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Abstract—The automatic discovery of functional dependencies
(FDs) has been widely studied as one of the hardest problems in
data profiling. Existing approaches have focused on making the
FD computation efficient while inspecting single relations at a
time. In this paper, for the first time we address the problem of
inferring FDs for multiple relations as they occur in integrated
views by solely using the functional dependencies of the base
relations of the view itself. To this purpose, we leverage logical
inference and selective mining and show that we can discover
most of the exact FDs from the base relations and avoid the full
computation of the FDs for the integrated view itself, while at
the same time preserving the lineage of FDs of base relations. We
propose algorithms to speedup the inferred FD discovery process
and mine FDs on-the-fly only from necessary data partitions. We
present InFine (INferred FunctIoNal dEpendency), an end-to-end
solution to discover inferred FDs on integrated views by leverag-
ing provenance information of base relations. Our experiments
on a range of real-world and synthetic datasets demonstrate
the benefits of our method over existing FD discovery methods
that need to rerun the discovery process on the view from
scratch and cannot exploit lineage information on the FDs. We
show that InFine outperforms traditional methods necessitating
the full integrated view computation by one to two order of
magnitude in terms of runtime. It is also the most memory
efficient method while preserving FD provenance information
using mainly inference from base table with negligible execution
time.

I. INTRODUCTION

The automatic discovery of all functional dependencies
(FDs) holding in a single relation is amongst the hardest prob-
lems in data profiling [1], [24]. Typically, an FD X → Y with
attribute sets X and Y in a given table allows to enforce that
the combination of values in the set X uniquely determines the
values of every attribute in the set Y . Functional dependencies
are key ingredients in database design, table decomposition,
database normalization, and for several other data management
tasks, such as data cleaning [28] and query optimization
[13], [26]. Due to the high complexity of FD discovery [19]
(exponential in the number of attributes and quadratic in the
number of records of a relation), a wealth of algorithms
have been proposed by relying on aggressive pruning and
sophisticated validation. Many of these algorithms [11], [12],
[29], [21], [25] have the same theoretical complexity and are
able to compute all minimal FDs in less runtime.

Despite the vast literature on the topic, all existing algo-
rithms focus on the FD discovery problem for one relation at

a time and do not explore reuse of computation when dealing
with multiple relations. However, relations are oftentimes
involved in view computation operations, among which the
notable class of SPJ (Select-Project-Join) view operations. In
this case, the existing algorithms addressing FD discovery
would have to entirely recompute the set of FDs for the
obtained integrated view without being able to reuse any of
the previous computations on the individual base tables of the
view. In this paper, for the first time we tackle the problem
of inferring FDs on integrated views (also called Inferred FD
discovery problem) by solely relying on the FDs available from
the base tables of the views. To do so, we employ the well-
known concept of why-provenance [3], which allows us to
identify the lineage of the FDs on the integrated view and
throughout the view computation operations.

In our work, we address the Inferred FD discovery problem,
which consists of considering a SPJ view on top of a set of
base tables and computing the FDs holding on the view by
reusing as much as possible the discovered FDs on the base
tables, and, in turn, reduce the SPJ view computation with
only the needed attributes.

Explicitly relating the FDs of the base table to the FDs of
the view has interest on its own as it allows for instance to
understand whether FDs on the base tables are persistent on
the view. It can also be beneficial whenever the user needs
help while debugging the FDs on the base tables by choosing
the most relevant ones if they also apply to the view. Since
SPJ views might be obtained as results of data integration
and ETL scenarios [10], our method allows to understand
how constraints (namely the FDs) are actually affected by the
integration process. New FDs that hold on the view but not
on the base tables may help the user better understand and
explain the result of the data integration process.

Our method allows us to obtain time savings in terms of
FD discovery from integrated views. By leveraging logical
inference and provenance triples, we can avoid recomputing
the FDs holding on the view from scratch and only focus on
the new FDs that are not holding on the base tables.

To address the Inferred FD discovery problem, we use a
multi-step pipeline encompassing the discovery of different
types of FDs and leveraging logical inference. To this end,
we propose InFine, an efficient solution for automatically
discovering multi-relation FDs starting from the FDs of the



PATIENT
subject_id gender dob dod expire_flag

249 F 13/03/75 NULL 0

250 F 27/12/64 22/11/88 00:00 1

251 M 15/03/90 NULL 0

252 M 06/03/78 NULL 0

257 F 03/04/31 08/07/21 00:00 1

A
subject_id admittime admission_location insurance diagnosis h_expire_flag gender dob dod expire_flag

249 17/12/49 20:41 EMERGENCY ROOM ADMIT Medicare UNSTABLE ANGINA ASTHMA BRONCHITIS0 F 13/03/75 NULL 0

249 03/02/55 20:16 EMERGENCY ROOM ADMIT Medicare CHEST PAIN 0 F 13/03/75 NULL 0

249 27/04/56 15:33 PHYS REFERRAL/NORMAL DELIMedicare GI BLEEDING\COLONOSCOPY 0 F 13/03/75 NULL 0

250 12/11/88 09:22 EMERGENCY ROOM ADMIT Self Pay PNEUMONIA R/O TB 1 F 27/12/64 22/11/88 00:00 1

251 27/07/10 06:46 EMERGENCY ROOM ADMIT Private INTRACRANIAL HEAD BLEED 0 M 15/03/90 NULL 0

252 31/03/33 04:24 EMERGENCY ROOM ADMIT Private GASTROINTESTINAL BLEED 0 M 06/03/78 NULL 0

252 15/08/33 04:23 EMERGENCY ROOM ADMIT Private GASTROINTESTINAL BLEED 0 M 06/03/78 NULL 0

ADMISSION
subject_id admittime admission_location insurance diagnosis h_expire_flag

247 03/08/56 20:35 CLINIC REFERRAL/PREMATURE HOME UNOBTAINABLE CHEST PAIN 0
248 19/10/42 16:30 EMERGENCY ROOM ADMIT Private S/P MOTOR ROLLOR 0
249 17/12/49 20:41 EMERGENCY ROOM ADMIT Medicare UNSTABLE ANGINA ASTHMA BRONCHITIS 0
249 03/02/55 20:16 EMERGENCY ROOM ADMIT Medicare CHEST PAIN 0
249 27/04/56 15:33 PHYS REFERRAL/NORMAL DELI Medicare GI BLEEDING\COLONOSCOPY 0
250 12/11/88 09:22 EMERGENCY ROOM ADMIT Self Pay PNEUMONIA R/O TB 1
251 27/07/10 06:46 EMERGENCY ROOM ADMIT Private INTRACRANIAL HEAD BLEED 0
252 31/03/33 04:24 EMERGENCY ROOM ADMIT Private GASTROINTESTINAL BLEED 0
252 15/08/33 04:23 EMERGENCY ROOM ADMIT Private GASTROINTESTINAL BLEED 0
253 21/01/74 20:58 TRANSFER FROM HOSP/EXTRAM Medicare COMPLETE HEART BLOCK\PACEMAKER IMPLANT 0
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Fig. 1: Excerpt of the MIMIC-III clinical database with FDs on base tables and integrated view (best viewed in color).

base tables. Our main contributions are as follows:
• We propose a provenance-based mechanism capable of

generating and exploiting provenance triples in a view
specification. In particular, for each FD, we capture the type
of the FD and a subquery of the view in which the FD holds.

• We design five algorithms to compute the provenance of
FDs (from base FDs, inference, or join operations) from
the results of the FD discovery on the base tables; these
algorithms seamlessly address the case of SPJ views, a
significant and representative query fragment.

• We propose InFine, a full-fledged system implementing our
algorithms. InFine is available online1 with code, scripts, and
datasets for the reproducibility of our experiments;

• We gauge the effectiveness of our system through an ex-
tensive experimental evaluation. We compare InFine against
state-of-the-art FD discovery methods over a rich number of
SPJ views on real-world and synthetic datasets. We find that
InFine outperforms the competing methods by one order up
to two orders of magnitude in terms of execution time for
discovering exact FDs while preserving the smallest memory
consumption on average.

Outline. Section II presents an illustrative example. Section III
presents the necessary background and notations. In Sec-
tion IV, we formalize the Inferred FD discovery problem
and provide an overview of InFine. We also present our main
contributions and the algorithms at the core of InFine. We de-
scribe our performance experiments evaluating the efficiency
and accuracy of InFine in Section V. Finally, we discuss
related work in Section VI and conclude in Section VII.

II. MOTIVATING EXAMPLE

Let us consider a real-world clinical database
MIMIC-III2 [14], out of which we extract the PATIENT

1https://github.com/ucomignani/InFine
2https://physionet.org/content/mimiciii/1.4/

table containing information about patients: their identifier
(subject_id), gender, date of birth (dob), date of
death (dod), and a boolean expire_flag indicating
whether the patient passed away, and the table ADMISSION

containing administrative and clinical information about
patients such as the hospital admission time (admittime),
the admission location (admission_location), the
insurance, the diagnosis, and a boolean h_expire_flag

indicating whether the patient died at the hospital.
Let us consider V , the SPJ view (illustrated in Fig.
1) that computes a join between the two above
tables: SELECT * FROM PATIENT, ADMISSION WHERE

PATIENT.subject_id=ADMISSION.subject_id. We are
interested in discovering the set of FDs that hold over the
SPJ view by reusing as much as possible the FDs of the base
tables PATIENT and ADMISSION. For ease of exposition,
we focus on FDs with RHS limited to one single attribute
(as it is the case in a canonical cover of FDs). The LHS
might consist of multiple attributes as those mined from
the join in Fig. 1. A total of 42 minimal and canonical
FDs is considered in this running example thus making the
example far from being trivial. These FDs can be obtained
by FD discovery methods running on the view. However,
their lineage is also important as they carry the information
of whether they are valid in the base tables or they solely
hold on the view. Precisely, we use color coding to encode
the FD provenance in the figure. We can observe that the
9 exact FDs from the base table PATIENT (highlighted in
green), as well as 9 (out of the 14) exact FDs from the base
table ADMISSION (highlighted in pink) are preserved in the
result of the integrated view. Imagine that a data steward
would like to investigate why a few valid FDs in the base
tables are no longer valid in the integrated view result or,
conversely, why some FDs that are not valid in the base
tables become valid in the view. Better informed, s/he may

https://github.com/ucomignani/InFine
https://physionet.org/content/mimiciii/1.4/


change and adapt the constraint (FD) enforcement strategies
when curating the data using the FDs. Moreover, 10 FDs
(highlighted in blue) from the view result can be obtained
by logical inference over the sets of exact FDs discovered
from each base table: for instance, diagnosis → dod is
obtained from insurance,diagnosis → subject_id

and subject_id → insurance in ADMISSION and
subject_id → dod in PATIENT. As a side note, we
are not addressing here the problem of meaningfulness of
the FDs, which is orthogonal and of independent interest.
Indeed, a valid FD may not be semantically meaningful and
judging whether a valid FD is relevant typically needs human
intervention.

When the two tables are joined, patient #257 is removed
due to the absence of the corresponding subject_id value
in the other table and approximate FDs (AFD) (such as
expire_flag⇁1 dod in PATIENT) become exact in the SPJ
view. These FDs are highlighted in grey in the figure.

Finally, only 10 exact FDs (highlighted in orange) that hold
over the view result have to be discovered from scratch from
the view. However, if we partially join the two tables, only
with the following combinations of tuples: [(#249,#252) or
(#249,#251)] and [(#250,#251) or (#250, #252)], we can obtain
the remaining 10 join FDs without having to compute the
entire view beforehand.

This example show that with existing FD discovery ap-
proaches, the FDs would have to be computed on both
the base tables and the integrated view result to preserve
the FD provenance information. Furthermore, to identify the
provenance of the FDs, a comparison among the two FD sets
would have to be performed. We will show the overhead of
this process in our experimental study in Section V.

Hence, a better understanding of the mechanisms underlying
the provenance of FDs from integrated views is highly needed.
Based on these observations, in our work, we address the
following key questions: How can we preserve the provenance
of FDs discovered from integrated views? Instead of executing
FD discovery over each base table and a SPJ view result
independently, can we infer most of the FDs on the view as
well as reuse the FDs from the base tables and achieve a non
negligible speedup? We answer these key questions in the rest
of the paper and propose an efficient solution for discovering
FDs from integrated views.

III. PRELIMINARIES

Next, we recall the necessary definitions of FDs and join
operators with their application to our problem.

Definition 1 (Functional dependency satisfaction): Let I be
an instance over a relation schema R, and X , Y be two
sets of attributes from R. I satisfies a functional dependency
d : X → Y , denoted by I |= d if and only if:

∀t1, t2 ∈ I, t1[X] = t2[X]⇒ t1[Y ] = t2[Y ]. (1)

Note that the above definition holds regardless of the selected
null semantics. This implies that our approach is not depending

on the underlying semantics of null values, in line with other
approaches in the literature [2], [8], [18].

Following the convention, we use uppercase letters for
attribute sets and lowercase letters for single attributes. More-
over, in the rest of the paper we use canonical FDs, i.e., min-
imal FDs with only one attribute in their right-hand part.We
recall that for any set of FDs, it can be computed a logically
equivalent set of canonical FDs, thus this is done without loss
of generality. We define the SPJ view specification and the
set of projected attributes over this view as follows:

Definition 2 (SPJ view specification): Let R =
{R1; . . . ;Rn} be a set of relational instances. We define a
view specification VR as a relational algebra formula over
relations in R and limited to the following set of operators:
{π;σ; ./; ./ ; ./; ./ ;n;o}.

Definition 3 (Projected attributes set): Let V, V1, and V2 be
view specifications. Let R be a relational instance. Let X be
a set of attributes. Let ρ be a set of constraints. Let atts(S)
denotes the set of attributes over a relational instance S. Let �
be a join operator in {./; ./ ; ./; ./ }. Then the set of projected
attributes, denoted by proj() is defined as follows:

proj(R) = atts(R) proj(V1 n V2) = proj(V1)

proj(πX(V)) = X proj(V1 o V2) = proj(V2)

proj(σρ(V)) = proj(V) proj(V1 � V2) = proj(V1) ∪ proj(V2)

Finally, we define the types of FDs and the provenance
triples derived in our framework and used to maintain the
provenance information of every discovered FD. The base FDs
are defined as follows:

Definition 4 (Base FD): Let R = {R1; . . . ;Rn} be a set
of relational instances. Let VR be a view specification over
relations in R. Let fds(Ri) denotes the set of minimal FDs
over the relation Ri ∈ R. Let fds(VR) denotes the set of
minimal FDs over the view specified by VR. An FD d is a
base FD if d ∈ fds(VR) and ∃Ri ∈ R s.t. d ∈ fds(Ri).
We now define the notion of upstaged FD, which can occurs
either in the case of a selection or of a join operation:

Definition 5 (Upstaged FD): Let R1, R2 be two relational
instances. Let fds(Ri) denotes the set of minimal FDs over
a relational instance Ri. An FD d is an upstaged FD for R1

if d is defined over attributes from R1 and:
• in the case of a selection σρ(R1): d ∈ fds(σρ(R1)) and
d 6∈ fds(R1)

• in the case of a join R1 � R2: d ∈ fds(R1 � R2) and
d 6∈ fds(R1)

In the following, we distinguish the upstaged FDs by consider-
ing if they come from a selection operation or a join operation.

We also define two types of FDs that arise specifically after
a join operation is performed:

Definition 6 (Inferred FD): Let R1, R2 be two relational
instances. Let fds(Ri) denotes the set of minimal FDs over
a relational instance Ri. Let atts(Ri) denotes the set of
attributes of Ri. Let d : X → y be a FD such that
d ∈ fds(R �R′). Then d is an inferred FD if

(X ∪ {y}) ∩ atts(R1) 6= ∅ ∧ (X ∪ {y}) ∩ atts(R2) 6= ∅



and either:
• d can be inferred through the use of Armstrong’s axioms;
• ∃d′ : X ′ → y such that X ⊂ X ′ and d′ can be inferred

through Armstrong’s axioms.
Definition 7 (Join FD): Let d : X → y be a FD such that

d ∈ fds(R �R′). Then d is a join FD if

(X ∪ {y}) ∩ atts(R1) 6= ∅ ∧ (X ∪ {y}) ∩ atts(R2) 6= ∅

and d did not belong to the set of inferred FDs.
From these types of FDs, we define the provenance triples as
follows:

Definition 8 (FD Provenance Triple): Let R =
{R1; . . . ;Rn} be a set of relational instances. Let VR be a
view specification over relations in R. A provenance triple
(d, t, s) for an FD d over the view specified by VR is a triple
composed of:
• the FD d whose provenance is described;
• the type t of d, taking one of the following val-

ues: “base”, “upstaged selection”, “upstaged left”,
“upstaged right”, “inferred” or “joinFD”;

• the first sub-query s over the view specification VR in
which d holds during the view computation.

We illustrate the provenance triples in the following example:
Example 1: Following the running example of Figure 1,

the provenance triple for FDs subject_id → dob;
expire_flag → dod and gender, h_expire_flag →
insurance will be the following:

(subject_id→ dob, ”base”, ADMISSION)

(expire_flag→ dod, ”upstaged left”,

PATIENT ./subject id=subject id, ADMISSION)

(gender, h_expire_flag→ insurance, ”join FD”,

PATIENT ./subject id=subject id ADMISSION).

IV. MINING FDS PROVENANCE TRIPLES OVER VIEWS

In this section, we describe the workflow of InFine to com-
pute FDs and their provenance information from a view spec-
ification and the base relations used in the view specification.
In this workflow, after discovering FDs from the base tables,
we mine the FDs appearing during the view computation by
relying as much as possible on inference methods as well as
on efficient methods to discover the remaining FDs that cannot
be inferred.

Problem statement. Let R be a set of base tables; VR be a
view specification over R. The Inferred FD discovery problem
consists of efficiently inferring functional dependencies over
the view specified by VR by reusing functional dependencies
from R and annotating each FD with its provenance informa-
tion under the form of a provenance triple.

In order to compute the functional dependencies for a given
view, one needs to tackle the complexity of the FD mining
problem and thus to tame the size of explored FDs lattices.

In the following theorem, we state that at each computation
step of a view without projection, the FDs previously mined

V

InferFDs

mineFDs

upstageFDs

selectionFDs

   Discovery of upstaged FDs from 

      Logical inference of FDs for      

FD Discovery from the projection      
on the base relations in V  

Output:  
Sets of FDs discovered from L and R and 
set of inferred FDs from the view 
specification V with provenance metadata R

L,R)V(
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       Discovery of join FDs for
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π

σ

Fig. 2: Workflow of InFine for discovering inferred FDs from
a view specification V (L,R)

continue to be valid. Conversely, we show that the application
of a projection can only lead to the suppression of previously
valid FDs, and never to the discovery of new FDs.

Theorem 1: Let V, V1, and V2 be view specifications. Let
D, D1 and D2 be the sets of FDs over views specified by V,
V1 and V2, respectively. Let fds(V ) denotes the set of FDs
over a view specified by V .
Then:

fds(πX(V)) ⊆ D, fds(σρ(V)) ⊇ D, and

fds(V1 � V2) ⊇ D1 ∪ D2, with � ∈ {./; ./ ; ./; ./ ;n;o}.

Our Solution. In order to compute the set of FDs over in-
tegrated views with their provenance information, we propose
the workflow illustrated in Figure 2. It consists of three main
steps as follows: (1) Mining of FDs over the base relations,
limited to FDs with attributes projected in the resulting view
(InFine step 1); (2) Discovery of approximate single-table FDs
that are upstaged and become exact FDs via the selection
operations (InFine step 2); (3) Discovery of all FDs that can
appear via the join operations (InFine step 3). In other words,
Step 2 allows to retrieve FDs that are approximate in the
individual base tables but become exact due to the selection
operations of the SPJ views, whereas Step 3 retrieves FDs
due to join operations between multiple base tables including
upstaged, inferred and join FDs.

These steps and their corresponding algorithms are detailed
in the next sections, respectively. Their application is done by
InFine main algorithm (Algorithm 1) either during initialisation
(lines#1–5 for Step 1) or during the recursive traversal of the
view specification tree (Subroutine provFDs for Steps 2-3).



Algorithm 1: InFine
Input: R: a set of relational instances;

VR: a view specification over instances in R.
Result: the set of provenance triples of the FDs over VR.

1 ED ← ∅;
2 AV ← compute the set of attributes proj(VR) ;
3 for each relation Ri ∈ R do
4 DRi ← compute FDs in Ri limited to attributes in AV ;
5 add DRi to ED;
6 return provFDs(R, VR, ED , AV );

7 Subroutine provFDs(R, VR, ED , AV )
8 switch VR do
9 case R ∈ R do

10 P ← ∅;
11 D ← get DR in ED;
12 for each FD d ∈ D do
13 add triple (d, ”base”, R) to P
14 return P;
15 case πX(V ′R) do
16 return provFDs(R, V ′R, ED,AV );
17 case σρ(V ′R) do
18 P ← provFDs(R, V ′R, ED,AV );
19 return P ∪ selectionFDs(R, V ′R,P, ρ);
20 case V ′R � V ′′R do
21 Prec ← provFDs(R, V ′R, ED,AV );
22 Prec ← provFDs(R, V ′′R , ED,AV );
23 Pup ← joinUpFDs (AV );
24 Pinf ←inferFDs ();
25 Pjoin ←joinFDs ();
26 return Prec ∪ Pup ∪ Pinf ∪ Pjoin ;

A. Reducing Space of Explored Candidates using Projections

As our goal is to discover the FDs occurring on top of
an integrated view, we focus on mining FDs containing only
attributes that are retrieved in the output SPJ view.

The number of considered attributes greatly influences the
size of the explored lattices during FD mining. Thus, we make
use of the knowledge of the projected attribute set at the very
first step of our framework, in order to efficiently reduce the
cost of mining FDs from the base relations. This can be seen
in the main algorithm of our framework, Algorithm 1, during
the mining of the FDs on the base relations (lines # 3–5). After
this step, each following step of our framework relies on the
FDs mined at the previous steps. Thus, additionally to reducing
the FD discovery complexity over the base relations, removing
unwanted FDs at this step also prevents useless computation
during the following steps of our framework.

B. Mining of FDs Through View Selections

New FDs may appear due to selections in the view defi-
nition. This will occur when the selection operation leads to
filter the tuples violating an FD, making this FD valid in the
resulting instance. In such a case, our framework aims at pro-
ducing provenance triples for these new FDs with Algorithm 2.
This algorithm checks if the selection operation leads to some
tuple filtering (from line #4) to avoid unnecessary mining step
if the filter is not applicable. If some tuples are filtered by
the selection, then upstaged FDs need to be mined and, to

do so, we rely on a level-wise approach for FD mining. The
intuition behind such an approach is to explore the possible
sets of attributes involved in the candidate FDs, by organizing
them into a lattice beginning from an infimum with FDs with
singleton as lhs (line #5). Then, FD validity is tested and
next level candidates are generated (line #11) while taking
into account the FDs discovered at previous levels to prune
the candidates FDs (lines #8–9). The algorithm stops when
no candidates are left, and then the resulting set of minimal
FDs are labelled with their provenance triples, the latter being
returned by the algorithm.

Algorithm 2: selectionFDs
Input: R: a set of relational instances;

VR: a view specification over instances in R;
ρ: the selection condition;
PV : the sets of provenance triples of VR;
AV : the set of projected attributes to explore.

Result: upstaged FDs provenance triples over VR

1 P ← ∅;
2 DV ← get the set of FDs in the triples in PV ;
3 Vsel ← σρ(VR);
4 if size(Vsel) < size(VR) then
5 Dcand ← generate candidate FDs for first level of VR;
6 prune FDs in Dsel with attributes not in AV ;
7 repeat
8 prune non-minimal FDs in Dcand knowing Dout ;
9 prune non-minimal FDs in Dcand knowing DV ;

10 add to Dout the FDs from Dcand holding in V ;
11 Dcand ← generate candidate FDs for next level;
12 until Dcand = ∅;
13 for each FD d ∈ Dout do
14 add triple (d, ”upstaged selection”, VR) to P
15 return P
16 else
17 return ∅;

C. Mining of FDs from Joined Tables

In the next sections, we will show how we can mine
the upstaged, inferred and join FDs generated during a join
operation. In the next theorem, we state that the join order
can only affect the type of upstaged FDs which can switch
between left or right upstaged FDs:

Lemma 1 (FD types preservation though join operations):
Let R = {R1; . . . ;Rn} be a set of relational instances.
Let fds(Ri) denotes the set of minimal FDs over the re-
lational instance Ri. Let Σleft up,Σright up,Σinf and Σjoin
denote the sets of left upstaged, right upstaged, inferred and
join FDs over R1 � · · · � Rn, respectively. Then, the sets
Σleft up ∪ Σright up,Σinf and Σjoin are equal regardless of
the join order. At the opposite, equality between sets Σleft up
and Σright up cannot be guaranteed.

Next, we show how upstaged FDs can be mined over joins.
1) Mining of Upstaged FDs from Joined Tables: Upstaged

FDs may appear due to the join operations in the SPJ view
when tuples from one base relation cannot be joined with their
counterpart in the other base relation, i.e., when some join at-



tribute values are missing in one of the tables. This mechanism
is expressed more formally in the following lemma:

Lemma 2 (Upstaged join FDs): Let L and R be two
instances over relations S and T, respectively, and DL and
DR be the two sets of all FDs such that L |= DL and R |= DR,
respectively.
Then the sets of upstaged join FDs denoted DnewL and DnewR

are the sets:

DnewL = {d | d 6∈ DL ∧ (L♦X=Y (πY (R)) |= d)} (2)
DnewR = {d | d 6∈ DR ∧ (πX(L)♦X=YR) |= d)} (3)

Example 2: To illustrate the case of upstaged join FDs we
use the example in Figure 1. The FD expire_flag ⇁1

dod in Table PATIENT is violated by the presence of two
tuples for patient (#257). However, in the join result of
PATIENT ./subject_id ADMISSION, the violating tuple #257
has no counterpart in the ADMISSION table and it disappears
from the join result. Consequently, the FD expire_flag →
dod becomes valid in the join result.

Algorithm 3: joinUpFDs
Input: VL, VR: two view specifications;

X,Y : the sets of join attributes for VL and VR;
♦: a join operator in {./;n;o; ./ ; ./; ./ };
PVL ,PVR : the provenance triples sets of VL and VR;
AV : the set of projected attributes to explore.

Result: upstaged FDs provenance triples over VL and VR
1 P ← ∅;
2 DVL ← get the set of FDs in the triples in PVL ;
3 Dupleft ← upstagedFDs(VL, VR, X , Y , DVL ,AV );
4 for each FD d ∈ Dupleft do
5 add triple (d, ”upstaged left”, VL♦VR) to P;

6 DVR ← get the set of FDs in the triples in DVR;
7 Dupright ← upstagedFDs(VR, VL, Y , X , DVR ,AV );
8 for each FD d ∈ Dupright do
9 add triple (d, ”upstaged right”, VL♦VR) to P;

10 return P;

11 Subroutine upstagedFDs(I ,J ,X ,Y ,D,AV )
12 Dout ← ∅;
13 Ijoin ← I♦X=Y (πY (J));
14 if size(Ijoin) < size(I) then
15 Dcand ← generate candidate FDs for first level of

Ijoin;
16 prune FDs in Dcand with attributes not in AV ;
17 repeat
18 prune non-minimal FDs in Dcand knowing Dout;
19 prune non-minimal FDs in Dcand knowing DV ;
20 add to Dout the FDs from Dcand holding in I;
21 Dcand ← generate candidate FDs for next level;
22 until Dcand = ∅;
23 return Dout

To compute upstaged FDs, we propose Algorithm 3.
Lines #2–9 handle the inputs of the SPJ view for each table
participating in the join operation. For each side of the join, the
subroutine upstagedFDs is executed (lines #3 and 7) and
computes partially the join only with the join attributes from
the left side table (line #13) to check the assumption of the join

value set preservation [9]. If the assumption is violated (i.e., if
some tuples have been deleted through the join operation, as
checked at line #14), some upstaged join FDs are produced.
The subroutine works analogously to Algorithm 2 to discover
the FDs in the input instance by using a level-wise approach
where the previously discovered FDs are used to improves the
pruning of candidates (lines #18–19).

In this algorithm, the computation is performed over up-
staged FDs only. Next, we discover the inferred FDs by relying
on the characteristics of the join and on the FDs discovered
previously.

2) Mining of Inferred FDs from Joined Tables: We will
now show how the inferred FDs can be deduced from the
sets of FDs discovered from the tables involved in the join
operation. In the next lemma, we show that if the right-hand
side (rhs) of an FD is not functionally defined by the set of
join attributes, then this FD cannot be an inferred FD in a join
result. This property of the join operation is formally defined
as follow:

Lemma 3: Let L and R be two instances over relations
S and T, respectively. Let L♦X=YR be a join result with
X ⊆ atts(L), Y ⊆ atts(R). For all A ⊆ atts(L) \ X and
B ⊆ atts(R) \ Y :

if L♦X=YR 6|= X → B then L♦X=YR 6|= A→ B

Example 3: To illustrate the property proved in Lemma 3,
we observe that the diagnosis is not determined by the patient
identifier in Figure 1, for example patient #249 has been
admitted three times for a different pathology each time,
i.e., PATIENT ./subject_id ADMISSION 6|= subject_id →
diagnosis. From Lemma 3, we know that diagnosis in
the join result PATIENT ./subject_id ADMISSION cannot be
determined by any set of attributes coming from PATIENT
table. Such similar inferences may be trivial for the user, but
they usually require the knowledge of the attribute semantics.
If not encoded, they are difficult to capture by a system.
However, the property shown in Lemma 3 can be used to
drastically reduce the set of possible FDs that can appear after
a join operation.
Intuitively, from Lemma 3 follow that inferring FDs in the
results of a join operation using Armstrong’s transitivity axiom
can only be done if the transitivity is done through the join
attributes. This is formalized in the following theorem:

Theorem 2: Let L and R be two instances over relations
S and T, respectively. Let L♦X=YR be a join result with
X ⊆ atts(L), Y ⊆ atts(R). For all A ⊆ atts(L) \ X and
B ⊆ atts(R) \ Y ,
If L♦X=YR |= A→ X ∧ L♦X=YR |= X → B,
Then L♦X=YR |= A→ B.

Example 4: In PATIENT ./ subject_id ADMISSION result
illustrated in Figure 1, we observe that the diagnosis deter-
mines the date of birth, i.e., diagnosis → dob. The reason
is that we have: admission_location, diagnosis →
subject_id in ADMISSION and subject_id → dob in
PATIENT. Since these tables do not contain any null values
for the lhs and rhs attributes, joining them with attribute



subject_id leaves these FDs unchanged with no violation.
By transitivity, we obtain: diagnosis→ dob.

Algorithm 4: inferFDs
Input: VL, VR: two view specifications;

X,Y : the sets of join attributes for VL and VR;
♦: a join operator in {./;n;o; ./ ; ./; ./ };
PVL ,PVR : the provenance triples sets of VL and VR;
AV : the set of projected attributes to explore.

Result: inferred FDs provenance triples over L♦X=YR

1 DVL ← get the set of FDs in the triples in PVL ;
2 DVR ← get the set of FDs in the triples in PVR ;

3 DinfL ← infer(X ,Y ,DVL ,DVR);
4 DinfR ← infer(Y ,X ,DVL ,DVR);
5 Dinf ← DinfL ∪ DinfR;

6 Dref ← refine(L,R,X ,Y ,Dinf , ♦);
7 for each FD d ∈ Dref do
8 add triple (d, ”inferred”, VL♦VR) to P
9 return P;

10 Subroutine infer(X ,Y ,D, D′)
11 Dout ← ∅;
12 forall A→ X in D do
13 forall Y → b in D′ do
14 add A→ b to Dout;
15 return Dout;
16 Subroutine refine(L,R,X ,Y ,Dinf , ♦)
17 Let Dout ← Dinf ;
18 forall A→ b in Dinf do
19 Let I ← πX∪A(L)♦πY ∪{b}(R);
20 forall A′ ⊂ A do
21 if A′ → b holds in I then
22 add A′ → b to Dout;
23 prune non-minimal FDs in Dout knowing

that A′ → b is valid;
24 return Dout;

To compute the set of FDs with lhs attributes coming
from a single instance, as described in Theorem 2, we propose
Algorithm 4. First, the subroutine infer extracts the FDs that
can be retrieved by transitivity (lines #12 and 13 in subroutine
infer). Note that in the case of equijoins, equality of values
might be enforced between sets of attributes with different
names (i.e., X and Y might be different), thus for the general
case, the FD (line #13) cannot be simplified into an FD X → b.
Conversely, if we restrict the join operations to natural joins
only, such a simplification can be made.

Then, for each FD returned by infer, the subroutine
refine checks whether the FD is minimal or if a subset of
its lhs leads to a minimal FD. To do so, subroutine refine
uses an horizontal partition of the joined instances in which
only the necessary attributes to perform the verification are
considered (line #19). These necessary attributes are the join
attributes (to perform the join operation), and the lhs and rhs
attributes of the refined FD A→ b (line #18) as refine only
considers candidates with subsets of A as lhs and b as rhs
(lines #20 and 21).

3) Mining of Join FDs from Joined Tables: Now, we
characterize the set of join FDs which hold on a join result.
Contrarily to the inferred FDs that can be deduced directly

using a simple logical reasoning, these join FDs need to be dis-
covered and validated from the data. For example, gender,
expire_flag→ insurance of our example has attributes
from PATIENT in lhs and attributes from ADMISSION in
rhs and it cannot be inferred logically. Other FDs with the
same properties are illustrated in orange in Figure 1. In the
following theorem, we show that if lhs attributes of an FD
come from the instances participating in the join, then we
cannot predict their validity without checking them directly
with some representative (if not all) tuples of the join result:

Theorem 3: Let L and R be two instances over relations
S and T, respectively. Let L♦X=YR be a join result with
X ⊆ atts(L), Y ⊆ atts(R). We cannot guarantee that all
FDs over L♦X=YR can be inferred from Armstrong’s axioms
over the FDs over L and R taken separately.
Such FDs are illustrated in the following example:

Example 5: In our example of Figure 1, FDs that can-
not be inferred are highlighted in orange. For example,
gender, h_expire_flag→ insurance is specific to the
join of PATIENT and ADMISSION. It holds in PATIENT

./ ADMISSION. Attributes gender and expire_flag come
from PATIENT and attribute insurance comes from
ADMISSION.
Theorem 3 motivates the need for designing a new method for
computing FDs from partial join results, as we cannot always
infer all the FDs only using logical reasoning. However, we
can rely on the following theorem to greatly reduce number
of remaining FDs to check from the data:

Theorem 4: Let L and R be two instances over relations
S and T, respectively. Let L♦X=YR be a join result with
X ⊆ atts(L), Y ⊆ atts(R). For all A ⊆ atts(L), A′ ⊆
atts(R) and b ∈ atts(R): If L♦X=YR |= AA′ → b, Then
L♦X=YR |= Y A′ → b.

In-line with Theorem 4, we propose Algorithm 5 for se-
lective mining and use the FDs previously discovered with
Algorithms 3 and 4 to compute the remaining join FDs.
Intuitively, Theorem 4 shows that a given attribute b can be
a rhs of a remaining join FDs only if we have previously
found an FD of the form Y A → b with Y being the
join attributes of the instance containing b. Thus, it allows
us to focus only on the plausible rhs (lines #11 and 15
in subroutine discover) and explore their candidate lhs
(lines #12-13 and 16-17). In practice, there is no need to
generate every candidate FDs initially. Instead, candidate FDs
can be explored by generating a first level containing only
the smallest candidates and by generating upper levels only
when currently evaluated candidates are not valid. Moreover,
we can avoid the computation of the full join by deleting a
given lhs attribute a if a is not a possible rhs and, for every
FD candidate d : A→ b such that a ∈ A, d is logically implied
by previously discovered FDs.

D. Completeness, Correctness, and Complexity

In this section we show that the set of FDs retrieved by
InFine is both complete and correct, and present our solution



Algorithm 5: mineFDs
Input: VL, VR: two view specifications;

X,Y : the sets of join attributes for VL and VR;
♦: a join operator in {./;n;o; ./ ; ./; ./ };
PVL ,PVR : the provenance triples sets of VL and VR;
PinfVL♦VR

: the inferred provenance triples set.
Result: join FDs provenance triples over L♦X=YR

1 Dinf ← get the set of FDs in the triples in PinfVL♦VR
;

2 DVL ← get the set of FDs in the triples in PVL ;
3 Dleft ← mine(L,R,X ,Y ,DVR ,Dinf);

4 DVR ← get the set of FDs in the triples in PVR ;
5 Dright ← mine(R,L,Y ,X ,DVL ,Dinf);

6 for each FD d ∈ Dleft ∪ Dright do
7 add triple (d, ”joinFD”, VL♦VR) to P
8 return P;

9 Subroutine mine(I ,J ,X ,Y ,DJ ,Dinf)
10 Dout ← ∅;
11 forall Y → b in DJ do
12 forall A ⊆ atts(I) \X do
13 if 6 ∃A′ ⊂ A,A′ → b ∈ Dinf and A→ b holds

in I♦J then
14 add A→ b to Dout;
15 forall Y A′ → b ∈ DJ such that A′ 6→ b do
16 forall A ∪A′ → b such that A ⊆ atts(I) \X do
17 if A ∪A′ → b holds in I♦J then
18 add A ∪A′ → b to Dout;
19 return Dout;

complexity. First, we show that InFine always retrieve every
functional dependency in the specified SPJ view.

Theorem 5 (InFine completeness): Let R = {R1; . . . ;Rn}
be a set of relational instances. Let VR be a view specification
over relations in R. Let fds(VR) denotes the set of minimal
FDs over the view specified by VR. Let fds(InFine ) denotes
the set of FDs computed by InFine over the view specified by
VR. Then:

∀d ∈ fds(VR),∃d′ ∈ fds(InFine ) s.t. d ≡ d′

This establish the completeness of our approach. Now, in
the next theorem, we show that every FD retrieved by InFine is
valid in the specified SPJ view:

Theorem 6 (InFine correctness): Let R = {R1; . . . ;Rn} be
a set of relational instances. Let VR be a view specification
over relations in R. Let IVR

be the view specified by VR. Let
fds(InFine ) denotes the set of FDs computed by InFine over
the view specified by VR. Then:

∀d ∈ fds(InFine ), IVR
|= d

We now detail the complexity of our algorithms. Algo-
rithms 2 and 3 are based on level-wise algorithms through
the attributes lattices. Their complexity is exponential in the
number of attributes of the considered table. They prune
candidates at each level when it is possible. In terms of
memory, only two levels are required. The memory size is
bounded by O

(
k
k/2

)
where k is the number of attributes.

Algorithm 4 infers and refines FDs coming from the previous
step with complexity O(n · f), where f is the number of

DB Table (Att# ; Tuple#) FD#
Patients (7 ; 46.52k) 11

MIMIC3 Admissions (18 ; 58.976k) 631
Diagnoses icd (4 ; 651.047k) 2
D icd Diagnoses (3 ; 14.710k) 2
active (2; 300) 1

PTE bond (4 ; 9.317k) 3
atm (5 ; 9.189k) 5
drug (1 ; 340) 0
atom (3; 12.333k) 2

PTC connected (3 ; 24.758k) 3
bond (3 ; 12.379k) 2
molecule (2 ; 343) 1
Supplier (7 ; 10k) 34

TPC-H Customer (8 ; 150k) 51
Orders (9 ; 1.5M) 53
LineItem (16 ; 6M) 3946
Nation (4 ; 23) 9
Region (3 ; 5) 6
Part (7 ; 200k) 99
Partsupp (5 ; 800k) 11
TABLE I: Data characteristics.

validated FDs and n the maximal number of tuples in the left
or right instance. The complexity of Algorithm 5 is O(f · fj)
where f is the maximal number of validated FDs in the left
or right instance and fj the number of validated FDs in the
join instance.

V. EXPERIMENTS

Evaluation Goals. The two main points we seek to vali-
date in our experimental study are as follows: (1) Does our
approach enable us to discover all FDs with their provenance
information in an efficient manner and faster than the straight-
forward approach? (2) What is the impact of different data and
SPJ view characteristics on the InFine performance?

Setup. We perform all experiments on a laptop HP ZBook
15 machine with an Intel Core i7-4900MQ, 2.8 GHz, 32 GB
RAM, powered by Windows 10 pro 64-bit. Our implemen-
tation in C++ uses only one thread. Sharable datasets, SPJ
queries, scripts, and code are available at https://github.com/
ucomignani/InFine.

Data. We use three real-world datasets and one synthetic
dataset in our experiments: (1) MIMIC-3, a clinical database 3

[14]; (2) PTE4, a database for predictive toxicology evaluation,
used to predict whether a compound is carcinogenic, and (3)
PTC5, the dataset from the Predictive Toxicology Challenge
that consists of more than three hundreds of organic molecules
marked according to their carcinogenicity on male and female
mice and rats; and (4) the TPC-H Benchmark6 with scale-
factor 1. The datasets characteristics are given in Table I and
the characteristics of the queries corresponding to the views
on the above datasets are provided in Table II. To the best
of our knowledge, all the datasets used in the literature for

3https://physionet.org/content/mimiciii/1.4/
4https://relational.fit.cvut.cz/dataset/PTE
5https://relational.fit.cvut.cz/dataset/PTC
6http://www.tpc.org/tpch/

https://github.com/ucomignani/InFine
https://github.com/ucomignani/InFine
https://physionet.org/content/mimiciii/1.4/
https://relational.fit.cvut.cz/dataset/PTE
https://relational.fit.cvut.cz/dataset/PTC
http://www.tpc.org/tpch/


DB SPJ View Tuple# FD#
M

IM
IC

3 Q(patients ./ admissions) 58,976 16
diagnosesicd ./ patients 58,798 12
dicddiagnoses ./ diagnosesicd 658,498 22
[diagnosesicd./patients]./ dicddiag-
noses

658,498 44

PT
C

atom ./ molecule 9,111 4
connected ./ bond 24,758 8
[connected ./ bond] ./ molecule 18,312 12
connected ./id1 [atom ./ molecule] 18,312 12

PT
E

atm ./ drug 9,189 5
active ./ drug 299 1
[bond ./ drug] ./ active 7,994 6
[atm ./ bond ./ atm] ./ drug 9,317 24

T
PC

-H

Q2∗(P ./ PS ./ S ./ N ./ R) 21,696 69
Q3∗(C ./ O ./ L) 60,150 14
Q9∗(P ./ PS ./ S ./ L ./ O ./ N) 3,735,632 8
Q11∗(P ./ S ./ N) 284,160 151

TABLE II: SPJ queries considered in our experiments.

benchmarking FD discovery methods consist of single tables,
while we use multi-table scenarios. Note that the numbers of
discovered FDs in the literature datasets are not comparable
as we do not employ the same datasets due to the SPJ views
studied in our approach. To handle multiple tables with SPJ
queries, we propose our own benchmark datasets along with
views on top of them. We adapted TPC-H queries by removing
group-by and order-by statements (that are not addressed in
our approach) and used the specified constants7. SPJ queries
for the other datasets were manually crafted to make use
of multiple tables and obtain joins of various sizes (from
2 to 6 tables), number of tuples (from 299 to 3 millions),
and coverage values (from 0.12 to 25,812.67) to show the
performances of our method comparatively in a large and
representative range of SPJ views.

We observed that the cardinalities and overlap of the join
attribute values in the datasets are rarely preserved through a
join operation and this has a great impact on FD discovery
from SPJ queries depending on the join operator used. To
quantify this phenomenon, we define a measure called cover-
age as follows:

Coverage(R♦L) =
1

2

(
Cov(R♦L,L,X) + Cov(R♦L,R, Y )

)
with Cov(Join, I, a) =

1

|πa(I)|
∑

∀v∈πa(I)

|σa=v(Join))|
|σa=v(I)|

.

where X and Y denote the join attributes of L and R base
tables respectively. I is a considered instance and a the con-
sidered join attribute. If Coverage(R♦L) = 0, no tuple from
L can be joined with tuples in R. For Coverage(R♦L) < 1,
some tuples in L (or R) may be missing from the join result, as
it is the case for patients #257 in PATIENT and #247, #248, and
#253 in ADMISSION that do not have their counterparts in the
other table in our example. For Coverage(R♦L) = 1, there
are as many tuples in both tables L and R as in the join result.

7see query validation sections of the TPC documentation at http://tpc.org/
tpc documents current versions/pdf/tpc-h v3.0.0.pdf

For Coverage(R♦L) > 1, there are more tuples in the join
result than in tables L or R as some tuples may be repeated
through the join. The coverage values of the corresponding
views are given in Table III.

Methods. We compare the InFine algorithms applied to base
tables against four state-of-the-art FD discovery methods, i.e.:
(1) TANE [11], [12], (2) Fast FDs [29], and (3) FUN [21], and
(4) HyFD [25] with Java implementation of Metanome [23]
using command line. The datasets employed in our study are
stored in a PostgresSQL DBMS (version 12.7). Join attributes
are indexed with both B-Tree and hash indexes. The reported
results correspond to the average over 10 runs for each query.

Metrics. We compute accuracy, average runtime, and max-
imal memory consumption for each view. In our setting,
accuracy corresponds to precision and is defined as the fraction
of the number of FDs correctly discovered by InFine applied
only to the base tables over the total number of FDs found by
baseline methods classically applied to the SPJ view results.
Accuracy values are given in Table III and represented as
percentages in pie charts of Fig. 5. All methods (including
ours) reach accuracy of 1 at the end of their execution.

Comparison Setup. Our goal is to compare our method
which discovers FDs from a SPJ view specification and base
tables and provides FD provenance information against the
straightforward approach which consists of discovering all the
FDs from each base table, computing the view result, and
discovering the FDs on top of the latter. Classical methods do
not provide provenance information. Then, a fair comparison
requires the preservation of FD provenance information from
the base tables to the view. To know the origin of each
FD, both the baselines and our approach have to discover
FDs from the base tables first. Since these execution times
are the same in both cases, we don’t include them. On the
one hand, the competing methods are applied to each SPJ
view result and we report their average execution time to
which we added the execution time of the full SPJ view
computation. On the other hand, InFine is applied to the base
tables only and it computes a partial SPJ view depending
on the view specification (query sub-tree) and generate FD
provenance triples; we report InFine average execution time
with time breakdown per algorithm. The time of the partial SPJ
view computation is included in mineFDs. The generation
of provenance triples is included in the execution of each
InFine algorithm in charge of annotating each FD accordingly.
Total I/O times of InFine are also reported in Table III.

A. Efficiency Evaluation

In a first set of experiments, we evaluate the runtime and
memory consumption of the InFine algorithms compared to the
state-of-the-art FD discovery methods that follow the straight-
forward approach over the 16 SPJ queries on the real-world
and synthetic datasets with a wide range of coverage values.
The selected queries are representative in terms of coverage
and size (number of tables, tuples, and attributes). Results
for other queries follow the same trend and are available as
supplementary material on Github.

http://tpc.org/tpc_documents_current_versions/pdf/tpc-h_v3.0.0.pdf
http://tpc.org/tpc_documents_current_versions/pdf/tpc-h_v3.0.0.pdf
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Fig. 3: Average runtime (in seconds): InFine against HyFD, FastFDs, FUN, and TANE with full and partial SPJ computation
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Fig. 4: Maximal memory consumption (in MegaBytes) of InFine against HyFD, FastFDs, FUN, and TANE algorithms

1) Runtime: Fig. 3 presents, for each method, the average
total runtime in seconds for FD discovery (including data
loading) in log scale. For the competing methods, we included
the average execution time of the SPJ view over the indexed
data. Similarly, we included the partial SPJ view computation
time included in mineFDs. For all methods including ours,
we did not include the time for discovering FDs from base
tables since these costs are the same. Since our method does
not require the full SPJ view computation to discover FDs
and does not operate over the query result but only on the
single base tables, it is much faster than the traditional methods
with one order of magnitude on average up to two orders
of magnitude compared to Fast FDs (> 2, 000 seconds). A
provenance triple is generated each time an FD is validated

by one of the InFine algorithms and is appended to the corre-
sponding FD data structures with negligible time (included in
each algorithm execution time). For MIMIC3 and TPC-H SPJ
queries with the highest values for coverage and number of
tuples (e.g., Q9∗ and Q11∗), InFine is still outperforming the
other methods. The time difference between full and partial
SPJ computations shown in Fig. 3 also explains the advantage
of our approach.

2) Memory Consumption: As shown in Fig. 4, the average
maximal memory consumption of InFine (for accuracy equals
1) is the lowest for all queries across the datasets. HyFD
has the second position in terms of memory consumption
efficiency and TANE is the worst one. For all methods, Q9∗

has the highest memory consumption due to its large size of
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Fig. 5: Average runtime and accuracy of InFine with breakdown per algorithm

3.73 millions of tuples, very high coverage (25.8k), and the
number of joins between 6 tables. This case is an example of
a worst case scenario where many tuples are repeated through
the join of the base tables. FD discovery from Q9∗ requires
the mining and checking of all the valid FDs and storing all
the relevant information. In this particular case, InFine time
performance becomes comparable to HyFD over the full SJP
view computation (due to mineFDs), although all FDs were
discovered before by upstageFDs and inferFDs (see Fig.
5).

B. Quality Evaluation

In Fig. 5, we report the average runtime breakdown of
each algorithm upstageFDs, inferFDs, and mineFDs
of InFine (as horizontal histograms) and their respective per-
centages of discovered FDs (in the corresponding pie charts
with the same color coding). Error bars represent the standard
deviation of the average total runtime of InFine algorithms.
selectionFDs’s time is included in upstageFDs’s time.
Various base table data distributions, SPJ views, and coverage
values with very different characteristics across the datasets
illustrate the behavior of our algorithms.

Noticeably, upstageFDs can retrieve from 33.3% to 59%
of the FDs in MIMIC3 in 0.75ms on average, from 58.3% to
75% in PTC in 1.12ms, from 66.7% to 100% in PTE in 1.5ms,
and from 42.8.7% to 87.5% in TPC-H in 7.65ms, which are
negligible times compared to mineFDs time and I/O time,
the most time-consuming steps. Table III gives the number of
FDs retrieved by each algorithm and time breakdowns.

The logical inference times are negligible (below 0.0001
ms) and are not reported in the table. inferFDs can retrieve
100% of the FDs for 3 queries over PTE. In some cases,
mineFDs is executed but does not return any new FD
(e.g., Q∗9 in TPC-H or [atm ./ bond ./ atm]./drug),
whereas in the other queries, mining subsets of the SPJ view
using mineFDs is necessary to recover the remaining FDs.
Without computing and mining the join results, upstageFDs
and inferFDs can retrieve 83.01% of FDs (68.38±20.00 and
14.63±15.47, respectively) on average across all the datasets.
We also observed that join ordering does not affect the total
number of discovered FDs, but it changes FD provenance. The
main reason is due to the difference in the query execution
sub-trees triggering different FD validation by each InFine al-
gorithm.

It should be noted that, due to the NP-completeness of the
FD mining problem (cf. [7]), this exploration is necessary to
ensure that no valid FD is missed.

These results clearly show the main advantages of our
approach, reducing drastically the execution time of FD dis-
covery from SPJ queries with minimal memory consumption,
outperforming all the state-of-the art methods tested in our
experiments over a large representative range of queries.

VI. RELATED WORK

In the last three decades, numerous approaches from the
database and the data mining communities have been proposed
to extract automatically valid exact and approximate FDs from
single relational tables [16], [5]. Liu et al. [19] have shown



DB SPJ View (Att# ; Tuple#) Cov. UpstageFDs
Accuracy

InferFDs
Accuracy

MineFDs
Accuracy

Total Accu-
racy (FD#)

I/O (s) upstageFDs
(s)

mineFDs
(s)

PT
E

atm ./ drug (5 ; 9,189) 14.01 1 0 0 1 (5 FDs) 0.0246 0.0000 0.0000
active ./ drug (2 : 299) 0.94 1 0 0 1 (1 FD) 0.0015 0.0000 0.0000
[bond ./ drug] ./ active (6 ; 7,994) 13.83 0.67 0.33 0 1 (6 FDs) 0.0215 0.0030 0.0000
[atm ./ bond ./ atm] ./ drug (14 ; 9,317) 14.20 1 0 0 1 (24 FDs) 0.0879 0.0030 0.0492

PT
C

atom ./ molecule (4 ; 9,111) 13.67 0.75 0.25 0 1 (4 FDs) 0.0231 0.0000 0.0015
connected ./ bond (5 ; 24,758) 1.50 0.625 0.375 0 1 (8 FDs) 0.1012 0.0015 0.0015
[connected ./ bond] ./ molecule (6 ; 18,312) 27.08 0.75 0.25 0 12 (12FDs) 0.0686 0.0000 0.0030
connected ./id1 [atom ./ molecule] (6 ; 18,312) 27.08 0.583 0.417 0 1 (12 FDs) 0.0903 0.0030 0.0045

M
IM

IC
3 diagnosesicd ./ patients (12 ; 651,047) 7.50 0.591 0.273 0.136 1 (22 FDs) 2.1876 0.0015 2.3120

dicddiagnoses ./ diagnosesicd (7 ; 658,498) 22.84 0.333 0 0.667 1 (12 FDs) 1.7202 0.0000 0.3497
[diagnosesicd ./ patients] ./ dicddiagnoses (14 ; 658,498) 22.84 0.545 0 0.455 1 (44 FDs) 5.1232 0.0000 6.1325
Q(patients ./ admissions) (10 ; 6,736) 0.79 0.563 0 0437 1 (16 FDs) 0.2360 0.0015 0.0230

T
PC

-H

Q2∗(P ./ PS ./ S ./ N ./ R) (10 ; 21,696) 1.50 0.594 0.087 0.319 1 (69 FDs) 0.1299 0.0045 0.0120
Q3∗(C ./ O ./ L) (6 ; 60,150) 0.12 0.429 0 0.571 1 (14 FDs) 13.036 0.0000 0.0198
Q9∗(P ./ PS ./ S ./ L ./ O ./ N) (9 ; 3,735,632) 25,813 0.875 0.125 0 1 (8 FDs) 16.967 0.0015 12.1261
Q11∗(P ./ S ./ N) (15 ; 284,160) 80.09 0.636 0.232 0.132 1 (151 FDs) 13.771 0.0246 0.5777

TABLE III: Accuracy and time breakdowns of InFine algorithms

that the complexity of FD discovery is in O(n2(k2 )22k) where
k is the number of attributes and n the number of records
considered. To find FDs efficiently, existing approaches can
be classified into three categories: (1) Tuple-oriented methods
(e.g., FastFDs [29], DepMiner [20]) that exploit the notion
of tuples agreeing on the same values to determine the
combinations of attributes of an FD; (2) Attribute-oriented
methods (e.g., Tane [11], [12], Fun [21], [22], FDMine [30])
that use pruning techniques and reduce the search space to
the necessary set of attributes of the relation to discover exact
and approximate FDs. HyFD [25] exploits simultaneously
the tuple- and attribute-oriented approaches to outperform the
previous approaches; and more recently (3) Structure learning
methods relying on sparse regression [31], or on entropy-based
measures [15] to score candidate constraints (not limited to
FDs alone). More particularly, FDX [31] performs structure
learning over a sample constructed by taking the value dif-
ferences over sampled pairs of tuples from the raw data. In
addition, incremental approaches (e.g., [27], [4]) have been
developed to tackle data volume and velocity with updating
all valid FDs when new tuples are inserted outperforming
classical approaches that recalculate all FDs after each data
update. Extensive evaluations of FD discovery algorithms can
be found in [8], [24]. To the best of our knowledge, previous
work on FD discovery did not attempt to address the problem
of FD discovery from integrated views in an efficient manner
while preserving data provenance. Our approach combining
logical inference and selective mining from the base tables
adapting FD lattice approach avoids the full computation of
FDs from the integrated views and it is the first solution in
this direction.

The problem of deciding whether a semantic constraint
(being a FD or a Join Dependency) is valid on a tableau
view, knowing that it is valid on the base relations has been
addressed by Klug et al. [17]. However, their view constraint
problem and FD implication is inherently different from our
FD inference problem, and allowing to reuse discovered FDs
of base tables while annotating them with provenance infor-
mation and efficiently recomputing FDs that are valid on the
view and are not valid on the base tables (as stated in Th.

5). Moreover, the underlying technique employed in [17] and
used for checking the validity of FDs leverages the tableau
chase as opposed to using the FD lattice, the latter being a
well established efficient method for FD discovery.

The problem of propagating XML keys to relations is an or-
thogonal problem with respect to ours [6]. The simple mapping
language from XML to relations and the restriction to XML
keys, that cannot capture relational functional dependencies,
is specific to this work as also stated in their paper [6].

VII. CONCLUSIONS

We addressed the problem of FD discovery from integrated
views starting from the FDs of multiple base tables by avoiding
the full computation of the view beforehand. The salient
features of our work are the following: (1) We leverage single-
table approximate FDs that become exact FDs due to the
join operation; (2) We leverage logical inference to discover
FDs from the base tables without computing the full view
result; and (3) We find new multi-table join FDs from partial
join using selective mining on the necessary attributes. We
empirically show that InFine outperforms, both in terms of
runtime and memory consumption, the state-of-the-art FD
discovery methods applied to the SPJ views that have to be
computed beforehand. We hope that our work will open a
new line of research for reusing the FDs discovered from
multiple base tables. Various orderings of the base tables lead
to different sets of potential upstaged FDs, which, in turn, may
trigger different logical inferences. Future work will be to find
the optimal ordering of the base tables to reduce the overall
execution time and memory consumption.

REFERENCES

[1] Z. Abedjan, L. Golab, F. Naumann, and T. Papenbrock. Data Profiling.
Synthesis Lectures on Data Management. Morgan & Claypool Publish-
ers, 2018.
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[12] Y. Huhtala, J. Kärkkäinen, P. Porkka, and H. Toivonen. Tane: An efficient
algorithm for discovering functional and approximate dependencies.
Computer Journal, 42(2):100–111, 1999.

[13] I. F. Ilyas, V. Markl, P. J. Haas, P. Brown, and A. Aboulnaga. CORDS:
automatic discovery of correlations and soft functional dependencies. In
Proc. of ACM SIGMOD, pages 647–658, 2004.

[14] A. E. Johnson, T. J. Pollard, L. Shen, H. L. Li-wei, M. Feng, M. Ghas-
semi, B. Moody, P. Szolovits, L. A. Celi, and R. G. Mark. MIMIC-III,
a freely accessible critical care database. Scientific data, 3, 2016.

[15] B. Kenig, P. Mundra, G. Prasad, B. Salimi, and D. Suciu. Mining
approximate acyclic schemes from relations, 2019.

[16] J. Kivinen and H. Mannila. Approximate inference of functional depen-
dencies from relations. Theoretical Computer Science, 149(1):129–149,
1995.

[17] A. C. Klug and R. Price. Determining view dependencies using tableaux.
ACM Trans. Database Syst., 7(3):361–380, 1982.

[18] S. Kruse and F. Naumann. Efficient discovery of approximate depen-
dencies. PVLDB, 11(7):759–772, 2018.

[19] J. Liu, J. Li, C. Liu, and Y. Chen. Discover dependencies from data—a
review. IEEE Trans. on Knowl. and Data Eng., 24(2):251–264, Feb.
2012.

[20] S. Lopes, J.-M. Petit, and L. Lakhal. Efficient discovery of functional
dependencies and armstrong relations. In Proc. of EDBT, pages 350–
364, 2000.

[21] N. Novelli and R. Cicchetti. FUN: an efficient algorithm for mining
functional and embedded dependencies. In Proc. of ICDT, volume 1973
of LNCS, pages 189–203, 2001.

[22] N. Novelli and R. Cicchetti. Functional and embedded dependency
inference: a data mining point of view. Inf. Syst., 26(7):477–506, 2001.

[23] T. Papenbrock, T. Bergmann, M. Finke, J. Zwiener, and F. Naumann.
Data profiling with metanome. PVLDB, 8(12):1860–1863, 2015.

[24] T. Papenbrock, J. Ehrlich, J. Marten, T. Neubert, J. Rudolph,
M. Schönberg, J. Zwiener, and F. Naumann. Functional dependency
discovery: An experimental evaluation of seven algorithms. Proc. VLDB
Endow., 8(10):1082–1093, 2015.

[25] T. Papenbrock and F. Naumann. A hybrid approach to functional
dependency discovery. In SIGMOD’16, page 821–833, 2016.

[26] G. N. Paulley. Exploiting Functional Dependence in Query Optimiza-
tion. Citeseer, 2000.

[27] P. Schirmer, T. Papenbrock, S. Kruse, F. Naumann, D. Hempfing,
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APPENDIX

Theorem and sketches of proofs:
Theorem 1: Let V, V1, and V2 be view specifications. Let

D, D1 and D2 be the sets of FDs over views specified by V,
V1 and V2, respectively. Let fds(V ) denotes the set of FDs
over a view specified by V .
Then:

fds(πX(V)) ⊆ D, fds(σρ(V)) ⊇ D, and

fds(V1 � V2) ⊇ D1 ∪ D2, with � ∈ {./; ./ ; ./; ./ ;n;o}

Proof: Trivial.
Lemma 1 (FD types conservation though join operations):

Let R = {R1; . . . ;Rn} be a set of relational instances.
Let fds(Ri) denotes the set of minimal FDs over the re-
lationnal instance Ri. Let Σleft up,Σright up,ΣinfandΣjoin
denote the sets of left upstaged, right upstaged, inferred and
join FDs over R1 � · · · � Rn, respectively. Then, the sets
Σleft up ∪Σright up,Σinf and Σjoin are equals regardless of
the join order. At the opposite, equality between sets Σleft up
and Σright up cannot be guaranteed.

Proof:

Lemma 2 (Upstaged join FDs): Let L and R be two
instances over relations S and T, respectively, and DL and
DR be the two sets of all FDs such that L |= DL and R |= DR,
respectively.
Then the sets of upstaged FDs denoted DnewL and DnewR are
the sets:

DnewL = {d | d 6∈ DL ∧ (L♦X=Y (πY (R)) |= d)} (4)
DnewR = {d | d 6∈ DR ∧ (πX(L)♦X=YR) |= d)} (5)

Lemma 3: Let L and R be two instances over relations
S and T, respectively. Let L♦X=YR be a join result with
X ⊆ atts(L), Y ⊆ atts(R). For all A ⊆ atts(L) \ X and
B ⊆ atts(R) \ Y :

if L♦X=YR 6|= X → B then L♦X=YR 6|= A→ B

Proof sketch: Let x1, . . . , xn being values over the
attributes in X , and b1, . . . , bm, b′1, . . . , b

′
m being values over

the attributes in B. If L♦X=YR 6|= X → B then there exist
two tuples:

tR(x1, . . . , xn, b1, . . . , bm, . . . )

t′R(x1, . . . , xn, b
′
1, . . . , b

′
m, . . . )

in R such that: ∃i ∈ [1, . . . ,m], bi 6= b′i and there exists
a tuple tL(x1, . . . , xn, a1, . . . , ak, . . . ) in L with a1, . . . , ak,
the values of the attributes in A (otherwise, tuples tR and t′R
would have been filtered during the join operation). Thus, the
join L♦X=YR leads to the two tuples:

t(x1, . . . , xn, a1, . . . , ak, b1, . . . , bm, . . . )

t′(x1, . . . , xn, a1, . . . , ak, b
′
1, . . . , b

′
m, . . . )

which violate the FD A→ B and L♦X=YR 6|= A→ B

Theorem 2: Let L and R be two instances over relations
S and T, respectively. Let L♦X=YR be a join result with
X ⊆ atts(L), Y ⊆ atts(R). For all A ⊆ atts(L) \ X and
B ⊆ atts(R) \ Y ,
If L♦X=YR |= A→ X ∧ L♦X=YR |= X → B,
Then L♦X=YR |= A→ B.

Proof: This is trivially derived from lemma 3 by transi-
tivity, with the use of Armstrong’s transitivity axiom.

Theorem 3: Let L and R be two instances over relations
S and T, respectively. Let L♦X=YR be a join result with
X ⊆ atts(L), Y ⊆ atts(R). We cannot guarantee that all
FDs over L♦X=YR can be inferred from Armstrong’s axioms
over the FDs over L and R taken separately.

Proof: In the two following instances L and R, we can
see that only the FDs Y A′ → b and Y b→ A′ hold.

L
X A
0 0
1 0
1 1
2 2

R
Y A′ b
0 0 0
1 0 0
1 1 1
2 1 0

L♦X=YR
X = Y A A′ b

0 0 0 0
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1
2 2 1 0

In the join result, the FD AA′ → b holds but it cannot be
inferred using Armstrong’s axioms over the FDs discovered
from each instance L and R.

Theorem 4: Let L and R be two instances over relations
S and T, respectively. Let L♦X=YR be a join result with
X ⊆ atts(L), Y ⊆ atts(R). For all A ⊆ atts(L), A′ ⊆
atts(R) and b ∈ atts(R): If L♦X=YR |= AA′ → b, Then
L♦X=YR |= Y A′ → b.

Theorem 5 (InFine completeness): Let R = {R1; . . . ;Rn}
be a set of relational instances. Let VR be a view specification
over relations in R. Let fds(VR) denotes the set of minimal
FDs over the view specified by VR. Let fds(InFine ) denotes
the set of FDs computed by InFine over the view specified by
VR. Then:

∀d ∈ fds(VR),∃d′ ∈ fds(InFine ) s.t. d ≡ d′

Proof sketch: Algorithm 1 begins by extracting the
attributes that are retrieved by a view in order to guide the
mining process of these attributes while still guaranteeing
completeness. Then Algorithm 1 recursively explores the view
specification, thus its completeness can be shown inductively.
For the base case where we have a relational instance R
(Algorithm 1, line# 9), the FDs are mined using a classic
level-wise algorithm allowing to retrieve every FD in R. In the
case of a projection (Algorithm 1, line# 15), as the relevant
attributes are extracted at the very first step of Algorithm 1, no
computation is performed and the previously computed FDs
are returned. In the cases of a selection or a join (Algorithm 1,
line# 17 or line# 20 respectively), the tuples are filtered by
the join operation and Algorithm 2 mines all exact FDs.
Algorithm 4 retrieves the minimal FDs from the logically
inferred FDs, thus no lhs subset of FDs remains unchecked.



Theorem 4 indicates which part of the candidate FD lattice
is pruned. Then, Algorithm 5 explores the candidate FDs
using a classic bottom-up approach, thus no minimal FD
remains unchecked. Overall, our algorithms explore the lattice
of candidate FDs until they find minimal FDs; they avoid only
the parts of the lattice that do not contain valid candidate FDs,
thus InFine with selective mining retrieves the complete set of
minimal candidate FDs.

Theorem 6 (InFine correctness): Let R = {R1; . . . ;Rn} be
a set of relational instances. Let VR be a view specification
over relations in R. Let IVR

be the view specified by VR. Let
fds(InFine ) denotes the set of FDs computed by InFine over
the view specified by VR. Then:

∀d ∈ fds(InFine ), IVR
|= d

Proof sketch: Algorithm 1 recursively explores the view
specification, thus its correctness can be shown inductively.
For the base case where we have a relational instance R
(Algorithm 1, line# 9) the FDs are mined using a classic level-
wise algorithm allowing to retrieve FDs in R.

In case of a projection (Algorithm 1, line# 15), the process
ensure that only the FDs with relevant attributes (i.e., the one
that are retrieved in the output view) are kept. Thus, if the
FDs output by the steps are correct, the handling of projection
will only lead to remove irrelevant FDs without introducing
incorrect ones.

In case of a selection (Algorithm 1, line# 17), Algorithm 2,
valid exact FDs are discovered from the data using the princi-
ple of the level-wise algorithms adapted to mine upstaged FDs,
thus the FDs are guaranteed to hold on the joined instance and
only minimal FDs are kept.

In case of a join (Algorithm 1, line 20), at first in Algo-
rithm 3, valid exact FDs are discovered from the data using
the same principle as in Algorithm 2, thus returning FDs that
are guaranteed to hold on the joined instance. Theorem 2
shows the correctness of the set of FDs inferred through logical
inference. Then, the subroutine refine checks the correct-
ness of its candidates FDs holding on the data. Therefore,
the set of FDs D2 discovered by Algorithm 4 is such that
D2 |= D♦. In Algorithm 5, Theorem 4 enforces the retrieval
of FDs based only on the attributes that can become rhs
in the joined instance, then only plausible candidate FDs are
explored. Therefore, every discovered FD holds in the joined
instance. By construction, Algorithm 4 and 5 lead to the
retrieval of FDs that are minimal.


	Introduction
	Motivating Example
	Preliminaries
	Mining FDs provenance triples over Views
	Reducing Space of Explored Candidates using Projections
	Mining of FDs Through View Selections
	Mining of FDs from Joined Tables
	Mining of Upstaged FDs from Joined Tables
	Mining of Inferred FDs from Joined Tables
	Mining of Join FDs from Joined Tables

	Completeness, Correctness, and Complexity

	Experiments
	Efficiency Evaluation
	Runtime
	Memory Consumption

	Quality Evaluation

	Related Work
	Conclusions
	References
	Appendix

