments, at the scale of the 



organelle or of the whole cell.  The actin cortex contractility is probably a redundant element 
of the two first theories, as it builds up the pressure gradient in the cytoskeleton polarizing 
either actin polymerization or nucleus position. In turn, cell migration may be, respectively, 
either a passive mechanism or a nucleus centering regulation mechanism [Almonacid15]. 
 

2.2. How conceptually mechanical in silico cell models can be used at the interface 
between materials science and cell biophysics for scaffold design?  

Harnessing cells polarization and migration mechanisms, the design of scaffolds could be 
improved. The scaffold topography and the induced confinement could be tuned to promote 
optimal motility depending on the cell lineage and its characteristic mechanical properties. In 
silico mechanical cell models constitute a tool of choice for scaffold design. Such models 
integrate simultaneously the topographical and mechanical complexity of the cell 
microenvironment that is the scaffold and the mechanosensititvity of the cell migration process. 
In turn, sensitivity analysis of migration rate and persistence to the scaffold design parameters 
is rendered easily tractable. 
 

3. Going deeper in the understanding of cell migration with an in silico 
cell model 

3.1. Description of the mechanical in silico cell model 
The in silico cell model we are developing integrates substrate and cell dynamics 

describing the mechanical structure as assembly of rigid particles [Vassaux17]. The model 
explicitly integrates actin, microtubules, intermediate filaments networks, contractile stress 
fibers, a contractile actomyosin cortex mingled in the cytoplasmic membrane, a viscous 
cytosol, and a viscoplastic nucleus (Fig 4.a). Each internal cell structure is modelled as an 
assembly of particles interacting via contact or springs. The parameterization of the model’s 
interaction potentials has been largely verified and validated against indentation tests on 
mesenchymal stem cells [Vassaux17]. Complete details on the mathematical foundation of the 
model as well as the calibration, validation, and adhesion simulation process can be found in 
[Vassaux17]. This mechanical cell model is able to capture realistic nucleus dynamics; the 
nucleus equilibrium is found at the center of the cell on a flat topography. These are governed 
by the coupled contribution of viscous, inertial (nucleus mass), and elastoplastic 
(conformational changes in the cytoskeleton) effects. 
 

Simulations of cell adhesion follow a standardized procedure. In their initial configuration, 
the simulated cells display a spherical shape (Fig 4.b). Spreading is actioned after the 
displacement of the focal adhesions (FAs) away from the center of the cell following the 
topography of the substrate (Fig 4.c). This dynamic adhesion process, coupled with 
actomyosin contraction in stress fibers and the actin network, induces conformational changes 
in the cytoskeleton. At the end of the simulation (Fig. 5), cells are pulled onto the substrate and 
attached via a set number of focal points. FAs are distributed at the cell’s periphery, regardless 
of the site of the cell adhesion in a concave, convex, or in the transitional areas.  
 

Subsequently, the adhesion model has been extended to render migration tractable 
[Vassaux19]. The migration is simulated by reproducing in a simplified way the simultaneous 
protrusion of a lamellipodium at the front and the cell retraction at the back of the cell. The cell 
model migrates as new FAs are continuously assembled away from existing disassembling 
adhesions in the direction of motion. While the cytoskeleton connects the new FAs, the old 
ones are disassembled. We hypothesized that the lamellipodium forms in the direction of the 
topography-induced polarization of the nucleus and advances proportionally to nucleus internal 
motion. The internal displacement of the nucleus is computed as the vector directed from the 



cell barycenter to the nucleus barycenter. The spatial jump (amplitude, direction) from the 
disassembled adhesions to the assembled ones at a given step is equal to the internal 
displacement of the nucleus observed at the previous step. The simulation of cell migration 
ends when the nucleus displacement becomes negligible with respect to the cell dimensions; 
that is when the cell is assumed to have stabilized. Such a procedure renders a continuous 
migration of the cell. 
 

The level of complexity encompassed in such in silico model is already high enough so 
that we are enabled to investigate the role of several intracellular structures, as well as the 
topography of substrate on cell mechanics, as well as on a hypothesized nucleosensitive 
migration mechanism. In comparison to in vitro models, the mechanical properties of each 
component of the model may easily be tuned and their role assessed on migration parameters 
such as rate and persistence. Acquiring data is also simplified, as in such computational 
models, mechanics are intrinsically quantified. 

 
 

 
 
Figure 4: Detailed structure of our in silico mechanical cell model. In the cell model, particles 
are interacting in one of three ways: repulsive contact, cable-like or spring-like. (a) The model 
encompasses a wide range of intracellular structures, for more details on what type of 
interaction is used for each structure and why see [Vassaux17]. (b) Initially, before adhesion, 
the cell is generated in a spherical shape, with all its constituents relaxed. (c) After adhesion, 
here on a convex substrate (not appearing), the cell finds its stretched configuration, with the 
filaments and stress fibres building up tension, and the microtubules and nucleus bearing 
compressive loads, ensuring structural stability of the cell. Reproduced under the terms of the 
CC-BY 4.0 licence [Vassaux17]. 
 



 
Figure 5: Intracellular force network in the in silico cell model. Blue and red segments represent 
respectively tension and compression forces. Width of the segment is proportional to the 
magnitude of the force. 
 
 

3.2. Cell-scale curvatures optimize migration rates and persistence 

We hypothesized the importance of wavelength and amplitude for the nucleosensitivity 
guidance mechanism to occur. We made use of our in silico cell model whereby cell motility is 
induced by direction and the magnitude of the polarization of the nucleus to find optimal 
sinusoids to promote single mesenchymal stem cell migration rate. We demonstrated that on 
cell-scale curvatures an optimum of migration efficiency is reached. Cells were arbitrarily 
positioned in the neutral part of the sinusoid, that is in the middle of a flat portion of the sinusoid 
where the curvature is null. The adhesion and migration dynamics were simulated on three 
sinusoids, with a constant ratio of amplitude to wavelength: 3μm/30μm, 10μm/100μm, 
30μm/300μm (Fig. 5). The dynamics were observed until the cells stabilize and their motile 
behavior was considered inexistent. The efficiency of the cell model in finding the direction of 
the shortest path to the location of stabilization varied significantly with the sinusoid size. Radii 
of curvature approximately of the size of the cell led to the most straightforward to stabilization. 
On shorter and larger radii of curvature, cells exhibited curved trajectories (Fig. 5.a) or even 
sudden changes of direction (Fig. 5.c). In turn, migration rates were also much higher on cell-
scale curvatures, reducing the time from the initiation of the dynamic migratory behavior to 
stabilization.  

Simulations indicated that curvotaxis at small wavelength seems limited. Similarly, long-
wave curvotaxis is also limited: large sinusoids are almost flat surfaces that offers almost no 
relaxation zone. The cell model cannot sense larger wavelength than its own spread diameter 
nor it senses smaller wavelength than the diameter of its nucleus. In other words, in this 
mechanism of cell migration induced by curvature and intracellular movement of the nucleus, 
the diameter of the nucleus and the diameter of the cell constitute the minimum and the 
maximum of the spatial scale of the curvotaxis of the cell ; cell curvotaxis is then related to its 
intrinsic dimensions. Extrapolating these results to scaffold design, topographies exhibiting 
cell-scale curvatures could be used for enhanced invasion and proliferation. As cells stabilize 
faster, they also enter more rapidly in growth and division phase. 
 



 
Figure 5: Cell-scale curvatures optimize migration rates and persistence. Migration of a 
100 µm cell on (a) 3-30 µm, (b) 30-100 µm, and (c) 30-300 µm sinusoids, the trajectories of 
the center of the cell model are indicated by the red/white data points. Cells dynamics are 
initiated on the flat part of the curvature (at the center of each map). Data points composing 
the trajectories are measured at identical time intervals, a large gap between two neighboring 
points indicates large migration velocity. Reproduced from [Vassaux19] (CC-BY 4.0 license). 

3.3. Pieces of evidence of a will of the cell to relax 

We led here additional simulation of cell migration decreasing drastically cortical tension 
or nuclear stiffness. In both cases, the greater is the decrease, the more the model lose the 
capability of sensing the curvature of the substrate and migration process stopped far away 
from the center of a concave region. Besides as a consequence the migration velocity dropped 
down. So, the cell model is able to sense the curvature and to reach concave region to relax 
only if it possesses full integrity in its cortical tension and nucleus stiffness. Simulation results 
are in good agreement with in vitro observations we reported in drugged cells obtained by 
either blocking F-polymerization or by knocking down nucleus lamina (Fig. 6).  

 
Figure 6: In silico and in vitro results on final location of cells with altered properties of the 
cytoskeleton. In gray, the sinusoidal substrate. The bands in blue, red and green represent the 
location of the in vitro cells respectively, in control conditions, with low stiffness in the nucleus 
(lamin A knockdown) and without contractile cytoskeleton (no F-actin). For instance, cells in 
control condition located in concave area. For each in vitro condition, a vertical arrow indicates 
on the left side the mean position of the cells on the sinusoidal surface. On the right side, 
verticals arrows indicated the final position of the cell model at the end of migration in control 
conditions or with altered cell mechanical properties reproducing in vitro tests using drugs. In 
silico results are consistent with in vitro observations and lead to the same conclusion: the 
curvature-induced cell migration based on nucleus mechanosensitivity needs both nucleus 
stiffness and cytoskeleton contractility, and especially cytoskeleton contractility. Without one 
or both, and especially without the contractility of the cytoskeleton, cells lose their ability to 
detect curvature and can localize independently of the curvature gradient, whether convex or 
concave.  

 



The stiffness of the nucleus makes it an ideal topography sensor. Coupled with the 
actin cortex contractility, this renders a complex mechanism propelling the nucleus toward 
most relaxed locations inside the cell. Our in silico model enables to analyze and quantify 
directly the networks of forces established inside the cell throughout its migration (Fig. 7). This 
network of forces resulting from the interaction in the cytoskeleton and the nucleus is highly 
dynamic. Focusing on a 100μm cell migrating on the 10μm/100μm sinusoid, we observe the 
progressive relaxation of the forces as the cell migrates from convex to concave locations. In 
turn, the cell could be using its nucleus to find optimally relaxed and mechanically stable 
locations in its microenvironment. Concave locations in a sinusoid typically provide these two 
characteristics. In comparison, convex locations are highly unstable, small fluctuations in cell 
and nucleus centering on the topography could lead to large internal motions of organelles, 
highly damageable during mitosis. Flat locations are indeed more stable but do not enable the 
cell and its organelles to relax as much. Only cell-scale curvatures provide gradients of 
topography that can be perceived by the cell by impacting its mechanics. On smaller and larger 
radii of curvature, the topography is mostly integrated by the cell as a flat substrate, potentially 
not yielding a sufficiently strong mechanical signal. 
 

 
Figure 7: Nucleus mechanical stress relax during curvotaxis. The mechanical vertical 
stress integrated over the nucleus relaxes during migration from convex to concave of a 100 
µm-wide cell on a 30-100 µm sinusoid (Fig. 5.b). Snapshots of the nucleus shape and internal 
contact forces in the nucleoplasm are taken for three different cell positions during migration. 
Positions of the cell on the sinusoid in each snapshot are shown in the inset picture in the 
upper right corner. The vertical stress in the nucleus displays a relative decrease of 80% 
between onset of migration and stabilization in the nearest concave. Snapshots illustrate the 
simultaneous relaxation of nucleus shape, from elongated to rounded, and significant decrease 
of contact forces between particles constituting the nucleoplasm. 
 

3.4. Topography as a parameter of scaffold design 
Properties of the topography are a significant parameter in designing scaffolds and should 

be chosen depending on the type of cell, more precisely the size of the cell and its nucleus, for 
optimal invasion and proliferation. 

Our in silico cell model has served as a framework to integrate the hypothesized 
mechanism of migration called curvotaxis, whereby the cell motility is driven by the instability 
of its nucleus. We have been able to analyze the influence of the topography of the cell 
microenvironment on the motile behavior of mesenchymal stem cells. These primary results 
from our in silico stem cell model tend to show that curvotaxis could be an attempt to minimize 
cells mechanical energy via relaxation, as well as a way to find mechanically more stable 
microenvironments. Such microenvironments are beneficial for a more robust cell growth and 



division. Our in silico cell model has also enabled to quantify optimal microenvironment 
topographies, that is sinusoid wavelength and amplitude. Curvotaxis is rendered more efficient 
by sinusoids displaying cell-scale curvatures. These results could inform the design of 
scaffolds used in tissue engineering to promote invasion and proliferation of mesenchymal 
stem cells. The methodology applied in this work could be repeated for different cells types, 
hence enabling to design cell-type specific scaffold topographies. 
 

4. Design of a new generation of biomaterials of dynamic topography 
aided by silico cell models 

Many in vitro studies exist on the influence of topography on cell migration, however in all 
these works the topography remains fixed [Caballero15] (Fig. 8). We have shown that the 
concave regions attract the cells, but once these regions are reached, the cells stop their 
migration. To encourage the cells to migrate over a greater distance thanks only to the 
topography of the substrate and by using their curvotaxis capacity, we may propose a substrate 
of variable geometry, with changing topography, which can become alternately and locally 
concave then convex, and this cyclically. Some authors developed photochemical protocols to 
modulate in real time the local stiffness or strain of hydrogel substrates [Kloxin10, 
Chandorkar19]. We have shown that cells cultured on sinusoidal surfaces, migrate naturally, 
with no other stimulus than the only curvature of the surface. What would be the migratory 
behavior of the cells on a sinusoidal surface animated by an undulatory movement (Figure 9). 
Would the cells follow the ripple? Would the cells start surfing the surface of the substrate 
following the ripple wave? What would be the influence of the ripple frequency? The optimal 
frequency of ripple, or in other words the speed of the wave front, should be a priori of the 
same order of magnitude as the migration speed of the cell. However, what could be the 
influence of a ripple at very high frequencies? In such a case, a displacement of the nucleus 
would be observed within the cell, a displacement going in the same direction as the wave 
front. As we showed that the displacement of the nucleus and its decentering is a signal for 
the cell to migrate to center again its nucleus, this would stimulate continuous cell migration. 

 

Figure 8:  Effect of the Cell Nucleus on Symmetry Breaking and Directional Migration. Cells 
move directionally in local asymmetric topographical ratchets imposed by confinement (A) or 
adhesion (C). A mechanical interaction between the cell nucleus and the tilted micropillars (B) 
or actomyosin stress fibers (D) guides cell polarization and motility. Reproduced from 
[Caballero15] (CC-BY 4.0 licence). 

  



 

Figure 9: Substrate animated by wave motion. Are migrating cells able to surf the wave? 

 

As a perspective, we can imagine an evolution of the biomaterials and scaffolds with 
dynamic topography to induce cell migration and invasion. Typically, in silico modelling can 
play a role here. Indeed, in silico experiments can be pushed beyond what is technically 
feasible in vitro for the time being. We propose here to analyze in silico the influence of a 
dynamic topography on the migratory behavior of cells using our computational cell models we 
presented above. In the present study, we simulated curvature-guided cell migration on a 
deformable sinus animated by sequential ripple motion. We imposed at the location of the cell, 
a deformation of the substrate to reach a 1D sinus morphology or micro-corrugated shape. 
Following the same process of cell migration based on the interplay between curvature-
induced nucleus decentering and cell movement to center the nucleus again, we simulated 
iteratively the displacement of the cell until it reached the most concave region of the sinus 
(Fig. 10). Then the substrate deforms to become flat as at the beginning. The cell migrates 
with a net displacement of 45µm. Then we deformed the substrate, a second time, with the 
same sinusoid morphology with a dephasing of 45µm, inducing at the cell location a convex 
region. Following the same cell migration process, we simulate a second time cell 
displacement until it reached the new concave region. At the end, in imposing two deformations 
of the substrate, we induced cell migration in a controlled direction with a net displacement of 
90µm corresponding to 1.5 times the diameter of the cell. It is worth to be noted there is no 
gravitation here and the cell migrates only following the nucleus decentering induced by 
curvature. 
 

In the same way we can imagine to study in silico the cellular migration in interaction with 
a dynamic substrate, micro-channels or micro-tubes able to be piloted in radial deformation by 
shrinkage movements or on the contrary of swelling. In such a case, are the cells able to 
migrate by accompanying the deformations of the micro-tubes? 

We can also design in silico, a fibrous substrate whose fibers and their crosslinking could 
be driven dynamically to locally animate the fibrous matrix by contraction or extension. We 
could experiment with the potential of migrating cells and predict whether cells are able to take 
advantage of the movements of their environment to migrate. 

 



 

 
Figure 10: image series of the sequential cell migration on a flat substrate animated by 2 
successive sinus deformations. The diameter of the adherent cell shape is 100µm. After the 
first substrate deformation, the cell model migrated over 44.5µm. As a result, the 2nd sinus 
deformation was imposed with a phase shift of 44,5 µm from the first one. After the two 
successive deformations of the substrate, the cell model migrate over 90µm in a controlled 
direction. It is worth to be noted that there is no gravitation in this simulation. 

 



This type of dynamic topography substrates continuously stimulating cell migration 
could help the colonization of porous biomaterials by the cells, a colonization that is still 
insufficient to obtain volume tissue regeneration. And this, proposing an original method, 
natural because based on the normal migration of cells, and alternative to conventional 
mechanical methods such as perfusion or pumping of cells in suspension, methods that can 
damage cells. Substrates with dynamic topography could also be an alternative to biochemical 
methods employing chemoattractants and which raise the question of the duration of release 
and the duration of action. 

 Playing on the topography by proposing artificial and controlled geometry can make it 
possible to identify the processes of setting up of the adhesion and migration, to identify the 
cellular preferences, the processes of optimization of their form and position, of their potential 
adaptation, to observe the emergence of alternative solutions when one is blocked. This work 
could provide a great deal of information on cellular functioning and adaptation resources. This 
work could also inform future improvements in the design of biomaterials to stimulate migration 
or proliferation or differentiation by time. This cellular model could be used for the design of 
scaffolds specifically dedicated to bone reconstruction. To this end, the design of the scaffold 
should promote the invasion of mesenchymal stem cells and osteoblastic differentiation. The 
scaffold should also stimulate the osteoblastic activity of bone tissue synthesis via mechanical 
stimuli based on high apparent rigidity allowing deformation of high frequency and low 
amplitude. The cellular model could be a complementary approach at the cellular level to those 
which are developed at the tissue level and which succeed in embracing bone mechanobiology 
[George19, George18, Giorgio17, Lekszycki12]. 

In vitro experiments have their limits. While they do not fully reproduce the reality of in 
vivo conditions, but especially their complexity and the difficulties of producing biomaterials 
prevent testing many different solutions and analyze the cellular response in completely new 
conditions. The contribution of in silico or numerical simulation experiment, precisely allows to 
put in the cells situation under conditions impossible to consider in vitro and / or in vivo. 

Virtually we can culture cells in a 3D environment, in contact with a material, a surface, 
or a fibrous matrix that would have the capability of changing its topography according to 
whether we are looking for the viability of stem cells by proposing a quiescent state or on the 
contrary a state of stress that will push them to migrate or differentiate. These controllable 
materials could adapt their conformation to the cellular time and specific cell function. Those 
smart materials are difficult or impossible to design for now. Nonetheless in silico experiments 
make it possible to overcome this problem by testing unrealistic conditions while identifying 
cellular behaviors never observed in vitro and dynamic microstructures and their associated 
deformation modes capable of stimulating cells. Based on these results, we would be able to 
imagine technical and feasible solutions to reproduced in vitro and in vivo the cellular response 
predicted by the model. The in silico approach can then join current developments in the field 
of intelligent materials such as meta-materials and nanomotors. For example, meta-materials 
thanks to their exotic electromagnetic or mechanical properties can modify their structural 
arrangement under the passage of electromagnetic waves or can have a negative Poisson's 
ratio, contracting transversely during compression [Barchiesi19; Del Vescovo14; dell'Isola19]. 
This type of material could be used to reproduce the optimal dynamic topography of the 
substrate identified by the cell model. Similarly, the properties of meta-materials could be 
modeled to predict and analyze the behavior of cells. 
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