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Abstract

This paper presents a fault tolerance architecture for data fusion mech-
anisms that tolerates sensor faults in a multirotor Unmanned Aerial Ve-
hicle (UAV). The developed approach is based on the traditional dupli-
cation/comparison method and is carried out via error detection and sys-
tem recovery to both detect and isolate the faulty sensors. It is applied
on an informational framework using extended Informational Kalman Fil-
ters (IKF) for state estimation with prediction models based on available
sensors measurements. Error detection is realized through residuals com-
parisons using the Bhattacharyya Distance (BD), an informational mea-
sure that estimates the similarity of two probability distributions. An
optimal thresholding based on Bhattacharyya criterion is applied. In or-
der to identify the faulty sensor, the Bhattacharyya distance between
the a priori and a posteriori distributions of each IKF is also computed.
The system recovery is done by substituting the erroneous state by an
error-free state. The proposed architecture alleviates the assumption of a
fault-free prediction model using the information surprise concept instead
of hardware redundancy.The performance of the proposed framework is
shown through offline validation using real measurements from navigation
sensors of a multirotor UAV with fault injection.
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1 Introduction

Multisensor data fusion finds wide application in many robotic fields such as
localization, sensor networks, environment mapping and object recognition [1].
It consists of combining information from various sensors and knowledge sources
to better describe the process or phenomenon of interest and achieve more pre-
cise reasoning than could be accomplished by the usage of only one sensor [2].
Data fusion is considered as a research field involving multiple fields includ-
ing artificial intelligence, statistical estimation, information theory and signal
processing [3]. Performing data fusion can improve reliability, confidence and
consistency of the data.

Despite the evident potential benefit of these techniques, there are a number
of issues and limitations that make data fusion approaches a challenging task.
First, their implementation requires redundant, diverse and complementary sen-
sors which increases the risks of hardware faults. Other issues are related to the
data used in the fusion process, diversity and imperfection of the used sensors
and the type of the application [2], [4], [5], [6].

In addition, the validation of data fusion approaches faces two major prob-
lems [7]:

• The difficulty of predicting and designing the behavior of fusion algorithms
by formal techniques such as proof checking and formal model.

• The near-infinite execution context generated by the open environment
of the robotic systems where conditions may vary at any moment and in
many different ways. The validation of UAV systems for example needs
multiple long flights to encounter all the possible situations, which makes
it a costly, difficult and long process.

As an alternative to this validation, some works developed fault tolerance mech-
anisms for data fusion to remove or reduce the effects of faults on the system or
process operation [8], [9]. Fault Tolerance is defined as one of the four means
to attain dependability [10] and aims to allow the system to deliver a correct
service even after the occurrence of errors [11,12]. Fault tolerance methods are
generally implemented via error detection and system recovery:

• Error detection aims to detect the erroneous state of the system before
errors are propagated and cause system failures. It can be achieved by
duplication–comparison, temporal watchdog and likelihood checks.

• System recovery allows the system to recover to an operational mode after
fault occurrence. It is mainly achieved by error handling through recovery,
pursuit or compensation.

Fault tolerant data fusion has been in use for over 50 years especially in
aircraft navigation systems [13]. The existing approaches in the literature are
mainly based on the duplication-comparison techniques that consist in com-
paring results from at least two redundant units that are independent of the
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faults to tolerate and provide the same service. The duplication design methods
incorporate two redundancy strategies: analytical redundancy and hardware
redundancy.

• Duplication based on analytical models: In this first category, an analyt-
ical model is used as a diversification of physical sensors. Generally the
data fusion mechanism applied in this type of approaches is the Kalman
filter that uses the model of the system to estimate a measurement redun-
dant to that delivered by a real sensor. Then the residue resulting from
the combination of the measurements estimated by the model and deliv-
ered by the sensor is used as a fault indicator. Examples of duplication
based on an analytical model of the fusion process are found in [14–18].

• Duplication based on hardware redundancy: These approaches combine
multiple data sources. Unlike techniques based on the analytical model of
the system, they use the analysis of some internal parameters to ensure
fault tolerance. In [19], malfunction is detected based on the temporal
analysis of conflict resulting from the fusion of data sources using the
Smets’s Transferable Belief Model (TBM). The works in [20,21] proposed
the analysis of the static and dynamic reliability of data sources to detect
the defective source. Other similar examples of fault tolerance in data
fusion are mentioned in [22,23].

With the growing applications of autonomous unmanned aerial vehicles, fault
tolerant data fusion is becoming a critical requirement for safe and reliable oper-
ation. In fact, UAVs are capable of achieving different missions under unknown
circumstances, where human involvement is unsafe or impossible [24]. Their
operation depends on sensors that are subjected to some types of faults and
failures [25], [26]. Therefore, it is fundamental for the UAVs to diagnose any
sensors faults to ensure an accurate estimate of their states. In the literature,
multi-sensor data fusion architectures applied on UAVs were investigated in
different works for position, velocity and attitude estimation [27], [28], for es-
timation of unknown ship positions during landing operations using Extended
Kalman Filters (EKF) [29], and diagnosis of the safety distance between drones
and high-voltage overhead transmission lines [30]. A real analysis of sensor
fusion tested on real UAV platforms was discussed in [31].

The fault tolerance (FT) in data fusion applied to UAVs was also consid-
ered in some studies. In [32], the authors proposed an architecture for integrated
navigation systems of UAVs with application to height sensors measurements fu-
sion. The FT scheme included a main Kalman filter with three sub-filters (radar
altimeter/barometric altimeter/GPS). The Chi-Square test with test propaga-
tors used normally to test the consistency between a signal and its reference in
a stochastic dynamic system was employed for fault isolation. A fault tolerant
multi-sensor fusion for UAV attitude estimation was developed in [33] using
the Unscented Information Filter (UIF). The proposed scheme, validated using
real flight data, enables the on-line calibration of sensors which leads to an im-
proved interpretation of the sensor health conditions. Similar approaches were
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considered also in [34] with a comparison between different forms of Kalman
filters applied for data fusion of Inertial Measurement Unit (IMU), Global Po-
sitioning System (GPS) receiver, and magnetometer sensors data. The work
in [35] proposed a fault tolerance architecture based on duplication-comparison
technique for perception targeting sensors and software faults on an outdoor
quadrotor UAV. The architecture uses extended Kalman filers for data fusion
and a weighted average voting system with an added analytical redundancy
using the dynamic model of the quadrotor.

In most of the works considering these approaches, the fault indicators were
obtained as a difference between deterministic values corresponding to the nom-
inal estimations and the observations collected from the sensors. However, more
robust indicators could be derived from the comparison of the probability distri-
butions of the prediction and the observations using informational metrics such
as α divergences [36], Kullback-Leibler divergence [37] and Bhattacharyya dis-
tance [38]. These informational measures give more accurate information about
sensor observations and estimations such as volume, orientation and uncertain-
ties in distributions, which leads to more robust fault indicators [39].

Among the metrics cited before, the Bhattacharyya distance was used in
fault detection and isolation techniques in different applications such as analog
circuits [40], [41], multi-robot systems [42], rolling element bearings [43] and
many other applications. In [42], the Bhattacharyya distance was applied with
the Informational Kalman Filter (IF), that deals with the information matrix
and vector, for diagnosis of sensor faults in wheeled mobile robots. The in-
formational filter presents several advantages over the covariance form of the
Kalman filter for multi-sensor systems. Its computational requirement is less
than that of the covariance form since it requires the inversion of the informa-
tion matrix which is of the dimension of the state vector instead of the inversion
of the composite innovation covariance matrix which is of the dimension of the
observation vector. In addition, it performs better than the Kalman Filter in
the correction step since it requires only additions at this stage. It allows also
for a distributed or decentralized data fusion architecture [44], and is therefore
considered in this work.

This paper proposes a global informational approach for fault tolerant data
fusion applied to UAV attitude, altitude and position estimation in absence of a
dynamic model. The developed approach is based on the duplication/comparison
traditional method. An informational framework is proposed and designed us-
ing extended Informational Kalman Filters for state estimation with prediction
models based on available sensors measurements. For the diagnosis layer, fault
indicators are generated and evaluated using the statistical Bhattacharyya met-
ric. The system recovers from a fault by switching from the erroneous state into
an error free state. Compared to the work presented in [35], the architecture
in this paper does not make use of an estimation of the dynamic model of the
UAV to isolate the faulty sensors since this estimation may introduce errors due
to the model imperfections, the uncertainties in the system or the unusual en-
vironmental conditions. The evaluation of the information surprise provided by
the sensors measurements is adopted instead for fault diagnosis. The concept
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of surprise appeared remarkable for its simplicity and generality which resulted
in its applicability to areas as diverse as learning, data mining [45], fault detec-
tion [44], etc. Based on the above review, the novel contributions of this work
are summarized as below:

• The proposition of a stochastic fault tolerant multi-sensor data fusion ar-
chitecture for a multirotor UAV that alleviates the assumption of a fault-
free prediction model and reduces the number of redundant sensors needed
for fault isolation. This is achieved by developing an algorithm based on
the concept of the information surprise evaluated using the Bhattacharyya
distance between the predicted and the corrected distributions of the ex-
tended Information filters;

• A thresholds optimization process using the Bhattacharyya criterion de-
veloped first in [42] to maximize the information surprise between the prior
and the posterior distributions;

The rest of the paper is organized as follows: in Section 2, some preliminar-
ies about the information filter and the Bhattacharyya distance are presented.
The proposed fault tolerant data fusion architecture is detailed in Section 3.
Then, offline real experimental data validation results are presented in Section
4. Finally a conclusion and a discussion are provided in Section 5.

2 Preliminaries

Consider the nonlinear system represented as:

xk = f(xk−1, uk−1) + ωk−1
zk = h(xk) + vk

(1)

where, at a given instant k, xk ∈ Rn is the state vector, zk ∈ Rm is the
measurement vector, uk ∈ Rr is the input vector, ωk ∈ Rn and vk ∈ Rm
are white Gaussian noises associated respectively to the state model with a
covariance matrix Qk ∈ Rn×n and to the measurement model with a covariance
matrix Rk ∈ Rm×m, and f : (xk−1, uk−1) 7−→ xk, and h : xk 7−→ zk are two
defined mapping.

2.1 Extended Information Filter

An Extended Information Filter (EIF) is applied to estimate the altitude, at-
titude and position of a multirotor UAV. It consists of two phases: (a) the
prediction phase that uses the evolution model which is a representation of the
theoretical operation of the UAV, (b) the update phase where sensors outputs
are needed to correct the prediction. The information form of the Kalman filter
is obtained by replacing the representation of the state estimate x̂k and covari-
ance Pk in the EKF with the information state vector yk and information matrix
Yk:

yk/k = Yk/kxk/k (2)
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Yk/k = P−1k (3)

The EIF equations are formulated as in [44]:

• Prediction Step:

Yk/k−1 = [Fk−1Yk−1/k−1F
T
k−1 +Bk−1QkB

T
k−1

+Qk−1]−1
(4)

yk/k−1 = Yk/k−1f(xk−1/k−1, uk−1) (5)

• Update Step:

Yk/k = Yk/k−1 +

w∑
l=1

Il(k) (6)

yk/k = yk/k−1 +

w∑
l=1

il(k) (7)

w is the number of sensor blocks. Il(k) is the information matrix contribution
of the sensor l written as:

Il(k) = (H l
k)T (Rlk)−1H l

k (8)

and il(k) is the information state associated to the measurement from sensor l
at time k, zlk, expressed by:

il(k) = (H l
k)T (Rlk)−1[(zlk − hlk/k−1) + (H l

kx
l
k/k−1)] (9)

with hlk/k−1 = hl(xk/k−1), H l
k ∈ Rm×n and Rlk being respectively the non linear

measurement equation, its Jacobian and the covariance matrix related to the
sensor l. The Jacobians Fk, Hk and Bk are given as:

Fk =
∂f

∂x
|x=xk/k

, Hk =
∂h

∂x
|x=xk/k

, Bk =
∂f

∂u
|u=uk

(10)

2.2 Bhattacharyya Distance (BD)

The Bhattacharyya Distance (BD) is a measure of dissimilarity between two
probability distributions p(x) and q(x). It is based on the Bhattacharyya coef-
ficient that estimates the overlap between two statistical populations [38]:

BD(p, q) = −log[BC(p, q)] (11)

with:

BC(p, q) =
∑
x∈X

√
p(x).q(x) or

∫
x∈X

√
p(x).q(x) (12)

being the Bhattacharyya coefficient for discrete and continuous probability dis-
tributions respectively. Considering two normally distributed classes p and q,
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with µp, µq, σp and σq being their means and variances respectively, the Bhat-
tacharyya distance can be formulated as:

BD(p, q) =
1

4
log(

1

4
(
σ2
p

σ2
q

+
σ2
q

σ2
p

+ 2)) +
1

4
(
(µp − µq)2

σ2
q + σ2

p

) (13)

For multivariate normal distributions, BD is expressed as:

BD =
1

8
(µp − µq)Tσ−1(µp − µq) +

1

2
log(

|detσ|
|detσp|.|detσq|

) (14)

with σ =
σp+σq

2 .
From the equation above, one can notice that the Bhattacharyya distance can
be divided into two terms:

• 1
8 (µp − µq)

Tσ−1(µp − µq) representing the Mahalanobis distance (MD)
between the two distributions;

• 1
2 log( |detσ|

|detσp|.|detσq| ) representing the mutual information between p(x) and

q(x) and the one with covariance σ;

Bhattacharyya distance has been already used to measure class separability in
classification problems and it was shown to be better than the Mahalanobis
distance. When two classes have different variances and similar means, MD
will be zero, while BD increases with the difference between the variances. It is
also preferred over the Kullback-Leibler divergence because it does not require
a reference distribution and is therefore symmetrical. However, the online com-
putation of this distance between moving normal distributions may introduce
some latency and detection delay that should be studied as we propose in our
perspectives.

3 Comparison/Duplication Fault Tolerance Ar-
chitecture

The fault tolerant data fusion architecture using comparison/duplication is pre-
sented in this section . It is based on the approach proposed in [7] and its
general principle is illustrated in Fig. 1.

The duplication/comparison approach in data fusion consists of using at
least two redundant units performing fusion of data collected from diversified
or redundant sensors to estimate the system states and then comparing them
to detect an abnormal behavior of the system. Once an error is detected, the
outputs of the fusion blocks and the sensors measurements are analysed for error
identification and for estimating the correct output. Under the assumption of a
single fault, this approach can deal with one hardware sensor fault.

As shown in Fig. 1, the architecture consists of two parallel data fusion units
DF1 and DF2 resulting from (S1,S2) and (S3,S4) sensor blocks respectively. S1
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Figure 1: Duplication–comparison architecture for fault tolerant data fusion [7]

and S3 are supposed to be functionally similar (i.e. either redundant sensors or
diversified sensors providing the same information), the same holds for S2 and
S4. The outputs of the duplicated and diversified components are compared
and are used as follows:

• The outputs of EIKF1 and EIKF2 are compared using the Bhattacharyya
metric to detect the presence of an error.

• The outputs of the sensor blocks (S1,S3) and (S2,S4) are compared to
identify the type of the fault.

– If the outputs of the functionally similar sensors are different, then
a sensor fault is diagnosed. The erroneous branch and the defective
sensor can be identified by residual analysis and the fault is tolerated
using the outputs of the error free branch.

– If the sensors outputs are identical, then a software fault is diagnosed.

Each component of the architecture is detailed in Fig. 2, and in the following
sections.

3.1 Sensor Component

In our work, the data fusion fault tolerant architecture is implemented on a
multirotor UAV to provide real flight data for experimental validation using
fault injection. This UAV is equipped with various redundant and diversified
sensors grouped in sensor blocks.
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Figure 2: Fault Tolerance architecture implementation on the UAV system
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• Sensor block S1: It consists of an InvenSense ICM-20689 Inertial Mea-
surement Unit (IMU1) that combines a 3-axis gyroscope (Gyro1), a 3-axis
accelerometer(Acc1), and a Digital Motion Processor TM (DMP).

• Sensor block S2: It consists of one low cost Ublox NEO-M8N GPS mod-
ule (GPS1) used to measure the absolute position of the UAV, one IST8310
magnetometer (Mag1) based on the anisotropic magneto resistance (AMR)
technology to estimate the heading (yaw) of the UAV, and one LIDAR-
Lite v3 Lidar (Lidar1) to measure the altitude of the UAV.

• Sensor block S3: It consists of a Bosch BMI055 Inertial Measurement
Unit (IMU2) that includes a digital, tri-axial 12-bit acceleration sensor
(Acc2) and a triaxial 16-bit gyroscope (Gyro2).

• Sensor Block S4: It consists of one low cost Ublox NEO-M8N GPS mod-
ule (GPS2), one IST8310 magnetometer (Mag2) in addition to one Lidar
(Lidar2).

In addition to these sensors, a Real-time kinematic (RTK) GPS providing mea-
surements with an accuracy of 1cm is installed and will be used as ground truth.
Note that in this architecture the sensors are not diversified, which means that
we will not be able to tolerate common cause failures, such as GPS rebounds or
absence of data due to being in a tunnel.

The specifications of the different used sensors are summarized in Table 1.

3.2 Data Fusion Component

The first Extended Information Kalman Filter (EIKF1) of the architecture uses
data from the Inertial Measurement Unit system (IMU1) with the sensors GPS1,
Mag1 and Lidar1. The sensor block S1 is used in the evolution model, and the
sensor block S2 is used in the update step. The second fusion block has a similar
construction.

We define the two coordinate frames: a body-fixed coordinate system (B),
with its origin located at the accelerometer triad and aligned to the casing,
and a local North-East-Down (NED) navigation cartesian frame (N ). For most
applications this frame is defined stationary with respect to the earth if the
UAV is not expected to move over large distances. The rotation between the
two frames is given by the three Euler angles: roll (φ), pitch (θ) and yaw (ψ),
and the rotating Direction Cosine Matrix is defined as:

RBN = cψcθ −sψcφ+ cψsθsφ sψsφ+ cψsθcφ
sψcθ cψcφ+ sψsθsφ −cψsφ+ sψsθcφ
−sθ cθsφ cθcφ

 (15)

3.2.1 Prediction Step

The prediction equations are expressed in terms of the accelerometer and gyro-
scope measurements. A each instant k, the quadrotor state and input vectors
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Sensor Specifications
• IMU modules:
− Gyroscope − Nonlinearity: up to ±0.05%

− Cross-Axis Sensitivity: up tp ±1%
− Full-scale range: ±2000◦/s

− Accelerometer − Nonlinearity: ±0.5%
− Cross-Axis Sensitivity: up to ±1%
− Full-scale range: ±16g

• GPS module − Velocity accuracy: 0.05m/s
− Heading accuracy: 0.3◦

− Horizontal position accuracy: 2.5m

• Magnetometer module − Sensitivity: 330LSB/G
− Dynamic range: 16(X and Y)/25(Z) G
− Accuracy: up to 1.5◦

• Lidar Lite-V3 − Range: 40m
− Accuracy (< 5m): ±2.5cm
− Resolution: ±1cm

Table 1: Sensors Specifications

are defined as:
Xk = [ẋbk ẏbk żbk φk θk ψk]T (16)

uk = [axk
ayk azk pk qk rk]T (17)

where ẋb, ẏb, żb and p, q, r are the body-axis velocity components and angular
rates respectively.

The accelerations ax, ay and az are measured with respect to the fixed
gravity vector such as: ax

ay
az

 =
d

dt

 ẋ
ẏ
ż

+RBN

 0
0
-g

 (18)

with d
dt [ẋ ẏ ż]T being the time derivative of the velocity vector observed from

the fixed frame and expressed as:

d

dt

 ẋ
ẏ
ż

 =
d

dt

 ẋb
ẏb
żb

+

 p
q
r

×
 ẋb
ẏb
żb

 (19)

Combining the equations (18) and (19) lead to the dynamics of the velocity
states as below:

d

dt

 ẋb
ẏb
żb

 =

 rẏb − qżb + ax − g sin θ
pżb − rẋb + ay + g sinφ cos θ
qẋb − pẏb + az + g cosφ cos θ

 (20)
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Similarly, using the rotation matrix derived above, the relationship between
the angular rates and the time derivatives of the Euler angles are given by:

d

dt

 φ
θ
ψ

 =

 p+ q sinφ tan θ + r cosφ tan θ
q cosφ− r sinφ
(q sinφ+ r cosφ) sec θ

 (21)

Based on (20), (21) and assuming that the bias parameters follow a first-
order Gauss-Markov noise model, the state dynamic equations can be written
as:

Xk+1/k = f(Xk/k, uk) + wk (22)

with Xk+1/k being the estimated state vector at time k + 1 given observations
up to time k. The system is nonlinear and the jacobians should be calculated
as in (10):

Fk =
0 rk −qk 0 −g cθk 0

−rk −pk 0 −g cθk sφk −g cφk sθk 0
qk −pk 0 −g cθk sφk −g cφk sθk 0
0 0 0 qk cφk tan θk αk 0
0 0 0 −rk cφk − qk sφk 0 0
0 0 0 βk γk 0


(23)

with αk = (rk cφk + qk sφk)(tan θ2k + 1), βk = (qk cφk − rk sφk)/cθk, γk =
s(θk (rk cφk + qk sφk))/cθ2k.

Bk =
0 0 1 0 −żbk ẏbk
0 1 0 żbk 0 −ẋbk
0 0 1 −ẏbk ẋbk 0
0 0 0 1 sφk tan θk cφk tan θk
0 0 0 0 cφk −sφk

0 0 0 0 sφk/cθk cφk/cθk


(24)

The prediction is then achieved as detailed in (4) and (5).

3.2.2 Update Step

To deal with the accelerometer and gyroscope inaccuracies, correction mea-
surements are obtained from the GPS, magnetometer and lidar sensors. The
measurement vector is given by:

zk = [vxk
vyk vzk Mxk

Myk Mzk żLk
]T (25)

where vxk
, vyk , vzk are the GPS velocity measurements, Mxk

, Myk , Mzk are the
magnetometer measurements in the body frame and zLk

is the lidar altitude
measurement.
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The nonlinear observation equations of the magnetometer are given below: Mx

My

Mz

 = RBN .

 Mex

Mey

Mez

 (26)

where [Mex Mey Mez ]T is the local magnetic vector expressed in the navigation
frame. The same transformation is needed for the GPS measurements. The
observation model is thus nonlinear and given by:

h(xk) =

cψkcθkẋbk + δxθk ẏbk + δxψk
żbk

sψkcθkẋbk + δyθk ẏbk + δyψk
żbk

−sθkẋbk + cθksφkẏbk + cθkcφkżbk
cψkcθkMexk

+ δxθkMeyk
+ δxψk

Mezk
sψkcθkMexk

+ δyθkMeyk
+ δyψk

Mezk
−sθkMexk

+ cθksφkMeyk
+ cθkcφkMezk

żbk


(27)

with δxθk = −sψkcφk+cψksθksφk, δxψk
= sψksφk+cψksθkcφk, δyθk = cψkcφk+

sψksθksφk, δyψk
= −cψksφk + sψksθkcφk, and the update step is achieved

according to (6)-(9).
For the implementation of the information filter on the UAV system, the

parameter w in (6) and (7) will be equal to 3 and the vector zlk in (9) corresponds
to [vxk

vyk vzk 0 0 0 0]T for the GPS sensor, [0 0 0 Mxk
Mxy

Mxz
0]T for the

magnetometer and [0 0 0 0 0 0 zLk
]T for the lidar.

3.3 Fault Tolerant Component

In this section, we present how sensors faults are detected and the system re-
covers using the fault tolerant component. We first detail the Error Detection
Module, and then the Error Identification and Recovery Module.

3.3.1 Error Detection Module

As described above and illustrated in Fig. 2, the first step in the fault tolerant
component is the error detection module EDM. It compares the estimated states
of the two Information Kalman filters (position, attitude and altitude). For this
purpose we calculate the Bhattacharyya Distance BD(DF1,DF2) between the
outputs of the two data fusion blocks DF1 and DF2. At each time instant k,
the models estimated from the data fusion blocks DF1 and DF2 are described by

their means q
[DF1]
k and q

[DF2]
k and their covariance matrices σ

[DF1]
k and σ

[DF2]
k

respectively, the residual is then expressed by:

BD(DF1,DF2) = 1
8 (q

[DF1]
k − q[DF2]

k )Tσ−1(q
[DF1]
k

−q[DF2]
k ) + 1

2 log( |σ|
|σ[DF1]

k |.|σ[DF2]
k |

)
(28)
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Then this residual is compared to a certain threshold to detect the existence of
faulty sensors. The decision is taken among two hypotheses: H1, the hypothesis
of existence of sensors faults in the UAV system and H0, the hypothesis of
absence of faults.
Let us define the following probabilities:

• PD = p(u1/H1) =
∫∞
ThDet

p(x/H1)dx: Detection probability, it is the prob-
ability of selecting H1 when H1 is true,

• PF = p(u1/H0) =
∫∞
ThDet

p(x/H0)dx: False alarm probability, it is the
probability of selecting H1 when H0 is true,

• P0 = P (H0) and P (H1) = 1− P0: Prior probabilities,

with ui being defined as the action of choosing the hypothesis Hi, and p(x/Hi)
is the probability density function of the variable x, which corresponds to the
Bhattacharyya distance BD(DF1,DF2) in our case.

Different techniques were proposed and applied in the literature to fix and
choose the thresholds. In Bayesian optimisation, the threshold selection fol-
lowed the minimization of a mean risk function. Using the Neyman-Pearson
criterion, it consists of optimizing the probability of detection while minimiz-
ing the false alarm probability [46]. Other techniques consider the optimisation
problem in terms of quantity of information by minimizing the conditional en-
tropy of the decision hypothesis or maximizing the mutual information [47], [48].
The technique adopted in this work is based on the Bhattacharyya criterion de-
veloped in [42]. The optimisation problem is formulated using the information
surprise that evaluates the variation between the prior and the posterior distri-
butions [45].

The Bhattacharyya criterion is defined as:

Bc = −
∑
j

(
log
∑
i

√
p(Hi/uj)p(Hi)

)
(29)

Using Bayes theorem, it can be formulated as:

Bc = −
[
log
[
p(H0)

√
p(u0/H0)
p(u0)

+ p(H1)
√

p(u0/H1)
p(u0)

]
+log

[
p(H0)

√
p(u1/H0)
p(u1)

+ p(H1)
√

p(u1/H1)
p(u1)

]] (30)

Knowing that:

P (u0) = P0(1− PF ) + (1− P0)(1− PD)
P (u1) = P0PF + (1− P0)PD

(31)

The Bhattacharyya criterion can be expressed as:

Bc = −
[
log[α0 + β0] + log[α1 + β1]− 1

2 log[γ0]
− 1

2 log[γ1]
] (32)
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Estimate P̂0: P̂0 = 1−
∑n

i=1 h
i

n
Initialize Bcmin = 0

Consider a threshold ThDet(i) from
the set ThDet(min)

to ThDet(max)

Find the corresponding P iD and P iF

Compute Bic

If Bic < Bcmin
=⇒ Bcmin

= Bic
ThDet(opt) = ThDeti

P optD = P iD
P optF = P iF

Figure 3: Residual threshold optimization

with:
α0 = P0

√
1− PF , β0 = (1− P0)

√
1− PD

α1 = P0

√
PF , β1 = (1− P0)

√
PD

γ0 =
α2

0

P0
+

β2
0

1−P0
, γ1 =

α2
1

P0
+

β2
1

1−P0

(33)

According to (32), the Bhattacharyya criterion depends on the detection and
false alarm probabilities PD and PF , and consequently depends on the choice
of the detection threshold ThDet.

The main objective is to determine the threshold that maximizes the infor-
mation surprise which corresponds to the minimization of the Bhattacharyya
criterion. The algorithm is based on the exhaustive search problem-solving tech-
nique. It starts by defining a threshold search interval, and then calculating the
Bc value across this interval to find the threshold that leads to the minimum Bc.
To estimate the a priori probability P0, we assume having random samples of
hypotheses hi: h = (h1, h2, ..., hn), where hi = 0 if the hypothesis H0 is selected,
and hi = 1 if the hypothesis H1 is selected. The probability P0 is estimated
as [44]:

P̂0 = 1−
∑n
i=1 h

i

n
(34)

Fig. 3 summarizes the threshold optimization algorithm where ThDet(min)
and ThDet(max) are fixed arbitrary based on the residuals sizes. Fixing these
margins is simpler than fixing empirically the optimal threshold in traditional
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techniques as a better choice of these two values decreases the convergence time
to the optimal threshold but do not change this optimal value given by the
algorithm when theses values are big enough.

The choice of the probability P0 should be suitable to the application and
to the frequency of occurrence of defects. It is normally estimated based on the
historical system behavior as a priori knowledge of the probable fault cases is
needed to guarantee their detection. Note that this is also the case when dealing
with traditional techniques based on fixing thresholds empirically.

3.3.2 Error Identification and Recovery Module

Once an error is detected, the faulty component should be isolated and then
the correct output of the system estimated. The procedure starts by comparing
the probability distributions of the prediction and correction steps of each data
fusion block to evaluate the information surprise [45] provided by the correction
measurements. This is done by computing the two Bhattacharyya distances as
described in the equations below:

BDDF1 = 1
8 (q

[DF1]
k/k−1 − q

[DF1]
k/k )Tσ−1(q

[DF1]
k/k−1 − q

[DF1]
k/k )

+ 1
2 log( |σ|√

|σ[DF1]

k/k−1
|.|σ[DF1]

k/k
|
) (35)

BDDF2 = 1
8 (q

[DF2]
k/k−1 − q

[DF2]
k/k )Tσ−1(q

[DF2]
k/k−1 − q

[DF2]
k/k )

+ 1
2 log( |σ|√

|σ[DF2]

k/k−1
|.|σ[DF2]

k/k
|
) (36)

If no fault exists, the a priori (k/k − 1) and a posteriori (k/k) distributions
should be convergent, and the information surprise must not exceed a prede-
termined threshold that depends on the number of observations, the size of the
state vector, etc. On the other hand, if the residual BDDF1 exceeds a threshold
ThDF1, an error is detected in the first branch (in the block sensors S1 or S2).
If the residual BDDF2 exceeds a threshold ThDF2, an error is detected in the
second branch (in the block sensors S3 or S4).

Then we proceed by comparing the outputs of similar sensors. We first
compare the output of the sensor block S1 with that of the sensor block S3 by
comparing the distance D(S1,S3) to a threshold Th13. D(S1,S3) is defined as:

DS1,S3 =
√

(φ1 − φ2)2 + (θ1 − θ2)2 + (ψ1 − ψ2)2 (37)

with φi, θi and ψi being the Euler angles measured by the Inertial Measurement
Unit IMUi.

Second, we compare the output of sensor block S2 with that of the sen-
sor block S4 by comparing the distances D(S2,S4)a, D(S2,S4)b and D(S2,S3)c to
thresholds Th24a, Th24b and Th24c. D(S2,S4)a, D(S2,S4)b and D(S2,S4)c are de-
fined as:

D(S2,S4)a =
√

(x1 − x2)2 + (y1 − y2)2

D(S2,S4)b = |z1 − z2|
D(S2,S4)c = |ψ1 − ψ2|

(38)
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Figure 4: Experimental quadrotor

with xi and yi being the position measured by the GPSi, zi the altitude mea-
sured by the Lidari and ψi the yaw angle measured by the Magnetometer Magi.

The diagnosis and fault-tolerant algorithm is detailed in Algorithm 1.

4 Experimental Validation

In this section we present the experimental validation of the proposed fault toler-
ant architecture using real data and fault injection. We start first by describing
the experimental environment followed by the obtained results.

The data acquisition was conducted outdoor using a Tarot650 quadrotor
built at the Heudiasyc Laboratory and shown in Fig. 4. The UAV is equipped
with the different sensors detailed in Section 3. The experimental data included
online fault injection, then was processed offline using a Matlab environment.
We consider in this section the results of two fault injections: an additive fault
on the first GPS sensor GPS1, and an additive fault on Lidar1. The covariance
matrices of the state and measurement models are selected based on empirical
tuning as:

Qk =

[
10−4 × I3×3 03×3

03×3 10−6 × I3×3

]
, Rk = 0.5× I7×7

4.1 Additive fault on GPS1

First, an additive fault on GPS1 output is considered. This type of fault emu-
lates a typical jump in the GPS position resulting from satellite signal rebounds.
Note that using redundant GPS sensors of the same type would usually not tol-
erate this fault as it has a common cause. Between the instants t1 = 7.26s
and t2 = 15.8s, a jump of 1m is added in the x1 and y1 direction and the new
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Algorithm 1 Fault-Tolerant Algorithm

Data: ThDet, ThDF1, ThDF2, Th13, Th24a, Th24b, Th24c
begin

Calculate BD(DF1,DF2), BDDF1, BDDF2 Calculate D(S1,S3), D(S2,S4)a,
D(S2,S4)b, D(S2,S4)c if (BD(DF1,DF2) > ThDet) then

/* A fault is detected */ if (BDDF1 > ThDF1) then
/* The fault is in the first branch */ if (D(S1,S3) > Th13) then

S1 is faulty, Isolate EIKF1
else

if (D(S2,S4)a > Th24a)||(D(S2,S4)b > Th24b)||(D(S2,S4)c > Th24c)
then
S2 is faulty, Isolate EIKF1

else
/* cannot identify the faulty sensor, keep running without
modifications */

end

end

else
if (DBDF2 > ThDF2) then

/* The fault is in the second branch */
else

/* cannot identify the faulty branch, keep running without mod-
ifications */ if (D(S1,S3) > Th13) then
S3 is faulty, Isolate EIKF2

else
if (D(S2,S4)a > Th24a)||(D(S2,S4)b > Th24b)||(D(S2,S4)c >
Th24c) then
S4 is faulty, Isolate EIKF2

else
/* cannot identify the faulty sensor, keep running without
modifications */

end

end

end

end

else
/* No fault is detected */

end

end
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Figure 5: Real and estimated trajectories after an additive fault on GPS1

measurements x′1 and y′1 are then given below as:

x′1(tk)
t1≤tk≤t2

= x1(tk) + 1

y′1(tk)
t1≤tk≤t2

= y1(tk) + 1
(39)

The UAV followed a given U-shape reference trajectory, presented in green by
the RTK measurement (considered as ground truth) in Fig. 5. The trajectories
estimated by the first and second Information filters in presence of faults on
GPS1 data are presented respectively in blue and red in Fig. 5. It is clear how
the position estimated from the first filter deviates significantly from all the
other systems.

Fig. 6 gives the Bhattacharyya distance BD(DF1,DF2) used for the fault de-
tection. It presents a jump at the fault injection time indicating a drift between
the outputs of the data fusion blocks. It should be compared to the threshold
presented in black in Fig. 6 that corresponds to the minimum Bhattacharyya
criterion obtained at the value 0.2 when P0 = 0.6154 (Fig. 7). It is shown that
the system detects an error at time tDet = 7.29s.

Once an error is detected, the faulty sensor should be isolated by applying Al-
gorithm 1. Therefore, the set of residuals BDDF1, BDDF2, D(S1,S3), D(S2,S4)a,
D(S2,S4)b and D(S2,S4)c must be compared (Fig. 8 and 9). To fix the thresh-
olds, an identical procedure to the one followed previously for the BD(DF1,DF2)

test is done for both BDDF1 and BDDF2. Fig 8 shows how that a posteriori
distributions of the second data fusion block are convergent and the residual
BDDF1 exceeds its threshold value after the fault has been detected, indicating
an error in the first branch. Similar reasoning on residual D(S1,S3) shown in
Fig. 9 enables to decide that the GPS1 is the faulty sensor. It should be noted
that in Fig. 8, the fault is injected at time t = 7.26s. Before this instant, the
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Figure 6: The BD(DF1,DF2) for the fault detection after GPS1 fault

Figure 7: Optimal threshold value Th12 using the Bhattacharyya Criterion for
P0 = 0.6154.
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Figure 8: The residual test to isolate the failed branch after GPS1 fault

high values of the distances BDDF1 and BDDF2 are due to the time needed for
the filters to converge. Practically, enough time should be provided to initialize
the filter and ensure its convergence before launching the diagnosis algorithm.
The black curve in Fig. 5 presents the output of the data fusion mechanism of
the UAV. From an average of the outputs of IEKF1 and IEKF2, it goes to the
output of IEKF2 after the exclusion of the first Information filter. To evaluate
the accuracy of the fault tolerant controller, the position errors along the x and
y axes are shown in Fig. 10. Note that the parts of the plots circled with red
are outliers (false measurement acquired from real time operating GPSs).

4.2 Additive fault on Lidar2

During this experiment, the UAV is requested to perform a hovering flight at a
3m altitude. At time t1 = 67s, an additive fault of 1m is added to the Lidar2
output as below:

z′2(tk)
tk≥t1

= z2(tk) + 1 (40)

There is no need for an additional ground truth in this case since the precision
of the Lidar installed on the UAV is below 15cm, thus it is considered as a
ground truth. The estimated altitudes by the two Information filters in the case
of faults on the Lidar2 data are presented respectively in blue and red in Fig.
11. We can clearly see that the altitude estimated from the first filter deviates
significantly from the one estimated from the second filter. The black curve
presents the altitude of the UAV given as output of the data fusion mechanism.
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Figure 9: The different residual tests after GPS1 fault

It goes from an average of the altitudes of IEKF1 and IEKF2 to the value of
IEKF1 once IEKF2 has been excluded as a system recovery.

This architecture could be easily adapted to detect and isolate software fault
as already considered in [7]. The software faults that are generally introduced
during the development stage are of human origin. Note however that software
faults detection problem is out of scope of this paper.

When compared to similar architectures applied on unmanned aerial vehi-
cles, the one presented in this paper presents the following advantages:

• Compared with [35], the proposed architecture overcomes the disadvan-
tages of using a dynamic model to isolate the faulty sensor which requires
to identify and tune the model parameters after each failure occurrence
to avoid model drift.

• Compared with [32], less redundant sensors and Kalman filter blocks are
needed in this architecture. The fault tolerant methods based on majority-
voting methods or weighted-mean methods requiring at least three similar
or diversified sensors measuring a certain state variable as in [32] are still
used in many existing avionic systems. However, they are expensive and
they can result in a significant increase in mass.

• Compared with [33,34], the fault-tolerant aspect of the sensor fusion algo-
rithm is validated with sensor failures injected during real flight and not
by superimposing simulated sensor failures on the actual flight data.
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Figure 10: The position errors along the x and y axes
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Figure 11: Estimated altitudes after an additive fault on Lidar2
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5 Conclusion

In this work, a fault tolerant multi-sensor fusion architecture based on the in-
formational form of the Kalman filter and the information theory concept is
developed and applied to a UAV system. The fault detection and isolation
steps were formulated using the Bhattacharyya distances between the outputs
of the Information filters and between the predicted and the updated distri-
butions of each IF respectively. The BD used in residual tests presents many
advantages when compared to other metrics such as the Mahalanobis distance
or the Kullback–Leibler metric since it increases with the difference between
the variances of the distributions under study and is symmetrical. However,
the latency introduced by the inertia of this distance when applied to measure-
ment streams and its effect on the detection delay have not been considered and
should be evaluated in future studies.

An optimal thresholding method using the Bhattacharyya criterion Bc is
adopted instead of the traditional techniques based on heuristic methods to fix
the false alarm probability. The computed threshold is affected by the historical
system behavior and the prior probability of the hypothesis.

In future work, this architecture should be developed and extended to have
the ability to tolerate more than one sensor fault, in addition to actuators faults.
Its performance in case of small additive and drift faults should be further eval-
uated and could be improved by comparing the outputs of redundant sensors.
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