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Abstract

Unlike spiking neurons which compress continuous inputs into digital signals for transmit-
ting information via action potentials, non-spiking neurons modulate analog signals through
graded potential responses. Such neurons have been found in a large variety of nervous
tissues in both vertebrates and invertebrates species, and proved to play a central role in
neuronal information processing. If general and vast efforts have been made for many years
to model spiking neurons using conductance-based models (CBMs), very few methods have
been developed for non-spiking neurons. When a CBM is built to characterize the neuron
behavior, it should be endowed with generalization capabilities (i.e. the ability to predict
acceptable neuronal responses to different novel stimuli not used during the model’s build-
ing). Yet, since CBMs contain a large number of parameters, it may typically suffer from
a lack of such a capability. In this paper, we propose a new systematic approach based
on multi-objective optimization which builds general non-spiking models with generaliza-
tion capabilities. The proposed approach only requires macroscopic experimental data from
which all the model parameters are simultaneously determined without compromise. Such
an approach is applied on three non-spiking neurons of the nematode Caenorhabditis elegans
(C. elegans), a well-known model organism in neuroscience that predominantly transmits
information through non-spiking signals. These three neurons, named RIM, AIY and AFD,
represent, to date, the three possible forms of non-spiking neuronal responses of C. elegans.

Keywords: Conductance-based neuron models; non-spiking neurons; generalization ca-

pability; multi-objective optimization; Caenorhabditis elegans.

Author Summary

Neurons are fundamental cells of the nervous system sending signals rapidly and precisely to
other cells in response to a stimulus. They can be of different sizes, of different shapes, and in
the great diversity of neurons, there are two types of behavior: spiking and non-spiking. The
amplitude and waveform of a spiking signal is essentially invariant with respect to the amplitude,
duration, and waveform of the stimulus, unlike a non-spiking signal which is stimulus dependent.
If much efforts have been made for many years to develop methods adapted for the modeling of
spiking neurons given the ubiquity of such neurons in neuronal process, very few for the non-
spiking ones. However, the latter have also been found in a large variety of nervous tissues in
both vertebrates and invertebrates species, and they play a central role in information processing
as well. Our work aims at proposing a method suited for the modeling of non-spiking neurons,
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with a particular focus on the generalization capability of the model. This capability corresponds
to the ability of the model to fit additional data or predict future observations reliably, which is
a paramount feature that any model should have whatever the field considered.

1 Introduction

Spiking neurons are often considered as the major information processing unit of the nervous
system. Nonetheless, not all neurons elicit spikes. While spiking neurons compress continuous
inputs into digital signals for transmitting information via action potentials, non-spiking neurons
modulate analog signals through graded potential responses. An advantage of this type of
response is that it allows not to sacrifice information content [75]. A large variety of nervous
tissues in both vertebrates and invertebrates species have revealed that a number of sensory,
inter and motorneurons function without eliciting spikes. Some examples are the human retina
neurons [40], numerous interneurons in insects and crustaceans [68], the motorneurons of the
Ascaris worm [14, 15], or most of the C. elegans neurons [28]. Non-spiking neurons have been
found in sensorimotor and central pattern generator circuits, proved to be central in neuronal
integration [68] and to provide a determining mechanism for the control of motor behavior
[10, 46, 45]. As far as we know, very few modeling efforts have been carried out to characterize
this type of neurons’ behavior using conductance-based models (CBMs).

CBMs have become one of the most powerful computational approaches for characterizing the
behavior of neurons [3, 59]. In simple terms, a CBM is a biophysical representation of a neuron in
which the ion channels are represented by conductances and the polar membrane by a capacitor
[16, 39]. In such models, every individual parameter and state variable have an established
electrophysiological meaning so that their role in the neuron dynamics can be unequivocally
identified. However, due to the difficulty to perform some experimental recordings (e.g. ionic
conductances [73]), many modeling studies suffer from the lack of sufficient physiological data to
determine all the parameter values. As a consequence, parameters are often tuned in an ad-hoc
manner. Furthermore, when new biological recordings come into play, these models can typically
suffer from good generalization capabilities (i.e. the ability to predict acceptable responses to
stimuli not used while building the model) [21, 20]. In order to overcome these issues, we
propose a new approach in which all the model parameters are simultaneously determined, from
macroscopic data, by trading off the accuracy and the capability of generalization of the model.

To obtain a CBM that characterizes the neuron behavior accurately and with a good gen-
eralization capability, one needs to capture the right underlying bifurcation structure of the
neuron, i.e. the qualitative changes that the neuron behavior undergoes as a result of a change
in stimuli. In a sense, neurons are dynamical systems [36]. In this paper, we show that the
steady-state current (depicted in Figure 1) plays a pivotal role in the dynamic of non-spiking
CBMs by determining: (i) the number of equilibra as well as their values, and (ii) all the bi-
furcations of the resting state along with the values to which they occur. Therefore, this paper
adopts a multi-objective optimization approach so that, in addition to fitting the membrane
potential evolution, it also captures the underlying bifurcation structure of non-spiking neurons
by considering an additional objective: the fitting of the steady-state current.

In the present work, we apply our proposed approach on three non-spiking neurons (RIM,
AIY and AFD) of the nematode C. elegans. Non-spiking neurons can display two typical be-
haviors: (i) near-linear, with a smoothly depolarization or hyperpolarization from the resting
potential, and (ii) bistable, with nonlinear transitions characterized by a voltage jump between
the resting potential and a depolarized potential of higher voltage. In particular, RIM and AIY
neurons display a near-linear behavior (Figure 1.A) while AFD exhibits a bistable one (Figure
1.B) so that our approach is applied on experimental behavior representative of the known types
of non-spiking neurons.
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Figure 1: In-vivo recordings of three different non-spiking neurons of C. elegans which represent,
to date, the three forms of possible non-spiking neuronal responses of the nematode. (Top)
Evolution of membrane potential for a series of current injections, in spans of 5 seconds, starting
from -15pA and increasing to 35pA by 5pA increments. (Bottom) I-V relationships obtained
from averaged voltage-clamp recordings (RIM: n = 3; AIY: n = 7; AFD: n = 3). Peak currents
are measured by the absolute maximum amplitude of currents within the first 100 ms of each
voltage step onset, while steady-state currents are measured by the averaged currents of the last
50 ms of each voltage step. (A) Near-linear behavior. Published in [51] (reproduced with the
consent of the authors). (B) Bistable behavior. New unpublished results for AFD.

2 Materials and Methods

2.1 Electrophysiology

The C. elegans strain used was PY1322 oyIs18[gcy-8::GFP] X with GFP exclusively expressed
in AFD neurons. Experiments were performed on young adult hermaphrodites (3-4 days old)
maintained at room temperature (22-23°C) on nematode growth medium (NGM) plates seeded
with E. coli OP50 bacteria as a food source [5]. Electrophysiological recording was performed
as previously described [51]. Briefly, an adult was immobilized with cyanoacrylate adhesive
(Vetbond tissue adhesive; 3M) on a Sylgard 184-coated (Dow Corning) glass coverslip and
dissected to expose AFD. Recordings were performed using single-electrode whole-cell current
clamp (Heka, EPC-10 USB) with two-stage capacitive compensation optimized at rest, and
series resistance compensated to 50%. The standard pipette solution was (all concentrations
in mM): [K-gluconate 115; KCl 15; KOH 10; MgCl2 5; CaCl2 0.1; Na2ATP 5; NaGTP 0.5;
Na-cGMP 0.5; cAMP 0.5; BAPTA 1; Hepes 10; Sucrose 50], with pH adjusted with KOH to
7.2, osmolarity 320–330 mOsm. The standard extracellular solution was: [NaCl 140; NaOH 5;
KCL 5; CaCl2 2; MgCl2 5; Sucrose 15; Hepes 15; Dextrose 25], with pH adjusted with NaOH to
7.3, osmolarity 330–340 mOsm. Liquid junction potentials were calculated and corrected before
recording. Data analysis were conducted using Fitmaster (Heka) and exported to OriginPro
2018 (OriginLab) for graphing.

2.2 Conductance-based model description

Conductance-based neuron models, based on the Hodgkin-Huxley formalism, were first postu-
lated in a series of seminal works in the 1950s [30, 31, 32, 33, 29]. They describe the neuronal
dynamics in terms of activation and inactivation of voltage-gated conductances. In particular,

3



the dynamic of the membrane potential V is described by a general equation of the form

C
dV

dt
= −

∑
ion

Iion + I (1)

where C is the membrane capacitance,
∑

ion Iion is the total current flowing accross the cell
membrane, and I is an applied current.

The dynamics of every Iion are governed by gating particles (gates) sensitive to the changes
in the membrane potential (voltage). These gates can be of two types: activation gate and
inactivation gate, each of which can be in an open or a closed state. The probability of an
activation or inactivation gate being in the open state is denoted respectively by the variables
m and h. Thus, the current generated by a large population of identical ion channels is given
by

Iion = gionm
a
ionh

b
ion(V − Eion)

where gion is the maximal conductance (namely the conductance of the channel when all the
gates are open); Eion is the reverse potential, that is, the potential at which the ion current
reverses its direction (a.k.a. equilibrium potential); and a and b respectively refer to the number
of activation and inactivation gates. Channels that do not have inactivation gates (b = 0) induce
a persistent current (i.e. current that does not inactivate) noted by Iion,p, while channels that
do inactivate (b = 1) induce a transient current (i.e. current that inactivates) noted by Iion,t.

The dynamics of variables m and h are described by the following equation:

dx

dt
=
x∞(V )− x

τx
, x ∈ {m,h} . (2)

where τx is the constant time for which x reaches its respective equilibrium value x∞. The latter
is expressed by a Boltzmann sigmoid function:

x∞(V ) =
1

1 + exp

(
V x
1/2
−V

kx

) , x ∈ {m,h} .

where V x
1/2 satisfies x∞(V x

1/2) = 1/2 and kx is the slope factor with km > 0 and kh < 0 as to

represent activation and inactivation respectively, i.e., smaller values of |kx| lead to a sharper
x∞.

In a previous work [59], a series of in-silico experiments were conducted for determining the
most suitable models to the electrophysiology of C. elegans neurons: ICa,p + IKir + IK,t + IL-
model was selected for RIM and AFD neurons, and ICa,t + IKir + IK,p + IL-model for AIY. A
complete mathematical description of these models is presented in Appendix A.

2.3 Objective functions

Primary objective: Membrane potential. The primary objective of the proposed conductance-
based models is to reproduce the evolution of the membrane potential depicted in Figure 1 for
the different neurons under study. To that end, we employ the cost function fV as being the
root-mean-square error normalized to the noise level (i.e. standard deviation) of each experi-
mental voltage trace. The noise level, noted σI , is estimated as in [81], that is, we choose a time
window at the end of each trace where the curve is relatively flat for calculating the standard
deviation. Therefore, fV takes the following form:

fV (θV ) =
1

|I|
∑
I

√
1
N

∑
t(Vexp(I, t)− VθV (I, t))2

σI
(3)
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where Vexp(I, t) are the experimental voltages depicted in Figure 1 and VθV (I, t) the voltages
estimated by the model where θV is the vector containing all the model parameters (see Appendix
A); t ∈ [0, 50ds] corresponds to the biological real time with a sampling period of ∆t = 0.004ds;
N = 12500 is the number of data points in the measurement record, and I corresponds to
successive step values of current injections starting from -15pA and increasing to 35pA by
intervals of 5pA.

Secondary objective: Steady-state current. As the primary objective alone may fail to
predict generalized responses to novel stimuli, the secondary objective aims to fit the mean of
the experimental responses of the steady-state current (RIM: n = 3; AIY: n = 7; AFD: n =
3) displayed in Figure 1. The fitting of the steady-state current is carried out by minimizing
the root-mean-square error normalized to the standard deviation, noted σ. Therefore, the cost
function denoted f∞ is defined as follows:

f∞(θSS) =
1

|VH |
∑
VH

√
(Iexp∞ (VH)− IθSS∞ (VH))2

σVH
(4)

where Iexp∞ (V ) is the experimental mean (Figure 1) and IθSS∞ (V ) the estimated one; θSS is the
vector containing the parameters related to the steady-state current (see Appendix A); VH
corresponds to a series of voltage clamped starting from -100mV and increasing to 50mV by
10mV increments, and σVH the experimental noise level (standard deviation).

About initial conditions. It is important to notice that all model parameters are considered
in the estimation procedure, including the initial conditions of the model. This is particularly
relevant for multistable systems, such as the AFD neuron, which has two stable asymptotic
states. For such systems, the convergence to a stable state depends on the initial conditions
and a bad initialization choice could result in the inability of the system to fit data. Therefore,
by considering m0 and h0 as parameters to be estimated, the algorithm can escape from bad
regions in the solution space that are due to a bad choice of the initial conditions, and allow the
global convergence of the system.

2.4 Differential Evolution

Originally proposed by Storn and Price [76], differential evolution (DE) is a simple yet powerful
evolutionary algorithm for global optimization, successfully applied in many practical cases
[12, 13]. In the context of parameter estimation in conductance-based models (as it is the
case in this paper), it has not only been shown to be an effective method [6, 7, 8, 9, 59], but
also superior to other optimization methods such as genetic algorithms, simulated annealing
and particle swarm optimization algorithm in terms of convergence speed, simulation time, and
minimization of the cost function [6, 8].

As every population-based metaheuristic, DE is an optimization method that iteratively
optimizes a problem by trying to improve a set of NP candidate solutions, so-called individuals,
that are initially set at random within a given solution space of D parameters. At each iteration,
new individuals (called trial vectors) are constructed by means of two operations: so-called
mutation and crossover. Then selection determines which individuals will survive into the next
iteration. We define xi,G(j) as the j-th parameter of the i-th individual at generation G.

In mutation, for each target vector xi,G, a mutant vector vi,G+1 is generated adding a weighted
difference between two randomly selected individuals of the generation G (xi2,G and xi3,G) to a
third randomly selected one (xi1,G) so that

vi,G+1 = xi1,G + F · (xi2,G − xi3,G), i1 6= i2 6= i3 6= i (5)
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where F is a real constant factor ∈ [0, 2] that controls the amplification of the difference vector
xi2,G − xi3,G.

In crossover, the target vector xi,G is mixed with the mutated vector vi,G+1 to yield a trial
vector ui,G+1 of the form

ui,G+1 = (ui,G+1(1), ui,G+1(2), . . . , ui,G+1(D))

which is generated according to the following scheme:

∀ i = 1, . . . , NP, ∀ j = 1, . . . , D, ui,G+1(j) =

{
vi,G+1(j) if r < CR

xi,G(j) otherwise
(6)

where CR ∈ [0, 1] and r is generated according to a uniform distribution U(0, 1).
Finally, in order to obtain a new generation of individuals, a greedy selection is carried out:

∀ i = 1, . . . , NP, xi,G+1 =

{
ui,G+1 if f(ui,G+1) ≤ f(xi,G)

xi,G otherwise

where f is the objective function.
Every individual of the population has to serve once as target vector, so that there are NP

competitions in one generation and the population size is kept constant at NP with NP ≥ 4.
During the mutation operation, if a component of a mutant vector falls out of the bounds of
the feasible region (depicted in Table 1), we set this component to the closest boundary value.
This approach is particularly efficient if the optimum lies near bounds and produces feasible
solutions by making as few alterations to the mutant vector as possible; unlike other techniques
consisting in random reinitialization or penalty [64].

Parameters Minimum value Maximum Value

gCa, gKir, gK , gL 0nS 50nS

ECa 20mV 150mV

EK -100mV 0mV

EL -80mV 30mV

V m
1/2, V

h
1/2, V

Kir
1/2 -90mV 0mV

km 0mV 30mV

kh, kKir -30mV 0mV

τm, τh 0ds 15ds

x0m, x0h 0 1

C 0 10

Table 1: Parameter bounds, determined to be biologically relevant [36, 51, 59].

2.5 Differential Evolution for Multi-objective Optimization

In single-objective problems, a solution is better or worse than another solution if its cost function
is lower or higher. This is not the case in multi-objective optimization. The notions of better
and worse are replaced by the one of domination. A solution θ1 dominates another solution θ2 if
none of its objective values is higher and at least one is lower. Let f1, . . . , fM be the objectives
to optimize. In a mathematical sense, θ1 dominates θ2 if both the following conditions hold:∀j ∈ {1, . . . ,M} , fj(θ1) ≤ fj(θ2)∃k ∈ {1, . . . ,M} , fk(θ1) < fk(θ2)

(7)

6



There exist numerous variants of DE for solving multi-objective optimization problems [1,
53, 82, 69, 65, 2, 70]. We select the so-called DEMO (Differential Evolution for Multi-objective
Optimization.) [69] because it provides a good trade-off between a simplicity of implementation
and very good results on benchmarks compared to several state-of-the-art methods in terms of
convergence and diversity in obtained solutions [69, 71]. It combines the basic mutation and
crossover operators (5) and (6) of the DE for generating new candidates solutions, with the
concepts of nondominated front sorting and crowding distance metric derived from NSGA-II
[17]. The replacement mechanism in DEMO works as follows:

• the candidate replaces the parent if it dominates it,

• if the parent dominates the candidate, the candidate is discarded,

• otherwise (when the candidate and parent are nondominated with regard to each other),
the candidate is added to the population.

After that, if the population size exceed NP , noted Q, it needs to be truncated using nondom-
inated sorting and crowding distance metric.

Nondominated sorting is a procedure to classify the exceeding population Q in different
nondominated fronts Fi, i = 1, 2, . . . , etc. In other words, the solutions of a front Fi are not
dominated by any member belonging to higher fronts Fj where j > i. In this way, the solutions
belonging to the best front F1 are those that are not dominated by any member of Q; the second
front F2 are the solutions that are not dominated by any member of the fronts Fj for all j > 2,
etc.

Then, the new generation is filled with the best non-dominated front and continues with
solutions of the second non-dominated front, followed by the third one, and so on. Since |Q| >
NP , not all fronts may be accomodated in the new generation. When the last acceptable front
that cannot be fully accommodated in the population is being considered, instead of arbitrarily
discarding some members, we select the solutions which will induce the highest diversity. This
procedure allows to promote the diversity in the population. To do so, we assign a crowding
distance di to each member i of the last acceptable front. It is a measure of the normalized search
space around i which is not occupied by any other solution in the population. A solution with a
smaller value of the distance is, in a sense, more crowded by other solutions. Therefore, solutions
with the highest crowding distance are selected in order to finish to fill the new generation.

3 Results

3.1 The steady-state current determines the bifurcation structure of non-
spiking neurons

In typical voltage-clamp experiments, the membrane potential is stabilized at several values VH
(H stands for hold) for which the resulting currents are measured. Asymptotic values (t→∞)
of those currents, depending only on VH , are called steady-state currents and noted I∞(VH).
Mathematically, the steady-state current I∞ is the total current

∑
ion Iion flowing accross the

cell membrane when gating variables m and h are at their equilibrium, i.e. x = x∞ where
x ∈ {m,h}. Therefore, its analytical expression is defined as follows:

I∞(V ) =
∑
ion

Iion∞(V ) (8)

where
Iion∞(V ) = gionm

a
ion∞(V )hbion∞(V )(V − Eion)

In non-spiking CBMs, we show that the curve V → I∞(V ) defined in (8) plays a pivotal role in
the system dynamics by determining: (i) the number of equilibria as well as their values, and (ii)
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all the bifurcations of the resting state along with the values of I to which they occur. Indeed,
any stationary point of gating variables x ∈ {m,h} must satisfy x∗ = x∞(V∗). Replacing this
into the first equation on V , fixed points V∗ of such models are those that satisfy the equation

I∞(V∗) = I. (9)

In other words, equilibria V∗ correspond to the intersections between the steady-state curve
I∞ and a horizontal line I = c where c is a constant. There are two standard shape of the
steady-state curve I∞, monotonic and cubic (Figure 2), each involving fundamentally different
neuro-computational properties for non-spiking neurons :

• As shown in Figure 2.A, CBMs with a monotonic steady-state current only have one equi-
librium for any value of I. Non-spiking neurons with such a steady-state current display a
near-linear behavior characterized by smoothly depolarization or hyperpolarization from
the resting potential, such as the RIM and AIY neurons (Figure 1.A).

• As shown in Figure 2.B, a N-shape curve leads to a saddle-node bifurcation. When I = c1,
there are 3 equilibria, noted V c1

1∗ , V c1
2∗ and V c1

3∗ . Increasing I results in coalescence of two
equilibria (the stable V c1

1∗ with the unstable V c1
2∗ ). The value I = c2, at which the equilibria

coalesce, is called the bifurcation value. For this value of I, there exist 2 equilibria. For
I > c2, for example I = c3, the system has only one equilibrium. In summary, when the
parameter I increases, a stable and an unstable equilibrium approach, coalesce, and then
annihilate each other. Non-spiking neurons with a N-shape steady-state current display
a bistable behavior characterized by a voltage jump between the resting potential and a
depolarized potential of higher voltage, such as the AFD neuron (Figure 1.B).

BA

-100 50-100 50

3 eq.

2 eq.

1 eq.

Membrane potential, V (mV) Membrane potential, V (mV)

Figure 2: Two typical shapes of the steady-state current V → I∞(V ), in red. Intersections
of I∞ and horizontal line I = c (with c constant) correspond to equilibria of the system. We
denote stable equilibria as filled circles  , unstable equilibria as open circles # and saddle-node
equilibria as G#. (A) Monotonic steady-state current. V c1

∗ and V c2
∗ correspond to equilibria for a

current injection I = c1 and I = c2 respectively. (B) N-shape steady-state current. The number
of equilibria of the system depends on the value of I. For the sake of readibility, we highlight
equilibria only for I = c1, noted V c1

1∗ , V c1
2∗ and V c1

3∗ .

As a consequence, it can be stated that the steady-state current determines: (i) the bifur-
cation structure of non-spiking neurons when I is considered as the bifurcation parameter, and
(ii) the equilibrium values of their graded responses to a particular stimuli.

3.2 Single-objective optimization may fail to determine a model with gener-
alization capabilities

Single-objective optimization experiments were conducted using stimuli from -15pA and increas-
ing to 25pA by 5pA increments, for the RIM, AIY and AFD neurons. The obtained parameter
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values for the three neurons are shown in Appendix B. The generalization capability is then
assessed from the voltage trace relative to 30pA and 35pA.

The bistable AFD neuron. Figure 3 shows the results obtained for the AFD neuron using
the single-objective approach. The high quality of the fitting, which takes into account current
injections in the interval [−15pA; 25pA], can be observed in Figure 3.A. Nonetheless, when
considering the resulting steady-state currents of the model in Figure 3.B, it can be observed
that the model deteriorates for values higher than 25pA, involving a non-physiological dramatic
change in the neuronal dynamics. Figure 3.C confirms this non-physiological response in the
evolution of the membrane potential for the 30pA and 35pA traces that are not taken into
account during the parameter estimation phase. In fact, as the steady-state current displays a
second aberrant and unexpected N-shape for I > 25, another saddle-node bifurcation occurs at
I ' 28.4 (see Figure 3.D), explaining the drastic rise of the membrane potential trajectory to
a new stable state of higher voltage. Thus, it can be concluded that the model fails to predict
neuron responses to stimuli not encountered during the parameter estimation process, making
it not acceptable and inadequate for the description of the AFD neuron behavior.

stable

unstable

saddle-node

B

D

A

C

Figure 3: Results of single-objective optimization (evolution of AFD membrane potential): (A)
Experimental data (represented in green) and ICa,p + IKir + IK,t + IL-model (represented in
blue) overlap for a series of current injection starting from -15pA and increasing to 25pA by
5pA increments. (B) Experimental steady-state currents (represented by green circles) and esti-
mated steady-state currents (represented by blue crosses) resulting from the fitting of membrane
potential evolution in (A). Red lines delineate the interval [-15pA; 25pA]. (C) Dark blue curves
represent the evolution of membrane potential for the same values of current injection than in
(A) (i.e. stimuli starting from -15pA and increasing to 25pA by 5pA increments), whereas light
blue ones represent the drastic non-physiological change of voltage traces for novel stimuli (30pA
and 35pA). Note the difference of scale regarding y-axis between (A) and (C). (D) Bifurcation
diagram. Four saddle-node bifurcations occur at I ≈ −0.66, I ≈ 1.36, I ≈ 3.19 and I ≈ 28.4.
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The near-linear RIM neuron. As in the case of AFD, Figure 4.A illustrates that the model
fits well with experimental data for all series of current injections considered during the op-
timization process (i.e. traces relative to stimuli from -15pA to 25pA by 5pA increments).
Additionally, Figure 4.B reveals that the steady-state current does not heavily deteriorate for
stimuli higher than 25pA, so that the model should obtain relative good predictive capabilities
for new stimuli. This fact is confirmed by Figure 4.C which shows a good fitting for the valida-
tion traces (depicted in light blue). Nonetheless, if we analyze the steady-state current in the
interval I ∈ [−2pA; 8pA] (i.e. space between the two red lines in Figure 4.B), we can observe
a deterioration of the steady-state current shape: instead of a monotonic shape, two N-shape
appear. As a consequence, two saddle-node bifurcations occur so that the membrane potential
of the model does not display a near-linear behavior as expected, but various jumps arise (as
illustrated in Figure 4.D) making the model inadequate for the description of the RIM neuron
behavior.

A B

C D

Figure 4: Results of single-objective optimization (evolution of RIM membrane potential): (A)
Experimental data (represented in green) and ICa,p + IKir + IK,t + IL-model (represented in
blue) overlap for a series of current injection starting from -15pA and increasing to 25pA by
5pA increments. (B) Experimental steady-state currents (represented by green circles) and esti-
mated steady-state currents (represented by blue crosses) resulting from the fitting of membrane
potential evolution in (A). Red lines delineate the interval [-2pA;8pA] in which the steady-state
current deteriorates. (C) Dark blue curves represent the model traces relative to stimuli from
-15pA to 25pA by 5pA increments, whereas light blue experimental traces represent experi-
mental traces relative to 30pA and 35pA. (D) Evolution of membrane potential for a series
of current injection starting from -5pA and increasing to 15pA by 1pA increments. Numerous
voltage jumps occur due to the two N-shape of the steady-current displayed in (B) between the
red lines.
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The near-linear AIY neuron. As can be seen in Figure 5.A, the model is capable of pre-
dicting accurate responses for traces relative to 30pA and 35pA. However, one can observe
a relatively high deterioration of the steady-state current for stimuli higher than 35pA (Fig-
ure 5.B). One can then hypothesize that the model may not describe adequately the voltage
responses for these stimuli.

A B

Figure 5: Results of single-objective optimization (evolution of AIY membrane potential): (A)
Experimental voltages for stimuli starting from -15pA and increasing to 35pA by 5pA increments
are represented in green. Estimated voltages resulting from the ICa,t+IKir+IK,p+IL-model for
stimuli going from −15pA to 25pA are represented in dark blue, whereas those relative to 30pA
and 35pA are represented in light blue. (B) Experimental steady-state currents (represented by
green circles) and estimated steady-state currents (represented by blue crosses) resulting from
the fitting of membrane potential evolution in (A). Red lines delineate the interval [-15pA;25pA].

3.3 A new multi-objective approach suited for determining non-spiking mod-
els with generalization capabilities

The previous section shows the importance of capturing the steady-state current in order to get
the right underlying bifurcation structure of neurons to predict reasonable neuronal responses.
Therefore, in addition to fitting the membrane potential evolution, we should also consider the
steady-state current as an additional objective to be fitted to capture the bifurcation dynamics
of neurons. Due to the different nature of their respective experimental data, obtained from
different experimental procedures with their own intrinsic and extrinsic sources of experimental
noise, the voltage and the steady-state current objectives can be conflicting. This conlicting
nature imposes a multi-objective treatment of the problem since, under two or more conflicting
objectives, there is not a single optimal solution that can optimize all objectives simultaneously.
A differential evolution approach adapted for solving multi-objective problems, called DEMO
(Differential Evolution for Multi-objective Optimization) [69], is used in this paper (see Section
2.5).

Using DEMO as baseline algorithm, the proposed multi-objective approach has been tailored
to best suit the nature of the problem, where the primary objective (membrane potential) must
prevail over the secondary one (steady-state current). In other words, the primary objective must
be favored as it is the one that guarantees quality in the neuronal response while the secondary
objective is aimed at capturing the bifurcation structure of the neuron model as to improve its
generalization capabilities. We denote the proposed approach DEMO/rand/best/biased.

Inspired by multi-objective guided search [79], the DEMO/rand/best/biased variant tries
to guide the search towards an optimal region on the primary objective. To that end, in a
preliminary step, a standalone single-objective DE is executed to yield a good candidate solution
on the primary objective. This solution is then used to bias the multi-objective approach by
integrating it into the initial randomly generated population. In order to reinforce this bias, the
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algorithm incorporates a rand/best strategy [24] that greedily uses the best individual on the
primary objective to form the trial vector. The aim of this variant is therefore to concentrate
and explore the Pareto front region around the best found primary objective solution. The
consequence is that the algorithm provides a set of solutions that reproduce the evolution of the
membrane potential with high fidelity due to the bias, while taking into account the bifurcation
structure of the neuron guided by the secondary objective.

Automated decision-making process. The result of a multi-objective optimization process
is a set of non-dominated solutions which constitute the best found trade-offs between the
conflicting objective functions. If the aim is to adopt one of these solutions as a global solution
to the problem, a decision-making process need to be put in place in order to discriminate the
selected solution under some criteria. In order to automate this process, we propose a four-
stage method that automatically selects a solution capable of reproducing adequate neuronal
responses to new stimuli.

• Step 1: Split the membrane potential dataset into three sets.
Procedure: The membrane potential dataset depicted in Figure 1 is split into three sets:
the training set, the validation set, and the test set [47]. The training set, from which the
model parameters are estimated, is composed of all the traces of membrane potential for
the series of current injections going from -15pA to 25pA by 5pA increments and also the
steady-state current. The validation set, used to select a solution with a good predictive
capability, is composed of the voltage trace relative to 30pA. The test set, composed of the
voltage trace relative to 35pA, is used to assess the model performance from data not used
in any part of the learning or decision-making process. The different sets are summarized
in Table 2.

Training set Validation set Test set

• Voltage traces for stimuli going from
−15pA to 25pA.

• Voltage trace relative
to 30pA.

• Voltage trace relative
to 35pA.

• Steady-state current.

Table 2: Training, validation and test sets.

• Step 2: Determining the set of non-dominated solutions.
Procedure: 10 runs with different random seeds of the multi-objective optimization ap-
proach DEMO/rand/best/biased are conducted using the training set. The final set of
solutions (that we denote as S) is composed of all non-dominated solutions found during
these independent runs.
Input: 6000 solutions (600 solutions per run × 10 independent runs).
Output: A set S composed of all non-dominated solutions.

• Step 3: Selecting solutions with a correct bifurcation structure.
Procedure: This step aims at eliminating from the set S the solutions that do not display
the right expected shape of the steady-state current I∞, i.e. monotonic for the near-linear
neurons, and N-shape for the bistable ones. To do so, we first compute the first-order
derivative of I∞, noted I ′∞. For the near-linear neurons, we then verify that I ′∞(V ) > 0
for any values of V ∈ [−100mV; 50mV] to ensure the monotonicity of I∞. For the bistable
neurons, I ′∞ has to be positive, then negative, and positive again to ensure the N-shape
of I∞. These are the conditions we verify to select solutions with a correct bifurcation
structure.
Input: The set S composed of all non-dominated solutions.
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Output: A set S1 composed of all non-dominated solutions displaying appropriate bifur-
cation structure.

• Step 4: Selecting the best solution according to the validation trace.
Procedure: Using equation (3), compute the numerical scores of all solutions in S1 by
only considering the validation trace. The solution with the lowest score, i.e. minimal
cost function, is the one selected.
Input: The set S1 composed of non-dominated solutions displaying appropriate bifurca-
tion structure.
Output: The final selected solution.

The proposed decision-making process does not take into account the test trace. The aim is
to reserve a trace that has not been used in any part of the learning or decision-making process
to assess the quality of the solution found. In the next section, we show that our proposed
approach proves to be effective.

3.4 Obtaining non-spiking conductance-based models with generalization ca-
pabilities

In order to obtain a model with generalization capabilities, we follow the approach developed
in the previous section. The DEMO/rand/best/biased algorithm is run with different values of
control parameters NP , F and CR in order to fine-tune its search capabilities. The values that
we recommend are NP = 600, F = 1.5 and CR = 0.3 with a number of 2000 iterations. For
the three neurons, the model parameters obtained from the automated decision-making process
described in the previous section are displayed in Appendix B.

Generalization capability of models. For each neuron under study, it can be observed
in Figure 6.A that the curves of the models fit well with experimental data in all series of
current injections, including the test trace not used in any part of the model learning. The
quality of the fitting is maintained throughout the entire evolution of the membrane potential.
Furthermore, the steady-state current shape (Figure 6.B), which determines the underlying
bifurcation structure of non-spiking neurons, is captured for all neurons: a monotonic steady-
state current for the RIM and AIY neurons, and a N-shape one for AFD. In this way, we
constrain the RIM and AIY models to a near-linear behavior, and the AFD neuron to a bistable
one, even in response to novel different stimuli not used during the model’s building. In the
light of these results, it can be concluded that the proposed approach allows to get models with
good generalization capabilities.

The steady-state current objective requires a relatively small deterioration to get
models with predictive capabilities. Both objectives cannot be simultaneously optimized
due to their conflicting nature. On the one hand, the steady-state curve for each neuron is
obtained from the average of several different cells, while the membrane potentials are repre-
sentative recordings from a single cell without averaging. On the other hand, the steady-state
current and the voltage data are obtained from different experimental procedures with their
own intrinsic and extrinsic sources of experimental noise [22, 55, 18, 27]. Therefore, obtaining
a perfect fitting of both objectives simultaneously is not feasible. Furthermore, the relative
deterioration of the fitting for high steady-state currents in Figure 6.B is correlated with higher
values of the standard deviation at this level. Actually, these deteriorations are necessary to
obtain models able to characterize voltage behavior. Indeed, as shown in Figure 7, a model
that perfectly fits the steady-state current (Figure 7.A) does not accurately reproduce the given
voltage traces and fails to get the predictive capability (Figure 7.B).
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A

B

Figure 6: Results of multi-objective optimization for the RIM, AIY and AFD neurons. (A)
Green traces represent the experimental membrane potential evolution for a series of current
injections, in spans of 5 seconds, starting from -15pA and increasing to 25pA by 5pA increments.
The light blue traces represent the validation and test set (i.e. traces relative to 30pA and 35pA).
The dark blue traces represent the respective model for each neuron. (B) Experimental steady-
state currents (represented by green circles) and estimated steady-state currents (represented
by blue crosses) resulting from the multi-objectif optimization.

4 Discussion

The proposed method, based on theoretical mathematical development and experimental valida-
tion, provides a systematic approach to build non-spiking models with generalization capabilities.
In this section, we discuss both the biological and modeling implications of this methodology.

Implications on the modeling of non-spiking neurons in general. In this paper, our
proposed approach was applied on various non-spiking C. elegans neurons, representative of the
behavior of known types of non-spiking neurons (near-linear and bistable). Such neurons are not
specific to C. elegans so that the proposed method, based on general analysis of the bifurcation
structure of non-spiking neurons, is expected to be succesfully applied more broadly to different
non-spiking neuronal cell types. Indeed, as stated in the introduction, this type of neurons are
ubiquitous in a large variety of nervous tissues in both vertebrates and invertebrates species,
e.g. in the human retina neurons [25], numerous interneurons in insects and crustaceans [68],
the motorneurons of the Ascaris worm [14, 15], or most of the C. elegans neurons [28]. They
have been found in sensorimotor and central pattern generator circuits, proved to be central
in neuronal integration [68] and to provide a determining mechanism for the control of motor
behavior [10, 46, 45].
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Figure 7: Solutions obtained from multi-objective optimization with perfect fitting of the steady-
state current. (A) Experimental steady-state currents (represented by green circles) and es-
timated steady-state currents (represented by blue crosses) resulting from the multi-objectif
optimization. (B) Green (resp. blue) traces represent the experimental (resp. estimated) mem-
brane potential evolution for a series of current injections, in spans of 5 seconds, starting from
-15pA and increasing to 35pA by 5pA increments. Solutions with a perfect fitting of the steady-
state current fail to describe the behavior voltage of neurons, showing that its deterioration is
necessary to get adequate models.

Implications on the modeling of the C. elegans’ neuronal diversity. Numerous record-
ings of C. elegans’ neuronal activity have already been performed [28, 60, 23, 67, 58, 48, 26, 49,
50, 51, 19]. Liu et al. [51] classify the recorded neurons into four large distinct classes based
on the features of the I-V curve (Figure 1). This classification is described in detail in Table 3.
Among the different classes, the authors enumerate three types of non-spiking neurons, of which
RIM, AIY and AFD are representative examples, and a fourth type involving the spiking neu-
ron AWA. However, the electrophysiological properties of many C. elegans neurons are unknown
yet, suggesting that additional types of neurons could be discovered in the future. The results
presented in this paper show that the proposed method is capable of capturing the behavior
of the current non-spiking neuronal diversity of C. elegans and could be successfully applied to
model new non-spiking neurons.

Implications on the modeling of the C. elegans’ nervous system. Due to its fully
mapped connectome and its small number of neurons, the C. elegans nervous system is the
ideal candidate to be modeled in order to investigate how behavior emerges from its underlying
physiological processes [78, 74, 37]. Modeling the nervous system of C. elegans involves two
fundamental stages [38]: one relative to the modeling of the neuronal connectivity (connectome)
and the other relative to the modeling of the neuronal dynamic. Nowadays, the vast majority of
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Neuron
classes Class 1 Class 2 Class 3

Inward
current
features

Near-zero inward cur-
rents under hyperpo-
larizations.

Near-zero inward cur-
rents under hyperpo-
larizations.

Large sustained in-
wardly currents under
hyperpolarizations.

Outward
current
features

Rapid inactivating
outward currents un-
der depolarizations :
lack of large sustained
currents.

Non-inactivating out-
ward currents under
depolarizations.

Large inactivating out-
ward currents under
depolarizations.

Neurons

RIM [51] AIY [51, 23] AFD [51, 67]
AVA [48, 50, 58] VA5 [49, 50] ASER [28]
PLM [60] VB6 [49, 50] RMD [58]
AVE [48] AWC [67]

ASH [26]
AIA [19]

Table 3: Classification of the three types of non-spiking neurons in C. elegans, according to their
current-voltage relationships. RIM, AIY and AFD neurons are representatives of the class 1, 2
and 3 respectively.

modeling works on C. elegans nervous system employ the well-established connectome but they
do not take into account the specificities of the neuronal dynamics [80, 72, 66, 42, 63, 43, 11,
61, 38, 44, 54]. Indeed, these works rather consider: (i) a homogeneous model for each neuron
of the network (while C. elegans neurons display a large repertoire of behaviors), and (ii) a
neuron model that do not correspond to the behavior of C. elegans neurons. The discordance
between the accuracy of the connectome and the inaccuracy of the neuronal dynamic considered
is explained by the lack of biophysical information for most neurons, making the building of
conductance-based model adapted to C. elegans’ neuronal dynamic currently challenging [74].
As pointed out by Sarma et al. [74], building such neuron models is a key remaining component
to make C. elegans nervous system modeling studies adequate for biological research.

In particular, we would like to emphasize an open problem where computational works
could play an important role in order to fully understand the flow of information within the
nematode’s nervous system [4]. If one wants to deepen further our understanding of the C.
elegans nervous system, it is of paramount importance to gather information about what most of
the neurons’ connections do, their intrinsic nature (excitatory or inhibitory), and the strengths
of such connections [4]. Actually, the connectome does not unveil such information [41]. To
address that issue, some computational studies [80, 66, 63, 11, 61, 44] adopt an evolutionary
approach in which the algorithm determines both the strength and nature of connections in order
to obtain observable, realistic worm behavior. In such studies, the functional circuits studied
are made up of homogeneous neuron models irrelevant to characterize the heterogeneity of C.
elegans neurons and to represent acceptably their behavior (e.g. the homogeneous Izhikevich
spiking model [35] is considered in [63] and [11], or the Hindmarsh-Rose spiking model in [44]).
Therefore, even if the macroscopic behavior of C. elegans is accurately reproduced, the results
on the strength and nature of neuron connections may not be biologically adequate. We argue
that the current paper provides a systematic approach and method to build conductance-based
models capturing the dynamic of non-spiking C. elegans’ neurons, so that the second stage
relative to the C. elegans neuronal dynamic modeling can be fulfilled.
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Implications on multicompartmental conductance-based modeling. It is worth noting
that characterizing a neuron as “spiking” or “non-spking” is only relative to the site of recording.
The fact that a neuron is spiking in one part does not exclude that it may have non-spiking
activity in other parts, such as in the dendrites. Indeed, even in spiking neurons, the integrative
life of the cell is predominantly performed through graded electrical activity via the dendrites [68,
52]. The complex geometry of the dendritic tree, combined with its active and passive membrane
properties, play a key role in the way neurons integrate synaptic inputs. Therefore, dendrites
strongly influence both the timing and probability of neuronal output [77, 62]. In order to take
into account the heterogeneity of the dendritic morphology as well as the different electrical
characteristics between the regions (a.k.a. compartments) of the neuron, numerous modeling
studies [56, 57, 34] use multicompartmental conductance-based models [16], which allow to
develop more realistic and morphologically accurate models. The methodology presented in this
paper could be used in a systematic way to gain leverage in the modeling of the non-spiking
parts of different neuronal cell types.
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A Full-fledged material description

ICa,p +
IKir +
IK,t+IL-
model



CV̇ = −gCamCa(V − ECa)− gKirhKir∞(V )(V − EK)− gKmKhK(V − EK)− gL(V − EL) + I

˙mCa =
mCa∞(V )−mCa

τmCa

, mCa∞(V ) =
(
1 + exp

(
V mCa
1/2 − V

kmCa

))−1

ṁK =
mK∞(V )−mK

τmK

, mK∞(V ) =
(
1 + exp

(
V mK
1/2 − V

kmK

))−1

˙hK =
hK∞(V )− hK

τhK

, hK∞(V ) =
(
1 + exp

(
V hK
1/2 − V

khK

))−1

I∞(VH) = gCamCa∞(VH)(VH − ECa) + gKirhKir∞(VH)(VH − EK)

+ gKmK∞(VH)hK∞(VH)(VH − EK) + gL(VH − EL)

θV = [gCa gKir gK gL ECa EK EL V
mCa

1/2 V Kir
1/2 V mK

1/2 V hK

1/2

kmCa
kKir kmK

khK
τmCa

τmK
τhK

m0
Ca m

0
K h0K C]

θSS = [gCa gKir gK gL ECa EK EL V
mCa

1/2 V Kir
1/2 V mK

1/2 V hK

1/2 kmCa
kKir kmK

khK
]

ICa,t +
IKir +
IK,p+IL-
model



CV̇ = −gCamCahCa(V − ECa)− gKirhKir∞(V )(V − EK)− gKmK(V − EK)− gL(V − EL) + I

˙mCa =
mCa∞(V )−mCa

τmCa

, mCa∞(V ) =
(
1 + exp

(
V mCa
1/2 − V

kmCa

))−1

˙hCa =
hCa∞(V )− hCa

τhCa

, hCa∞(V ) =
(
1 + exp

(
V hCa
1/2 − V

khCa

))−1

ṁK =
mK∞(V )−mK

τmK

, mK∞(V ) =
(
1 + exp

(
V mK
1/2 − V

kmK

))−1

I∞(VH) = gCamCa∞(VH)hCa∞(VH)(VH − ECa) + gKirhKir∞(VH)(VH − EK)

+ gKmK∞(VH)(VH − EK) + gL(VH − EL)

θV = [gCa gKir gK gL ECa EK EL V
mCa

1/2 V hCa

1/2 V Kir
1/2 V mK

1/2

kmCa
khCa

kKir kmK
τmCa

τhCa
τmK

m0
Ca h

0
Ca m

0
K C]

θSS = [gCa gKir gK gL ECa EK EL V
mCa

1/2 V hCa

1/2 V Kir
1/2 V mK

1/2 kmCa
khCa

kKir kmK
]
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B Estimated parameters for each of the models

Single-objective Multi-objective
RIM AIY AFD RIM AIY AFD

gCa 0.68 0.124 0.06 0.68 0.136 2.98

gKir 0.254 0.157 2.02 0.254 0.156 2.37

gK 1.16 0.223 6.05 1.812 0.22 7.36

gL 0.0002 0.14 0.0001 0.0008 0.14 0.0001

ECa 20.16 135.9 146.05 20.59 127.4 20

EK -62.18 -98.23 -79.3 -38.59 -98.3 -79.74

EL -37.6 -41.07 -90 -90 -41.1 -90

V mCa

1/2 -5.5 -19.09 -22.1 -2 -19.09 -2

V hCa

1/2 -21.24 -21.28

V mK

1/2 -9.38 -17.71 -2.83 -9.63 -17.99 -2.83

V hK
1/2 -65.7 -46.5 -24.27 -46.56

V hKir

1/2 -24.27 -90 -84.16 -86.98 -89.95 -85.74

kmCa 1.6 4.67 8.99 5.19 4.65 8.67

khCa
-17.62 -16.06

kmK 1.28 7.39 9.99 4.84 7.41 9.99

khK -23.44 -24.21 -21.84 -30

khKir
-1.32 -30 -8.92 -30 -29.98 -8.92

τmCa 0.399 0.0001 19.43 0.548 0.0001 12.96

τhCa
10.59 11.12

τmK 0.03 0.0005 0.03 0.05 0.001 0.03

τhK 0.61 6.16 0.6 3.71

m0
Ca 0.002 0.001 0.002 0.001 0.33 0.001

h0Ca 0.80 0.78

m0
K 0.643 0.999 0.001 0.001 0.74 0.001

h0K 0.113 0.67 0.113 0.59

C 0.042 0.04 0.058 0.04 0.04 0.058
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l’apprentissage profond. Odile Jacob, 2019.

23



[48] Theodore H Lindsay, Tod R Thiele, and Shawn R Lockery. Optogenetic analysis of synaptic
transmission in the central nervous system of the nematode caenorhabditis elegans. Nature
communications, 2:306, 2011.

[49] Ping Liu, Bojun Chen, and Zhao-Wen Wang. Slo-2 potassium channel is an important
regulator of neurotransmitter release in caenorhabditis elegans. Nature communications, 5:
5155, 2014.

[50] Ping Liu, Bojun Chen, Roger Mailler, and Zhao-Wen Wang. Antidromic-rectifying gap
junctions amplify chemical transmission at functionally mixed electrical-chemical synapses.
Nature communications, 8:14818, 2017.

[51] Qiang Liu, Philip B Kidd, May Dobosiewicz, and Cornelia I Bargmann. C. elegans awa
olfactory neurons fire calcium-mediated all-or-none action potentials. Cell, 175(1):57–70,
2018.
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