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Abstract. We investigate the data exchange from relational databases to RDF
graphs inspired by R2RML with the addition of target shape schemas. We study
the problems of consistency i.e., checking that every source instance admits
a solution, and certain query answering i.e., finding answers present in every
solution. We identify the class of constructive relational to RDF data exchange
that uses IRI constructors and full tgds (with no existential variables) in its source
to target dependencies. We show that the consistency problem is coNP-complete.
We introduce the notion of universal simulation solution that allows to compute
certain query answers to any class of queries that is robust under simulation. One
such class are nested regular expressions (NREs) that are forward i.e., do not
use the inverse operation. Using universal simulation solution renders tractable
the computation of certain answers to forward NREs (data-complexity). Finally,
we present a number of results that show that relaxing the restrictions of the
proposed framework leads to an increase in complexity.

1 Introduction

The recent decade has seen RDF raise to the task of interchanging data between
Web applications [23]. In many applications the data is stored in a relational
database and only exported as RDF, as evidenced by the proliferation of languages
for mapping relational databases to RDF, such as R2RML [16], Direct Mapping
[4] or YARRRML [18]. As an example, consider the following R2RML mapping,
itself an RDF presented in turtle syntax

<#EmpMap>
rr:logicalTable [ rr:sqlQuery ”SELECT id, name, email FROM Emp NATURAL JOIN Email” ];
rr:subjectMap [ rr:template ”emp:{id}”; rdf:type :TEmp ];
rr:predicateObjectMap [ rr:predicate :name; rr:objectMap [ rr:column ”name”] ];
rr:predicateObjectMap [ rr:predicate :email; rr:objectMap [ rr:column ”email”] ].

It exports the join of two relations Emp(id ,name) and Email(id ,name) into a set
of triples. For every employee it creates a dedicated Internationalized Resource
Identifier (IRI) consisting of the prefix emp: and the employee identifier. More
importantly, the class (rdf:type) of each employee IRI is declared as :TEmp.

RDF has been originally proposed schema-less to promote its adoption but
the need for schema languages for RDF has been since identified [31, 22]. One
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of the benefits of working with data conforming to a schema is an increased
execution safety: applications need not to worry about handling malformed
or invalid data that could otherwise cause undesirable and difficult to predict
side-effects. One family of proposed schema formalisms for RDF is based on
shape constraints and this class includes shape expressions schemas (ShEx)
[25, 26, 10] and shape constraint language (SHACL) [21, 14]. The two languages
allow to define a set of types that impose structural constraints on nodes and
their immediate neighborhood in an RDF graph. For instance, the type :TEmp
has the following ShEx definition

:TEmp { :name xsd:string; :email xsd:string?; :works @:TDept+ }

Essentially, every employee IRI must have a single :name property, an optional
:email property, and at least one :works property each leading to an IRI satisfying
type :TDept.

In the present paper we formalize the process of exporting a relational
database to RDF as data exchange, and study two of its fundamental problems:
consistency and certain query answering. In data exchange the mappings from
the source database to the target database are modeled with source-to-target
tuple-generating dependencies (st-tgds). For mappings defined with R2RML we
propose a class of constructive st-tgds, which use IRI constructors to map entities
from the relational database to IRIs in the RDF. For instance, the R2RML
mapping presented before can be expressed with the following st-tgd

Emp(id ,name) ∧ Email(id , email) ⇒ Triple(emp2iri(id), :name,name) ∧
Triple(emp2iri(id), :email, email) ∧
TEmp(emp2iri(id)),

where emp2iri is an IRI constructor that generates an IRI for each employee.
The above tgd is full i.e., it does not use existential quantifiers. To isolate the
concerns, in our analysis of the st-tgds we refrain form inspecting the definitions
of IRI constructors and require only that they are non-overlapping, i.e. no two
IRI constructors are allowed to output the same IRI. We focus on full constructive
st-tgds used with a set of non-overlapping IRI constructors and call this setting
constructive relational to RDF data exchange. We report that in this setting all
4 use cases of R2RML [6] can be expressed. Furthermore, we can cover 38 out
of 54 test cases for R2RML implementations [30]: 9 test cases use pattern-based
function to transform data values and 7 test cases use SQL statements with
aggregation functions. In fact, our assessment is that the proposed framework
allows to fully address all but one out of the 11 core functional requirements
for R2RML [6], namely the Apply a Function before Mapping. Finally, in our
investigations we restrict our attention to class of deterministic shape schemas
that are at the intersection of ShEx and SHACL, are known to have desirable
computational properties while remaining practical, and posses a sought-after
feature of having an equivalent graphical representation (in the form of shape
graphs) [27].

For a given consistent source relational instance, a solution to data exchange
is a target database (an RDF graph in our case) that satisfies the given set of
st-tgds and the target schema (a shape schema in our case). The number of
solutions may vary from none to infinitely many. The problem of consistency is
motivated by the need for static verification tools that aim to identify potentially
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erroneous data exchange settings: a data exchange setting, consisting from the
source schema, the set of st-tgds, and the target schema is consistent iff every
consistent source database instance admits a solution. Because many solutions
may be possible, the standard possible word semantics [19, 1] is applied when
evaluating queries: a certain answer to a query over the target schema is an
answer returned in every solution. Consequently, one is inclined to construct a
solution that allows to easily compute certain answers. In the case of relational
data exchange, universal solutions have been identified and allow to easily
compute certain answers to conjunctive queries, or any class of queries preserved
under homomorphism for that matter [17]. Unfortunately, for relational to
RDF data exchange with target shape schema, a finite universal solution might
not exists even if the setting is consistent and admits solutions. Also, the
class of conjunctive queries, while adequate for expressing queries for relational
databases, is less so for RDF. Query languages, like SPARQL, allowing regular
path expressions with nesting have been proposed to better suit the needs of
querying RDF [24].

The list of contributions of the present paper follows.

� We formalize the framework of relational to RDF data exchange with
target shape schema and IRI constructors, and we identify the class of
constructive relational to RDF data exchange that uses deterministic shape
schemas and full constructive source-to-target dependencies.

� We provide an effective characterization of consistency of constructive
relational to RDF data exchange settings and show that the problem is
coNP-complete.

� We show that allowing nondeterministic target schemas makes the consis-
tency problem Πp

2-hard. We also present a generalization of our consistency
characterization to include st-tgds with existential quantifiers but the
extension is no longer in coNP and the lower bound remains an open
question.

� We propose a novel notion of universal simulation solution that can be
constructed for any consistent constructive relational to RDF data exchange
setting. It allows to easily compute certain answers to any query class
that is robust under graph simulation. We also apply existing results
on relational to relational data exchange setting to show tractability of
computing certain answers to conjunctive queries.

� We use the universal simulation solution to show tractability of computing
certain answers to forward nested regular expressions. For the full class
of nested relational expressions (NREs), considered to be the navigational
core of SPARQL [24], we show an increase of complexity when computing
certain answers.

In [11] we have studied the consistency problem for a more restrictive fully-
typed data exchange setting, where all constructed IRIs must be typed. This
restriction allowed to reduce the consistency problem to a simple test of functional
dependencies propagation over relational views. This technique can no longer be
employed for constructive data exchange setting, where the constructed RDF
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nodes need not be typed, and to address it we propose a novel and non-trivial
technique. In [11], we have also not considered certain query answering.

Organization The paper is organized as follows. In Section 2 we introduce
the constructive data exchange framework with an illustrative example. In
Section 3 we recall basic notions of relational and graph databases. In Section 4
we formalize the relational to RDF data exchange with IRI constructors and
target shape schema. In Section 5 we study the problem of consistency. In
Section 6 we study certain query answering. Section 7 contains a discussion of
related work. And in Section 8 we present conclusions and outline future work.

2 Introductory Example

We illustrate the relational to RDF framework with the following example. We
work with a relational database of software bug reports, presented in Figure 1.
Each bug is reported by a user and a bug may have a number of related bugs.
Each user may track a number of bugs.

User
uid name

1 Jose
2 Edith

Email
uid email

1 j@ex.com

Track
uid bid

1 1
1 2

Bug
bid descr uid

1 Boom! 1
2 Kabang! 1
3 Bang! 2

Rel
bid rid

2 1
1 3

Figure 1: Relational source database

We wish to export the contents of the above relational database to RDF for
use by an existing application. The application expects the RDF document to
adhere to the following ShEx schema (with : being the default prefix).

:TBug { :descr xsd:string; :rep @:TUser; :rel @TBug * }
:TUser { :name xsd:string; :email xsd:string; :tracks @TBug + }

This schema defines two types of nodes: TBug for bug reports and TUser for user
info. This ShEx schema happens to closely mimic the structure of the relational
database with two exceptions: the type TUser requires that every user must
track at least one bug and must have a single email while the relational database
is free of such constraints.

To assign an IRI to every user and every bug, we define two IRI constructors
using the intuitive syntax of subject patterns of R2RML (where bug: and usr:

are two IRI prefixes):

bug2iri(bid) = "bug:{bid}" usr2iri(uid) = "usr:{bid}"

Now, the R2RML mapping is formalized using the following set full constructive
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dependencies.

Bug(b, d, u) ⇒ Triple(bug2iri(b),:descr, d) ∧ TBug(bug2iri(b)) ∧
Triple(bug2iri(b),:rep, usr2iri(u))

Rel(b1, b2) ⇒ Triple(bug2iri(b1),:related, bug2iri(b2))

User(u, n) ⇒ Triple(pers2iri(u),:name, n)

User(u, n) ∧ Track(u, b) ⇒ Triple(usr2iri(u),:tracks, bug2iri(b))

User(u, n) ∧ Email(u, e) ⇒ Triple(usr2iri(u),:email, e)

One possible solution to the task at hand is presented in Figure 2. We point out

“Kabang!”
“Boom!” “Bang!”

bug:2
bug:1

bug:3

usr:1 usr:2

“Jose” “j@ex.com” “Edith89” ⊥1

⊥2

⊥3

⊥4

⊥5 ⊥6

:TBug

:TUser

:n
am

e

:em
ail

:tracks :t
ra
ck
s

:nam
e:e

m
ai
l

:t
ra
ck
s

:n
am

e

:em
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:tra
cks

:related:related

:re
p

:d
es
cr

:r
ep

:d
escr

:rep

:d
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:r
ep

:d
escr

Figure 2: Target RDF graph (solution). Green thin arrows indicate types of
non-literal nodes.

that a number of null values, for both IRI and literal nodes, has been introduced
in the solution to make sure it satisfies the shape schema.

3 Preliminaries

In this section we recall basic notions of relational and graph databases. More
formal definitions can be found in appendix.

Relational databases A relational schema is a pair R = (R,Σfd) where R is a
set of relation names and Σfd is a set of functional dependencies. Each relation
name has a fixed arity and a set of attribute names. A functional dependency is
written as usual R : X → Y where R is a relation name and X and Y are two
sets of attributes of R. An instance I of R is a function that maps every relation
name of R to a set of tuples over a set Lit of constants (also called literal values).
The instance I is consistent if it satisfies all functional dependencies Σfd.

Graphs An RDF graph G is an labeled graph whose nodes are divided into two
kinds: literal nodes and non-literal nodes with only non-literal nodes allowed
to have outgoing edges. Every node is labeled but the label might be a named
null. The type of value used depends on the kind of a node: literal nodes are
labeled with literal values Lit and literal null values NullLit while non-literal node
can be labeled with resource names Iri and null resource names NullIri. More
importantly, we adopt the unique name assumption (UNA) i.e., no two node
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have the same label, and consequently, we equate nodes with their labels and by
nodes(G) we denote the set of labels of nodes of G. Also, each edge is labeled
with a predicate name, which is a non-null resource name Pred ⊂ Iri. We often
view a graph as a set of subject-predicate-object triples.

Shape Schemas A shapes schema is a pair S = (T , δ), where T is a finite
set of type names and δ ⊆ T × Pred× (T ∪ {Literal}) × {1, ?, *, +} is a set of
shape constraints. A shape constraint (T, p, S, µ) reads as follows: if a node has
type T , then every neighbor reached with an outgoing p-edge must have type S
and the number of such neighbors must be within the bounds of µ: precisely
one if µ = 1, at most one if µ = ?, at least one if µ = +, and arbitrarily many
if µ = *. Naturally, the validity of a graph G w.r.t. S is defined relative to
a typing, a function typing : nodes(G) → T ∪ {Literal} that assigns to every
non-literal node a set of types in T and to every literal node the special type
label Literal . A typed graph (G, typing) is valid w.r.t. S if every shape constraint
of S is satisfied relative to typing .

We work only with deterministic shape schemas such that for every type
T ∈ T and every predicate p ∈ Pred there is at most one shape constraints
with T and p. Consequently, we view δ as a partial function δ : T × Pred →
(T ∪ {Literal}) × {1, ?, *, +} and set δ(T, p) = Sµ whenever (T, p, S, µ) ∈ δ. We
point out that deterministic shape schemas are expressible in both ShEx and
SHACL.

Dependencies We employ the standard syntax of first-order logic and given a
relational schema R and a shape schema S, the vocabulary used to construct
formulas comprises of the relation names of R, a ternary predicate Triple for
defining graph topology, and the types of S used as monadic predicates. We also
the edge labels Pred as constant symbols with their straightforward interpretation.
Naturally, we use of the equality relation = and but by clause we understand
a conjunction of (positive) atomic formulas that does not use =. Later on,
we additionally introduce functions that allow to map the values in relational
databases to resource names used in RDF graphs, and we shall allow the use of
their names in formulas but without nesting.

Now, a dependency is a formula of the form ∀x̄.φ ⇒ ∃ȳ.ψ, where φ is
called the body and ψ the head of the dependency, and we typically omit the
universally quantified variables and write simply φ ⇒ ȳ.ψ. A dependency is
equality-generating (egd) if its body is a clause and its head consists of an equality
condition x = y on pairs of variables. A tuple-generating dependency (tgd) uses
clauses in both its head and its body. A tgd is full if it has no existentially
quantified variables.

A number of previously introduced concepts can be expressed with dependen-
cies. Any functional dependency is in fact an equality-generating dependency.
For instance, the key dependency User : uid → name in the example in Section 2
can be expressed as User(x, y1) ∧ User(x, y2) ⇒ y1 = y2. Interestingly, any
deterministic shape schema S can be expressed with a set ΣS of equality- and
tuple-generating dependencies. More precisely, whenever δ(T, p) = Sµ the set
ΣS contains:

(TP) the type propagation rule: T (x) ∧ Triple(x, p, y) ⇒ S(y),

(PF) the predicate functionality rule: T (x)∧Triple(x, p, y1)∧Triple(x, p, y2) ⇒
y1 = y2
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if µ = 1 or µ = ?,

(PE) the predicate existence rule: T (x) ⇒ ∃y. Triple(x, p, y) if µ = 1 or µ = +.

Chase We use the standard notion of homomorphism and its extensions to
formulas and sets of facts (relational structures). The chase is a procedure used
to construct a solution for data exchange, and it begins with the source instance
and iteratively executes any dependencies that are triggered. More precisely, a
dependency σ = φ ⇒ ∃ȳ.ψ is triggered in instance I by a homomorphism h if
h(φ) ⊆ I and there is no extension h′ of h with h′(ψ) ⊆ I. The execution of σ
triggered in I by h may result in 1) adding new facts to I when σ is a tgd, 2) in
renaming named null in I when σ is an egd, or 3) in a failure if σ is an egd and
ψ contains a value equality x = y but h(x) and h(y) are two different constants.

4 Constructive Relational to RDF Data Exchange

An n-ary IRI constructor is a function f : Litn → Iri that maps an n-tuple of
database constants to an RDF resource name. A IRI constructor library is a
pair F = (F , F ), where F is a set of IRI constructor names and F is their
interpretation. F is non-overlapping if all its IRI constructors have pairwise
disjoint ranges.

Definition 1 A relational to RDF data exchange setting with fixed IRI con-
structors is a tuple E = (R,S,Σst,F), where R = (R,Σfd) is a source relational
schema, S = (T , δ) is a target shape constraint schema, F = (F , F ) is an
IRI constructor library, and Σst is a set of source-to-target tuple generating
dependencies (st-tgds) whose bodies are formulas over R and heads are formulas
over F ∪ T ∪ {Literal}. E is constructive if the library of IRI constructors is
non-overlapping and the st-tgds Σst are full tgds.

A typed graph J is a solution to E for a source instance I of R, iff J satisfies
S and I ∪ J ∪ F |= Σst. By solE (I) we denote the set of all solutions for I to E .
□

In the reminder we fix a constructive data exchange setting E , and in particular,
we assume a fixed library of IRI constructors F. Since we work only with
constructive data exchange settings, w.l.o.g. we can assume that the heads of all
st-tgds consist of one atom only. We point out that while a constructive data
exchange setting does not use egds, our constructions need to accommodate egds
and tgds coming from the shapes schema.

The core pre-solution for I to E is the result J0 of chase on I with the st-tgds
Σst and all TP rules of S. In essence J0 isobtained by exporting the relational
data to RDF triples with Σst and then propagating any missing types according
to S but without creating any new nodes with PE rules. This process does
not introduce any null values and always terminates yielding a unique result.
Naturally, J0 is included in any solution J ∈ solE (I).

5 Consistency

In this section we study the problem of consistency of data exchange settings.
The following notion of consistency was called absolute consistency in [8].
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Definition 2 (Consistency) A data exchange setting E is consistent if every
consistent source instance I of R admits a solution to E .

First we show that a constructive data exchange setting E is consistent if
and only if it is value consistent (see Section 5.1) and node kind consistent (see
Section 5.2) and the decision procedure is co-NP complete. Then in Section 5.3
we show that consistency checking is more complex for two more general data
exchange settings.

5.1 Value Consistency

Value inconsistency captures situations in which all chase sequences would fail due
to triggering a predicate functionality egd T (x)∧Triple(x, p, y)∧Triple(x, p, y′) ⇒
y = y′ with a homomorphism that associates different constants with y and y′.
Let ΣTP

S be the set of type propagation rules and ΣPF
S be the set of predicate

functionality rules from ΣS as defined in Section 4.

Definition 3 (Value consistent) Let J be the core pre-solution for some
source instance I to E . J is value consistent if J |= ΣPF

S . The data exchange
setting E is value consistent if for every I instance of R, the core pre-solution
for I to E is value consistent.

We now concentrate on identifying whether core pre-solutions to E satisfy
ΣPF

S . A triple of facts W = {T (f(ā)),Triple(f(ā), p, b),Triple(f(ā), p, b′)} is
called a violation if the definition of type T contains a triple constraint of the
form p :: S1 or p :: S?, and b ̸= b′ are constants. The triple (T, f, p) is called the
sort of the violation.

We fix a violation W = {T (f(ā)),Triple(f(ā), p, b),Triple(f(ā), p, b′)} for
the sequel, and we explain how to check whether the dependencies in E allow to
generate this violation. The proof goes by constructing a finite set V of source
instances s.t. E is value inconsistent iff there is an instance I in V s.t. chasing I
with Σfd fails. We start by an example illustrating some elements of the decision
procedure.

Example 4 Let E = (R,S,Σst,F) where R = (R,Σfd), F = (F , F ), R = R,S
both of arity two, and F = g0, g, f all of arity one. The shapes schema is
given by δ(U0, r) = U*, δ(U, q) = T *, δ(T, p) = Literal1}, and the st-tgds are as
follows:

(1) R(x0, x1) ⇒ U0(g0(x1)) (4) S(x, y) ⇒ Triple(f(x), p, y)
(2) R(x1, x2) ⇒ Triple(g0(x1), r, g(x2)) (5) R(x, z) ∧ S(x, y′) ⇒ Triple(f(x′), p, y′)
(3) R(x2, x) ⇒ Triple(g(x2), q, f(x))

We want to construct a source instance s.t. when chased with E would produce a
violation of sort (T, p, f). First we need to produce a fact T (f(x)) for some x.
This can be done by applying rules (1)–(3), then the type propagation rules for
δ(U0, r) = U* and δ(U, q) = T *. More precisely, let I123 be the instance obtained
as the union of the bodies of rules (1)–(3) (where variables are used as elements of
the domain). Note that the variables repeated between rules were chosen in such
a way on purpose. The result of chasing I123 by the above mentioned rules is I ′ =
I123∪{U0(g0(x1)),Triple(g0(x1), r, g(x2)), U(g(x2)),Triple(g(x2), q, f(x)), T (f(x))}.
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Now we want to use rules (4),(5) to obtain the two missing facts for the vi-
olation. For that, let I123,4,5 be the union of I123 and the bodies of rules
(4),(5). Chasing I123,4,5 with Σst ∪ ΣTP

S we get its core pre-solution to E :
J = I ′ ∪ {Triple(f(x), p, y),Triple(f(x′), p, y′),Literal(y),Literal(y′)} that con-
tains a violation of sort (T, p, f).

So far we didn’t give the source dependencies on purpose. Suppose that the
first attribute of S is a primary key. In this case, I123,4,5 is not a consistent
source instance, and we can actually show that E is consistent. Without source
dependencies, E is inconsistent, as witnessed by the source instance I123,4,5. □

Now we identify a necessary and sufficient condition for whether fact T (f(ā))
can appear in the pre-solutions to E .

Definition 5 The pair (T, f) ∈ T × F is called accessible in E with sequence
σ0, σ1, . . . , σn of st-tgds in Σst if:

� the head of σ0 is of the form T0(f0(ȳ0)), and

� the head of σi is of the form Triple(fi−1(x̄i), pi, fi(ȳi)) for every 1 ≤ i ≤ n,
and

� δ(Ti−1, pi) = Tµi

i for every 0 ≤ i < n, and

� T = Tn and f = fn.

for some type symbols Ti, function symbols fi, predicates pi and sequences of
variables x̄i and ȳi.

Note that if (T, f) is accessible in E , then it is accessible with an elementary
sequence σ0, . . . , σn which elements are pairwise distinct.

In Example 4, (T, f) is accessible in E with sequence (1)(2)(3).
The pairs (T ′, f ′) accessible in E characterize the type facts that appear in

the core pre-solutions to E , as follows.

Lemma 6 For any (T, f) ∈ T × F it holds: (T, f) is accessible in E if and
only if there exists an instance I of R and a tuple of constants ā in the domain
of I s.t. the core pre-solution for I to E contains the fact T (f(ā)).

Proof. [Sketch of proof.] For the left-to-right direction, let b ∈ Dom. Consider the
instance I that contains exactly one fact R(barity(R)) for any relational symbol
R in R, where bn is the n-tuple containing only b’s. Then we show that J0, the
core pre-solution for I to E , contains the fact T (fF (barity(f))) whenever (T, f)
is accessible in E .

For the right-to-left direction, we fix an arbitrary terminating chase sequence
s on I with Σst ∪ ΣTP

S producing the core pre-solution J0. Using that T (a) is a
fact in J0, we show that s necessarily contains chase steps with dependencies as
those Definition 5, thus witnessing that (T, f) is accessible in E .

Now we assume that the fact T (f(ā)) appears in the core pre-solutions for
I to E and want to verify whether the facts Triple(f(ā), p, b),Triple(f(ā), p, b′)
co-occur with it. Recall that b, b′ are constants, so such facts are necessarily
generated by st-tgds. Two st-tgds σ, σ′ are called contentious with sort (T, p, f)
if the head of σ is Triple(f(z̄), p, t), the head of σ′ is Triple(f(z̄′), p, t′) and (T, f)
is accessible in E , and predicate p is functional for type T , i.e. δ(T, p) = Sµ
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with µ equal to 1 or ?. Note that σ, σ′ may be the same st-tgd, in which case
we consider that they are two copies of it obtained by alpha renaming.

Suppose now that σ, σ′ are the contentious st-tgds here above, and that π =
σ0, . . . , σn is a sequence of st-tgds s.t. (T, f) is accessible in E with π. We define
a source instance Iπ,σ,σ′ such that a chase sequence with rules σ0, . . . , σn, σ, σ

′

can be executed on Iπ,σ,σ′ yielding an instance that includes the violation W . Let
σn+1 = σ and σn+2 = σ′. Suppose w.l.o.g. that σi and σj use mutually disjoint

sets of variables whenever i ̸= j. Define Bπ,σ,σ′ =
⋃n+2

i=0 body(σi) where body(σi)
is the body of σi. Let σ0, . . . , σn be as in Definition 5, thus (Tn, fn, pn) = (T, f, p).
Define the sequence of mappings h0, . . . , hn+2 inductively as follows:

� for any 0 ≤ i ≤ n + 2, hi :
⋃i

j=0 vars(σj) → NullLit is a mapping that is
injective when restricted on vars(σi), where vars(σ) denotes the set of
variables that appear in σ.

� for any 1 ≤ i ≤ n+ 2, hi coincides with hi−1 on the domain of hi−1;

� for any 1 ≤ i ≤ n, hi(x̄i) = hi−1(ȳi−1) and hi(z) is fresh w.r.t. the image
of hn−1 for any z ̸∈ x̄i. That is, z ̸∈ x̄i implies h(z) is not in the image of
hi−1;

� hn+1(z̄) = hn(ȳn) and hn+1(z) is fresh w.r.t. the image of hn for any
z ̸∈ z̄;

� hn+2(z̄′) = hn(ȳn) and hn+2(z) is fresh w.r.t. the image of hn+1 for any
z ̸∈ z̄′,

Then we let hπ,σ,σ′ = hn+2 and Iπ,σ,σ′ = hπ,σ,σ′(Bπ,σ,σ′). It immediately follows
from the definition that hπ,σ,σ′ : Bπ,σ,σ′ → Iπ,σ,σ′ is a homomorphism. Moreover,
it is easy to see that Iπ,σ,σ′ is unique up to isomorphism, so from now on by
Iπ,σ,σ′ we mean an arbitrary instance isomorphic to the one defined above. In
Example 4, the instance I123,4,5 was obtained as described above.

The following proposition establishes an equivalence between the presence of
the violation W in the core pre-solution of an instance I of R, and the existence
of a homomorphism from some Iπ,σ,σ′ to I.

Proposition 7 Let I be an instance of R.

1. There exist π, σ, σ, h s.t. (T, f) is accessible in E with path π, σ, σ′ are
contentious st-tgds of sort (T, f, p), and h : Iπ,σ,σ′ → I is a homomor-
phism if and only if there exist a tuple of constants ā from the domain
of I and constants b, b′ s.t. the core pre-solution for I to E includes
{T (f(ā)),Triple(f(ā), p, b),Triple(f(ā), p, b′)}.

2. Moreover, if the head of σ is Triple(f(z̄), p, t) and the head of σ′ is
Triple(f(z̄′), p, t′), then ā = h◦hπ,σ,σ′(z̄) = h◦hπ,σ,σ′(z̄′), b = h◦hπ,σ,σ′(t)
and b′ = h ◦ hπ,σ,σ′(t′).

We point out that Proposition 7 identifies a necessary condition for the
presence of some violation in the core pre-solution for a source instance I. The
condition is not sufficient for two reasons. First, I is an instance of R that does
not necessarily satisfy the source functional dependencies. Second, b might be
equal to b′. Theorem 8 adds sufficient conditions for handling these two missing
cases.
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Theorem 8 These two statements are equivalent:

� For every instance I of R, the core pre-solution for I to E is value consis-
tent.

� For every violation sort (T, f, p), every π s.t. (T, f) is accessible in E
with π, any two contentious st-tgds σ, σ′ of sort (T, f, p), every J solution
for Iπ,σ,σ′ to Σfd it holds that (hπ,σ,σ′ ◦ h)(t) = (hπ,σ,σ′ ◦ h)(t′), where
t, t′ are such that the head of σ is Triple(f(z̄), p, t) and the head of σ′ is
Triple(f(z̄′), p, t′), and h is the unique homomorphism from Iπ,σ,σ′ to J .

5.2 Node Kind Consistency

Node kind inconsistency characterizes situations in which all chase sequences
would fail due to the necessity of equating a literal and a non literal value by
triggering a predicate functionality egd T (x)∧Triple(x, p, y)∧Triple(x, p, y′) ⇒
y = y′ with homomorphism h s.t. exactly one among h(y), h(y′) is a literal.
In this case the corresponding chase sequence fails even if one of h(y), h(y′) is
null. This is a particularity of relational to RDF data exchange (in contrast to
relational data exchange).

In the sequel we give a definition of node kind consistency and announce the
propositions needed for proving the consistency theorem. The detailed definitions
are rather technical and are presented in Appendix A.1.

For a typed graph J we define the set CoTypes(J) of sets of types co-
occurring in all solutions G of J to E that include J . That is, X ∈ CoTypes(J)
if for any G s.t. J ⊆ G and G ∈ solE (J), there exists a node n in G s.t.
X = {T ∈ T ∪ {Literal} | T (n) ∈ G}.

Definition 9 (Node kind consistent) Let I be a source instance and J its
core pre-solution to E . J is node kind consistent if CoTypes(J) does not contain
a set X s.t. {Literal , T} ⊆ X for some type T in T . The data exchange setting
E is node kind consistent if for every I instance of R, the core pre-solution for
I to E is value consistent.

Node kind inconsistency is a sufficient condition for inconsistency.

Lemma 10 For any I instance of R, if the core pre-solution for I to E is value
inconsistent, then I does not admit a solution to E .

In Theorem 8 we have shown that value inconsistency is another such sufficient
condition. The next lemma establishes that being value consistent and node
kind consistent is a sufficient condition for E to be consistent.

Lemma 11 For any I instance of R, if the core pre-solution for I to E is value
consistent and node kind consistent, then I admits a solution to E .

We are now ready to establish our main results regarding consistency of
constructive data exchange settings. The next theorem follows from Theorem 8,
Lemma 10, Lemma 11, and the fact that value consistency and node kind
consistency are decidable.
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Theorem 12 (Consistency) E is consistent iff E is value consistent and node
kind consistent.

Finally, we show that checking consistency of a constructive data exchange
setting is co-NP complete. The lower bound is shown using a reduction to the
complement of SAT.

Theorem 13 (Complexity of consistency) Checking consistency of a con-
structive relational to RDF data exchange setting is coNP-complete.

5.3 Non-Constructive st-tgds, Non-Deterministic Shape
Schemas

The consistency checking algorithm can be extended to non-constructive data
exchange settings but the lower co-NP complexity bound is not preserved by the
extension. Consider a data exchange setting E = (R,S,Σst,F) with S = (T , δ)
in which the st-tgds in Σst can contain existential rules of the form φ⇒ ∃ȳ.ψ
where function terms use only universally quantified variables. We illustrate
consistency checking on an example.

Example 14 Consider shapes schema with types T,U and rules δ(T, p) = U1

and δ(U, q) = Literal?, and the st-tgds

R(x, y, w) ⇒ Triple(f(x), p, g(y))

S(x′, y′) ⇒ ∃z′.T (f(x′)) ∧ Triple(f(x′), p, z′) ∧ Triple(z′, q, y′)

R(x′′, y′′, w′′) ⇒ Triple(g(y′′), q, w′′)

Even in presence of existential variables, we can statically infer that the st-tgd
head atoms Triple(z′, q, y′) and Triple(g(y′′), q, w′′) are contentious, then con-
struct the source instance I = {R(x, y, z), S(x, y′), R(x′′, y, z′′)} witness of value
inconsistency of the data exchange setting at hand. Indeed, the core pre-solution to
I contains the facts {Triple(f(x), p, g(y)), T (f(x)), Triple(f(x), p,⊥1),Triple(⊥1, q, y

′), U(⊥1),Triple(g(y), q, w′′)}.
Triggering the predicate functionality rule for δ(T, p) we equate ⊥1 with g(y).
Then the last three atoms in I constitute a violation of the predicate functionality
rule for δ(U, q).

The instance I is discovered by exploring the possible interactions between
the rules coming from the shape schema and the st-tgds’ heads. We first remark
that the terms f(x) and f(x′) are equatable (i.e. the target values produced by
them might be equal as they are produced by the same IRI constructor), then
type T is accessible for f(x) due to the second st-tgd. The terms g(y) and z′

are also equatable due to predicate functionality of p for type T , and so are g(y)
and g(y′′) (same IRI constructor). Also, type U is accessible for g(y), so also
for z′ and g(y′′) (type propagation of δ(T, p) = U1). Thus the target atoms
(generated during chase from) Triple(z′, q, y′) and Triple(g(y′′), q, w′′) can both
have as subject the same value g(y), and trigger a violation due to the predicate
functionality δ(U, q). □

Similarly to the case of constructive data exchange settings, the consistency
checking algorithm is based on the fact that E is value inconsistent iff there
exists a value inconsistent instance I among a finite set V of source instances.
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The latter is characterized by the presence of contentious atoms in st-tgds’ heads,
which in turn are discovered by a Datalog program. Formal definitions and
description of the algorithm are given in Appendix A.2, and allow us to establish

Theorem 15 Consistency is decidable for data exchange settings with existential
st-tgds.

The exact complexity of the decision procedure is left for future work.
Finally we point out that if we consider non-deterministic shape schemas,

then the complexity of checknig consistency increases. The proof is given in
Appendix A.3.

Theorem 16 Checking consistency of a constructive relational to RDF data
exchange setting with nondeterministic shape schema is Πp

2-hard.

6 Certain Query Answering

In this section we investigate computing certain query answers. We focus mainly
on Boolean queries as it allows us to more easily present our constructions and
compare various classes of queries; later on we extend our results to non-Boolean
queries. Throughout this section we fix a constructive data exchange setting
E = (R,S,Σst,F) and assume E is consistent. We recall that for a Boolean
graph query Q, true is the certain answer to a query Q in I w.r.t. E iff true is
the answer to Q in every solution to E for I.

The standard approach to computing certain answers is to construct a
universal solution with the chase and evaluate the query against it (and if the
query is non-Boolean, we drop any answers that use null values). However, in
the case of consistent constructive relational to RDF data exchange, a finite
universal solution may not exists as it is the case in the example in Section 2.
Indeed, the mutually recursive types TBug and TUser cause the chase to loop ad
infinitum: the user Edith results in the node usr:2 of type TUser which required
to track at least one problem. Since in the relational database instance Edith
does not track any bug, the chase needs to “invent” a fresh null IRI of type
TBug. This node is required to have a user that has reported it and again the
chase “invents” another fresh null IRI of type TUser, and so on.

Instead, we construct a solution, where we avoid inventing nodes with the
same set of types, thus creating loops as illustrated in Figure 2. While this
solution is not universal, it seems quite natural, and interestingly, we show
that it has a different flavor of universality, one that can be captured with the
standard notion of graph simulation: any solution can be simulated in it. We
also show that this notion of universality is good enough for classes of queries
that are robust under simulation, and we identify a practical class of forward
nested regular expressions with this property. This yields a practical class of
queries with tractable consistent answers under data complexity. We show that
extending this fragment to full nested regular expression leads to significant
complexity increase. Finally, we also show that existing result on chase with
guarded tdgs and egds can be used to compute certain answers to conjunctive
queries.
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Nested regular expressions In this paper we focus mainly on the class of nested
regular expressions (NREs) that have been proposed as the navigational core of
SPARQL [24]. In essence, NREs are regular expressions that use concatenation
·, union +, Kleene’s closure ∗, inverse −, and permit nesting and testing node
and edge labels. Formally, NREs are defined with the following grammar:

E ::= ϵ | p | □ | ⟨ℓ⟩ | [E] | E∗ | E− | E · E | E + E

where p ∈ Pred, ℓ ∈ Iri ∪ Lit, and □ is a distinguished wildcard predicate symbol.
An NRE is forward (NRE→) if it does not use the inverse operator. An NRE E
defines a binary relation JEKG on nodes of a graph G as follows.

JϵKG = {(n, n) | n ∈ nodes(G)}, J[E]KG = {(n, n) | ∃m. (n,m) ∈ JEKG},
JpKG = {(n,m) | (n, p,m) ∈ G}, JE1 + E2KG = JE1KG ∪ JE2KG,
J□KG = {(n,m) | ∃p ∈ Iri. (n, p,m) ∈ G}, JE1 · E2KG = JE1KG ◦ JE2KG,

J⟨ℓ⟩KG = {(n, n) | n ∈ nodes(G) ∧ n = ℓ}, JE∗KG = JEK∗G, JE−KG = JEK−1
G .

An NRE E is satisfied in a graph G iff JEKG ̸= ∅. We point out that NREs
are incompatible with conjunctive queries but even forward NREs capture the
subclass of acyclic conjunctive queries. Also, NREs (forward NREs) properly
captures 2-way regular path queries (regular path queries, resp.)

6.1 Universal simulation solution

Graph simulation and robust query classes We adapt the classic notion of
graph simulation to account for null values. Formally, a simulation of a graph
G by a graph H is a relation R ⊆ nodes(G) × nodes(H) such that for any
(n,m) ∈ R, we have 1) n is a literal node if and only if m is a literal node, 2) if
n is not null, then m is not null and n = m; and 3) for any outgoing edge from
n with label p that leads to n′ there is a corresponding outgoing edge from m
with label p that leads to m′ such that (n′,m′) ∈ R. The set of simulations is
closed under union, and consequently, there is always one maximal simulation,
and if (n,m) is contained in it, we say that n is simulated by m. Also, we say
that G is simulated by H if every node of G is simulated by a node of H. We
are interested in simulation because it captures the essence of exploring a graph
by means of following outgoing edges only.

Definition 17 A class Q of Boolean queries on graphs is robust under sim-
ulation iff for any query Q ∈ Q and any two graph G and H such that G is
simulated by H, if Q is true in G, then Q is true in H. □

The class of patterns presented above has this very property, which is shown
with an induction on the structure of the query. We point out, however, that
our approach is not restricted to forward NREs only.

Lemma 18 The class of forward nested regular expressions is robust under
simulation.

The related notion of bisimulation has found application in normalizing blank
nodes and essentially minimizing RDF graphs without altering its informational
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contents [29]. Formally, a bisimulation of a graph G is a simulation R of G by
G that is symmetric and reflexive. Again, there exists a maximal bisimulation
of any graph G, which we denote by ↞↠. We use the maximal bisimulation
of a graph G to construct it reduct G/↞↠, which is the standard the quotient
of the graph G and the equivalence relation ↞↠ and replaces nodes of every
equivalence class by a single representative (details in appendix). The main
property that we employ in our proofs is that of the reduct of a typed graph
satisfies precisely the same shape schemas and the same queries from any class
robust under simulation, and furthermore it is the smallest typed graph to have
this property.

Universal simulation solution When dealing with classes of queries that are
robust under simulation we employ simulation instead of homomorphism to
define a solution that allowing to find all certain answers.

Definition 19 A typed graph U is a universal simulation solution to E for I
iff U is simulated by every solution J to E for I. □

And indeed, a universal simulation solution does allow us to capture certain
answers for queries from classes robust under simulation.

Theorem 20 Let Q be a class of Boolean graph queries robust under simulation.
For any query Q ∈ Q and any consistent instance I of R, true is the certain
answer to Q in I w.r.t. E if and only if true is the answer to Q in any universal
simulation solution to E for I.

The main challenge remains in constructing a universal simulation solution.
We begin with the core pre-solution J0 for I, which is the unique minimal typed
graph J0 that satisfies the st-tgds Σst and the TP rules for S (cf. Section 3).
The core pre-solution J0 does not necessarily satisfy S as it may have frontier
nodes whose type requires outgoing edges that are missing. To identify such
nodes and add the necessary outgoing edges we first identify the types associated
to a node in a typed RDF graph typesG(n) = {T | T (n) ∈ G}. Also, we say that
a type T requires an outgoing p-edge if p :: Sµ ∈ δ(T ) for some µ ∈ {1, +} and
some type S, and by Req(X) we denote the set of all IRIs that is required by
any T in X. Now, the frontier of J0 is the following set

F = {(n, p) | n ∈ nodes(J0), p ∈ Req(typesJ0
(n)), ∄m.Triple(n, p,m) ∈ J0}.

We also define a function that for a set of types X satisfied at a node indicates
the set of types ∆(X, p) that must hold at any node reachable by p-labeled edge

∆(X, p) = {S | p :: Sµ ∈ δ(T ) for some T ∈ X and µ ∈ {?, 1, +, *}}

Now, the set of additional null nodes that we add to J0 is constructed in
an iterative process (where we identify each node with the set of types it is
to satisfy): N =

⋃∞
i=0Ni, where N0 = {∆(types(n), p) | (n, p) ∈ F} and

Ni = {∆(X, p) | X ∈ Ni−1, p ∈ Req(X)} for i ≥ 1. Note that we construct only
subsets of the finite set of types T , and therefore, this process eventually reaches
a fix point. It may however be of size exponential in the size of the schema,
and in fact, with an elaborate example using Chinese reminder theorem we can
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show that it is in fact a tight bound of our construction. Now, the additional
component of a universal simulation solution is the following graph

GS = {(n, p,∆(typesJ0
(n), p)) | (n, p) ∈ F} ∪

{(X, p,∆(X, p)) | X ∈ N ∧ p ∈ Req(X)} ∪ {T (X) | X ∈ N ∧ T ∈ X}.

We point out that J0 ∪ GS does in fact satisfy Σst and S but it may not be
the minimal universal simulation solution. However, it suffices to take the
bisimulation quotient of GS to ensure the minimality: the constructed universal
simulation solution is U0 = J0 ∪GS/↞↠. We point out that because J0 does not
have any null nodes, U0 = (J0 ∪GS)/↞↠.

Theorem 21 For an instance I of R, we can construct a size-minimal universal
simulation solution U0 in time polynomial in the size of I and exponential in
the size of S. The size of U is bounded by a polynomial in the size of I and an
exponential function in the size of S.

6.2 Complexity

We can now characterize the data complexity of certain query answering. Recall
that data complexity assumes the query and the data exchange setting to be
fixed, and thus of fixed size, and only the source instance is given on the
input. Consequently, the size of universal simulation solution U0 is polynomially-
bounded by the size of I. Since the data complexity of evaluating NREs is know
to be PTIME [24], we get the following result.

Theorem 22 The data complexity of computing certain answers to forward
nested regular expressions w.r.t. constructive relational to RDF data exchange
setting is in PTIME.

Full nested regular expressions Computing certain answers to the full class
of NRE remains an open question. One could explore using 2-way alternating
automata (2ATAs) for infinite trees corresponding to unraveling the universal
simulation solution U0, a method that has been successfully applied to the
closely related problem of computing certain answers to variants of regular path
queries in the presence of ontologies [13, 20]. However, using 2ATAs comes with
significant computational cost, and indeed, we show an increase in the complexity
of computing certain answers to NREs as compared to forward NREs. This
increase is detected when we fix the data exchange setting but consider both
the query and the source instance to be part of the input, a complexity measure
that is between data and combined complexity measures. Formally, for a class of
Boolean graph queries Q and a data exchange setting E we define the decision
problem DQ

E = {(I,Q) | Q ∈ Q, true is the certain answer to Q in I w.r.t. E }.

Proposition 23 For any constructive relational to RDF data exchange setting
E , DNRE→

E is in PTIME and DNRE
E is PSPACE-hard.

Conjunctive queries The set of tgds in Σst∪ΣS is guarded and as such enables
using existing results by Cal̀ı et al. [12] on tractability of certain answering for
conjunctive queries. We recall that the classes of conjunctive queries and NREs
are incomparable.
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Proposition 24 The data complexity of computing certain answers to conjunc-
tive queries w.r.t. constructive relational to RDF data exchange setting is in
PTIME.

Non-Boolean queries So far we have considered only Boolean queries and
now we illustrate, on the example of binary forward NREs, that the universal
simulation solution can be used to compute certain answers using the well-known
method of evaluating the query over U0 and dropping any answers using null
values. Formally, a pair of nodes (n,m) is an answer to an NRE E in a graph
G iff (n,m) ∈ JEKG. A pair (n,m) is a certain answer to an NRE E in I w.r.t.
E iff (n,m) is an answer in every solution for I to E .

Proposition 25 Given a constructive data exchange setting E , a source instance
I, and a forward NRE E, a pair (n,m) is a certain answer to E in I w.r.t. E if
and only if (n,m) is an answer to E in a universal simulation solution U for I
w.r.t. E and neither n nor m are null.

The above result can be generalized to any class of non-Boolean queries that is
robust under simulation. However, attempting to present a precise definition of
non-Boolean queries robust under simulation would exceed the space limits and
we leave it for the full version of the paper.

7 Related Work

R2RML is a W3C standard language for defining custom relational to RDF
mappings [16], other languages such as YARRRML [18] are compiled to R2RML.
These languages do not impose constraints on the target, and consequently,
the solution is always defined, unique, and trivially consistent which makes the
problems of consistency and certain query answering irrelevant. In [9], Boneva
et al. have studied relational to graph data exchange with st-tgds and the target
constraints based on conjunctions of nested regular expressions. The framework
is incomparable to the framework presented in this paper.

Viewing RDF as a ternary relation and expressing shape constraints with
a set of target dependencies, thus reducing our framework to the standard
relational data exchange [17], allows us to translate back existing results but
only to a certain degree. Most notably, the work on chase with guarded tgds [12]
allows us to show that computing certain answers to conjunctive queries in
our framework is tractable (Proposition 24). In general, other works consider
dependencies that are unsuitable to capture our mappings and shape schemas,
focus on query classes that are not as well suited to query RDF as are NREs,
or being very generic incur a much higher computational cost. For instance,
data exchange with weakly acyclic tgds and edgs [17] is suitable for capturing
only a restricted weakly-recursive shape schemas [11] that do not result in an
infinite chase. While there exist works on data exchange that consider queries
that go beyond conjunctive queries and add elements of transitive closure, such
as XML tree patterns [8, 2] or Datalog fragments [3], they come at a price of
high complexity. Also, while shape schemas are reminiscent of DTDs (or more
closely of XML Schemas), XML is an ordered model and the source to target
mappings in XML data exchange need to specify the relative order of elements or
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a universal solution may fail to exists, and even if unordered XML is employed
computing certain answers easily becomes intractable [5]. Finally, there is work
on answering classes of regular path queries in description logics [13, 7] allows
to easily capture our constructive data exchange settings and the considered
classes of queries seem suitable for querying RDF but again they come with
significant computational cost. However, we believe that the underlying use of
2-way alternating tree automata (2ATA) [15, 28] can be employed to computing
certain answers to NREs in our framework, which we intend to pursue in our
future work.

8 Conclusion and Future Work

We have presented a data exchange framework for exporting in a R2RML-like
fashion a relational database to RDF with (non-overlapping) IRI constructors
and target shape schema. We have studied the problems of consistency and
have shown it to be coNP-complete using an intricate characterization. We have
also studied computing certain answers to forward nested regular expressions
and shown it be tractable using a novel construction of universal simulation
solution. We have also shown that extending the framework in a number of
natural directions generally leads to an increase of complexity.

Future research directions include a complete complexity analysis of relational
to RDF data exchange with non-constructive st-tgds and nondeterministic and
disjunctive shape schemas, and exploring using 2ATA for computing certain
query answers to the full fragment of nested relational expressions.
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A Omitted Formalisms and Proofs

Constants, nulls, and variables We assume a fixed enumerable domain Dom.
For the purposes of this paper, we assume the domain to be partitioned into three
infinite subsets Dom = Iri∪Lit∪NullIri of IRIs, literals, and blank node identifiers
respectively. We assume an infinite set of null literals NullLit ⊆ Lit and identify
the set of null values Null = NullLit∪NullIri. We refer to the remaining elements
as constants Const = Dom \ Null, and additionally, identify non-null literals
ConstLit = Lit \ NullLit = Const ∩ Lit. Also, we fix an infinite set of (first-order)
variables Vars. In the sequel, we use a, b, and c to range over elements of Dom
and ā, b̄, c̄ to range over sequences of elements of Dom. Similarly, we use x, y,
and z to range over variables and x̄, ȳ, and z̄ to range over sequences of variables.

First-order logic We recall basic notions of first-order logic. We assume a finite
signature, which consists of a set of relation symbols R and a set of function
symbols F , each symbol having a fixed arity. We use first-order formulas
with relation and function names from R ∪ F ∪ {=}, variables from Vars, and
constants from Dom, however, we only employ flat terms that do not use nested
applications of function symbols. An atom has the form R(t̄), where R ∈ R and
t̄ is a sequence of terms. A relational atom does not use any function symbols.
A clause is a conjunction of atoms and we often view it as a set of atoms. A
formula is closed if it has no free variables. A formula is ground if it uses no
variables whatsoever. A fact is a ground relational atom. A clause is relational
if it employs only relational atoms.

A structure (or a model) M (over the signature R ∪ F ) is a mapping that
associates to every relation and function symbol ξ ∈ R ∪ F a corresponding
relation or function ξM on elements of Dom of appropriate arity. The semantics
of a first-order logic formula φ over a model M is captured with the entailment
relation M |= φ defined in the standard fashion. The entailment relation is
extended to a set of formulas: M |= Φ iff M |= φ for every φ ∈ Φ. Also, we
often view a model over a signature consisting of relation symbols only as the
set of all facts satisfied by the model.

Dependencies A dependency σ is a closed first-order formula of the form
∀x̄.φ⇒ ∃ȳ.ψ, and we define body(σ) = φ, head(σ) = ψ, and vars(σ) = x̄ ∪ ȳ. σ
is an equality-generating dependency (egd) if φ is a clause and ψ is a conjunction of
equality conditions x = y on pairs of variables. σ is a tuple-generating dependency
(tgd) if both φ and ψ are clauses. A tgd is full if it uses no existentially quantified
variables ȳ. The use of the equality relation = in an egd σ implies a binary
relation on the variables of σ, its (reflexive, symmetric, and transitive) closure
gives an equivalence relation that identifies variables that need to have the same
value, and by eq-class(σ) we denote the set of equivalence classes to which this
relation partitions the variables x̄ (the variables ȳ can be ignored).

Relational databases A relational schema is a pair R = (R,Σfd) where R is
a set of relation names, each with a fixed arity, and Σfd is a set of functional
dependencies (fds) of the form R : X → Y , where R ∈ R is a relation name
of arity n, and X,Y ⊆ {1, . . . , n}. An fd R : X → Y is a short for the egd
∀x̄, ȳ. R(x̄) ∧ R(ȳ) ∧

∧
i∈X(xi = yi) ⇒

∧
j∈Y (xj = yj). An instance of R is a

model I over R, and unless we state otherwise, in the sequel we work only with
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instances that use literal constants from ConstLit. The active domain dom(I) of
the instance I is the set of elements of Dom used in I.

Graphs An RDF graph (or simply a graph) is a finite set G of triples in
(Iri∪NullIri) × Pred× (Iri∪NullIri∪ Lit). We view G as an edge labeled graph by
interpreting a triple (s, p, o) as a p-labeled edge from the node s to the node o.
The set of nodes of G, denoted nodes(G), is the set of elements that appear on
first or third position of a triple in G.

Shape constraints as dependencies A deterministic shapes schema S, as de-
fined in Section 3, can be captured with a set ΣS of egds and tgds. ΣS contains
for all type T ∈ T and all shape constraint δ(T, p) = Sµ

� TP(T, p, S) = ∀x, y. T (x) ∧ Triple(x, p, y) ⇒ S(y),

� PF(T, p) = ∀x. T (x) ⇒ ∃y. Triple(x, p, y), if µ ∈ {1, +},

� PE(T, p) = ∀x, y, z. T (x) ∧ Triple(x, p, y) ∧ Triple(x, p, z) ⇒ y = z, if
µ ∈ {1, ?}.

It is easy to see that a typed graph (G, typing) satisfies S if and only if
(G, typing) |= ΣS.

Homomorphisms and universal solutions A substitution is a function h :
Dom ∪ Vars → Dom ∪ Vars that is different from identity on a finite set dom(h)
of null values and variables, and furthermore, h assigns a value in Dom to every
element in dom(h). We assume that the library of IRI constructors is known from
the context, and extend substitutions to flat terms while applying interpretations
of the IRI constructors: h(f(t1, . . . , tk)) = fF (h(t1), . . . , h(tk)). We further
extend homomorphisms, in a standard fashion, to atoms h(R(t1, . . . , tk)) =
R(h(t1), . . . , h(tk)), and to sets of atoms h(A) = {h(α) | α ∈ A}. Recall that
both instances and clauses can be viewed as set of atoms. Now, a homomorphism
of I1 in I2 is a substitution h such that h(I1) ⊆ I2. A homomorphism h′ extends
a homomorphism h, written h ⊆ h′, if dom(h) ⊆ dom(h′) and h′(x) = h(x) for
all x ∈ dom(h). A universal solution U ∈ solE (I) is a solution that subsumes
all other solutions i.e., for any J ∈ solE (I) there is a homomorphism of U in J .

Chase We recall the chase procedure for tgds and egds. Let σ = ∀x̄. φ⇒ ∃ȳ. ψ.
If σ is a tgd, we say that it is triggered in I by h if dom(h) = x̄, h(φ) ⊆ I,
and there is no extension h′ of h such that h′(ψ) ⊆ I. It has a successful
execution h′ yielding I ′, in symbols I

σ,h′

−−→ I ′, if h′ is an extension of h such that
dom(h′) = x̄ ∪ ȳ and I ′ = I ∪ h′(ψ).

Next, suppose that σ is an egd. It is triggered in I by h if dom(h) = x̄,
h(φ) ⊆ I, and there is z̄ ∈ eq-class(σ) and z1, z2 ∈ z̄ such that h(z1) ̸= h(z2). It
has a successful execution I ′ with h′, in symbols I

σ,h′

−−→ I ′, if I ′ = h′(I) and h′ is
a homomorphism such that dom(h′) = h(dom(h))∩Null i.e., h′ assigns values to
the null values used by h, and for any z̄ ∈ eq-class(σ) and any z1, z2 ∈ z̄ we have
h′(h(z1)) = h′(h(z2)). If σ is triggered in I by h but does not have a successful
execution, we say that it fails, in symbols I

σ,h−−→ ⊥.
Now, a chase sequence on I0 with a set Σ of tgds and egds is a possibly

infinite sequence I0
σ0,h0−−−→ I1

σ1,h1−−−→ I2 . . ., where σi ∈ Σ for all i. A terminating
chase sequence ends with a failure or an instance that triggers no dependency
in Σ. It is a classic result that a universal solution U for I to Σ exists if and
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only if there is a terminating chase sequence on I with Σ that ends with U [17].
Naturally, this result extends to constructive data exchange settings with fixed
IRI constructors.

A.1 Proofs for Section 5 (Consistency)

We start by precising the definition of a chase step in order to take into account
the possible conflict due to merging a literal and a non-literal node. Suppose
that σ is an egd. It is triggered in I by h if dom(h) = x̄, h(φ) ⊆ I, and there
is z̄ ∈ eq-class(σ) and z1, z2 ∈ z̄ such that h(z1) ̸= h(z2). It has a successful
execution I ′ with h′, in symbols I

σ,h′

−−→ I ′, if

(1) any z̄ ∈ eq-class(σ) and z1, z2 ∈ z̄ such that h(z1) ̸= h(z2) satisfy
h(z1), h(z2) are both literals, or h(z1), h(z2) are both non literals, and

(2) I ′ = h′(I) and h′ is a homomorphism such that dom(h′) = h(dom(h))∩Null
i.e., h′ assigns values to the null values used by h, and for any z̄ ∈ eq-class(σ)
and any z1, z2 ∈ z̄ we have h′(h(z1)) = h′(h(z2)).

If σ is triggered in I by h but does not have a successful execution, we say that
it fails, in symbols I

σ,h−−→ ⊥.

A.1.1 Value consistency

We prove here the different propositions made in Section 5.1.

Proof of Lemma 6
We show the left-to-right direction. We claim that (1) for any instance I of R, a
solution for I to Σst ∪ ΣTP

S is included in a solution for I to E .
We now show (1). Take a universal solution J to Σst ∪ ΣTP

S and a universal
solution J ′ to E . We prove that J ⊆ J ′. We fix two chase sequence s and s′

such that the instance where there can not be triggered more rules are J and
J ′ for s and s′ respectively. Since s′ is finite, i.e. there is not failure, then the
egds only are triggered for those triples that contain null as objects. This is not
produced by ΣTP

S . Since s′ has applied the rules in Σst ∪ ΣTP
S , then J is in J ′.

Now, we take a pair (Tn, fn) ∈ T × F . Assume (Tn, fn) is accessible in
E . Then, we construct an instance I of R where R = {R1, . . . , Rn} such that
dom(I) = {b} and for each R ∈ R is of arity n ∈ N. Because (Tn, fn) is accessible,
we know that there is a sequence σ0, . . . , σi of st-tgds s.t.:

� head(σ0) = T0(f0(ȳ0)), and

� head(σi) = Triple(fi−1(x̄i), pi, fi(ȳi)) for any 1 ≤ i ≤ n, and

� (p :: Ti)
µ ∈ δ(Ti−1) for some multiplicity µ, and

� (T, f, p) = (Tn, fn, pn)

for some type symbols {Ti | 0 ≤ i < n} ⊆ T , function symbols {fi | 0 ≤ i <
n} ⊆ F , and IRIs {pi | 1 ≤ i < n} ⊆ Iri.

Now, we take any solution J for I to E . By chasing I with the sequence of
st-tgds σ0, . . . , σi and ΣTP

S of triple constraints from accessibility of (Tn, fn), we
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have that

A = {T (f0(b̄)),Triple(f0(b̄), p1, f1(b̄)), T1(f1(b̄)),Triple(f1(b̄), p2, f2(b̄)), . . . ,

Triple(fn−1(b̄), pn, fn(b̄)), Tn(fn(b̄))}

Since chase sequence of Σst ∪ΣTP
S is finite, then there is an instance A where

there is no rule triggered. By chase sequence definition, A is a universal solution
to Σst ∪ ΣTP

S . By definition of universal solution, there is an homomorphism
h : A→ J ′ such that h(c) = c for all c ∈ dom(A) and J ′ a solution to Σst ∪ ΣTP

S .
Since in A there are no nulls, A ⊆ J ′. By claim (1) and A ⊆ J ′, A ⊆ J . Let
a = fFn (b̄), i.e. a ∈ ran(fFn ). Then Tn(a) ∈ J . Thus, Tn(a) is in all solutions for
I to E .

Now, we show the right-to-left direction. We take a pair (Tn, fn) and assume
there exist an instance I of R and a constant a in ran(fFn ) s.t. Tn(a) is a fact
in all solutions for I to E .

We have to prove that (Tn, fn) is accessible in E . We fix a chase sequence

s = I = J0
σ1,h1−−−→ J1

σ2,h2−−−→ . . . Jm−1
σm,hm−−−−→ Jm where σi a dependency in Σst

and hi : σi → Ji an homomorphism for any i ∈ {1, . . . ,m}.
We claim (1) that for any finite chase sequence s for dependencies Σst ∪ ΣTP

S ,
any a ∈ Const, any T ∈ T , any k ∈ {1, . . . , |s|}, if Jk contains the fact T (a)
then there is f ∈ F such that (T, f) is accessible in E .

We claim (2) that for any finite chase sequence s for dependencies Σst ∪ ΣTP
S ,

any a ∈ Const, any T ∈ T , any k ∈ {2, . . . , |s|}, if Jk contains the fact T (a)
then there is k′ < k and T ′ ∈ T and p ∈ Pred and a′ ∈ Const such that Jk′

contains the facts T ′(a′),Triple(a′, p, a) and p :: T ′′µ ∈ δ(T ′) for some µ.
We claim (3) for any finite chase sequence s, any k ∈ {1, . . . , |s|}, any

b, b′ ∈ Const and any q ∈ Iri if Jk contains the fact Triple(b, q, b′) then there is
a st-tgd σ ∈ Σst such that head(σ) = Triple(f(ȳ1), q, g(ȳ2)) for some f, g ∈ F
and ȳ1 and ȳ2 in vars(σ); and there is an homomorphism h : head(σ) → Jk such
that h(ȳ1) = b and hF (ȳ2) = b′.

We now prove claim (1). Let σ be a rule in Σst such that head(σ) = T (f(x̄))
for some x̄ ∈ vars(σ). Let h : σ → Jk such that h(f(x̄)) = a. Since Jk contains
a fact produced in chase step of s, then this h was triggered in some instance
before Jk. By definition of accessibility, we conclude that (T, f) is accessible in
E .

Next, we prove claim (2). Let σ be a rule in ΣTP
S such that head(σ) = T (x).

Let h : σ → Jk such that T (h(x)) = a. Since Jk contains a fact produced in chase
step of s, then σ exists with h because it was triggered in some instance before Jk.
Let that instance be Jk′ such that k′ < k. Thus, T ′(h(x)),Triple(h(x), p, h′(y))
in Jk′ for some p ∈ Iri. Let h(x) = a′ for some a′ ∈ Const. Since σ ∈ ΣTP

S then
p :: T ∈ δ(T ′).

Finally, we prove claim (3). Assume Jk contains the fact Triple(b, q, b′).
Since Jk is an instance of chase sequence at k chase step of Σst ∪ ΣS, then
the only rule that can be triggered in some instance before Jk is of the form
φ ⇒ Triple(f(ȳ1), q, g(ȳ2)) for some ȳ1 and ȳ2 in vars(φ). Thus, we conclude
that there is an homomorphism h such that h(f(ȳ1)) = b and hF (q) = q and
h(f(ȳ2)) = b′.

Since the fact Tn(a) ∈ Jm is the result of either trigger a rule in Σst or ΣTP
S ,

we can apply claim (1) or (2) respectively. Considering the rule be in Σst and
by claim (1), we have that (Tn, fn) is accessible. Considering the rule be in
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ΣTP
S , we obtain that there is a k′ < m and T ′ ∈ T and a′ ∈ Const and p ∈ Pred

such that the facts T ′(a′) and Triple(a′, p, a) are in Jk′ and p :: Tµ
n ∈ δ(T ′) for

some µ. Applying claim (3) to the fact Triple(a′, p, a) ∈ Jk′ , we have that
σ = Triple(f(ȳ1), p, fn(ȳ2)) for some f ∈ F such that a′ ∈ ran(fF ). Let this
f be fn−1. We analyze the fact T ′(a′) as in the beginning with claims (1) or
(2). Assume that claim (1) is not applied until we are in step 2. Then we
have only applied claim (2) and (3) sequentially obtaining at this chase step
that T0(a0),Triple(a0, p1, a1) in J2. By applying claim (1) to the fact T0(a0) we
obtain a rule σ0 = T0(f0(ȳ0)). This rule together with the set of rules σi, . . . , σj
where i < j < m that are in Σst, which were obtained by the application of
claim (3) allows to conclude that (Tn, fn) is accessible in E .

Proof of Proposition 7
Suppose first that π, σ, σ′, h are as in the premise of 1. and let π = σ0, . . . , σn,
head(σ) = Triple(f(z̄), p, t), head(σ′) = Triple(f(z̄′), p, t′) and the σ0, . . . , σn as
in Definition 5, so (T, f, p) = (Tn, fn, pn). Because (Tn, fn) is accessible in E
with π, we know that ΣTP

S contains the rules TP(Ti−1, pi, Ti) for any 0 < i ≤ n.
Let TP(Ti−1, pi, Ti) = Ti−1(ui) ∧ Triple(ui, pi, vi) ⇒ Ti(vi) for any 0 < i ≤ n,
where w.l.g. ui, vi are fresh w.r.t. the variables used in σ0, . . . , σn, σ, σ

′ and
{ui, vi} is disjoint from {uj , vj} whenever i ≠ j. Let h′ = h ◦ hπ,σ,σ′ , then by
definition of Iπ,σ,σ′ and h it follows that I is the disjoint union of h′(Bπ,σ,σ′)
and I ′, the latter containing the facts of I ′ that are not images by h of some
fact in Iπ,σ,σ′ .

Consider the following chase sequence s starting at I; note that in the sequel
we abuse the notation and use h′ as its restriction on any subset of variables in
its domain. The first chase step of s is I

σ0, h
′

−−−→ I0. The subsequent chase steps
are defined inductively by adding the following two chase steps for all 0 < i ≤ n:

Ii−1
σi, h

′

−−−→ I ′i
TP(Ti−1,pi,Ti), hi−−−−−−−−−−−→ Ii,

where hi is defined by hi(ui) = h′(fi−1(ȳi−1)) and hi(vi) = h′(fi(ȳi)).
Thus s is of the form:

I
σ0, h

′

−−−→ I0
σ1, h

′

−−−→ I ′1
TP(T0,p1,T1), h1−−−−−−−−−−→ I1 → · · · → In−1

σn, h
′

−−−−→ I ′n
TP(Tn−1,pn,Tn), hn−−−−−−−−−−−−−→ In.

We now show that s is indeed a chase sequence. That is, we need to show
that the homomorphism of each step above is indeed a homomorphism from
the body of the dependency being applied to the instance to which the step is
applied. It immediately follows from the definitions and hypotheses that (1)
I0 = I ′ ∪ h′(Bπ,σ,σ′)∪ T0(h(f0(ȳ0))) where I ′ contains the facts of I that are not
images of some fact of Iπ,σ,σ′ by h. For any 1 ≤ i ≤ n we show the following by
induction on i:

(2) I ′i = Ii−1 ∪ h′(head(σ0) ∪ · · · ∪ head(σi));

(3) Ii = I ′i ∪ Ti(h′(fi(ȳi))).

For the base case i = 1. From (1) it follows that h′ : σ1 → I0 is a homomorphism,
and by definition of the chase, applying this homomorphism on I0 yields I ′1 =
I0∪h′(head(σ1)), thus (2) holds. Now from (1) and (2) we know that I ′1 contains
the facts T0(h′(f0(ȳ0))) and Triple(h′(f0(x̄1)), p1, f1(ȳ1)) = h′(head(σ1)). Recall
that by definition, hπ,σ,σ′(x̄1) = hπ,σ,σ′(ȳ0), so also h′(x̄1) = h′(ȳ0), thus h1
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is indeed an homomorphism from Ti−1(ui) ∧ Triple(ui, pi, vi) into I ′i and the
resulting instance is indeed I ′i ∪ Ti(h′(fi(ȳi))).

The same arguments apply for the induction step for showing that h′ : σi →
Ii−1 and hi : TP(Ti−1, pi, Ti) are homomorphisms, and their application yields
the instances described in (2) and (3).

Consider now the chase sequence

s′ = In
σ, h−−→ Iσ

σ′, h−−−→ Iσ′ .

It immediately follows from the definition of h, from (3) and from the definition
of a chase step that Iσ = In ∪ {Triple(h(fn(ȳn)), pn, h(t))} and Iσ′ = Iσ ∪
{Triple(h(fn(ȳn)), pn, h(t′))}.

Finally, consider any terminating chase sequence by Σst ∪ΣTP
S starting at Iσ′ ,

and let J ′ be its terminal instance; we know that such finite chase instance exists
because the dependencies in Σst∪ΣTP

S are full. Then J ′ is a universal solution for I
to Σst∪ΣTP

S and moreover Iσ′ ⊆ J ′, so {Tn(h′(fn(ȳn))),Triple(h′(fn(ȳn)), pn, h
′(t)),Triple(h′(fn(ȳn)), p, h′(t′))} ⊆

J ′ ⊆ J for any J solution for I to Σst ∪ ΣTP
S . We conclude the proof of the left-

to-right direction of 1 remarking that by definition, hπ,σ,σ′(ȳn) = hπ,σ,σ′(z̄) =
hπ,σ,σ′(z̄′), so also h′(ȳn) = h′(z̄) = h′(z̄′). This also shows 2. in the case where
the left-to-right direction of 1. holds.

Proof of Theorem 8 We first show the left-to-right direction by proving its
contraposition. Let a violation sort (T, f, p), and let π, σ, σ′, J, h be as in
the theorem, in particular h ◦ hπ,σ,σ′(t) ̸= h ◦ hπ,σ,σ′(t′). Then by Proposi-
tion 7 we have that J0, the core pre-solution for I to Σst ∪ ΣTP

S , includes
w = {T (a),Triple(a, p, b),Triple(a, p, b′)}, where a = h ◦ hπ,σ,σ′(f(z̄)) = h ◦
hπ,σ,σ′(f(z̄′)), b = h ◦ hπ,σ,σ′(t) and b′ = h ◦ hπ,σ,σ′(t′). By hypothesis, b ̸= b′,
so w is a (T, f, p)-violation, so the core pre-solution of I does not satisfy ΣPF

S .
We show the right-to-left direction again proving its contraposition.
Suppose there exists a consistent source instance I s.t. its core pre-solution

J0 includes a (T, f, p)-violation, say w = {T (a),Triple(a, p, b),Triple(a, p, b′)}
with b ≠ b′ and (T, f, p) a violation sort. So Proposition 7 applies allowing
to deduce that there exist π, σ, σ′, h s.t. (T, f) is accessible with π in E , σ, σ′

are (T, f, p)-contentious st-tgds, and h : Iπ,σ,σ′ → I is a homomorphism, with
head(σ) = Triple(f(z̄), p, t) and head(σ′) = Triple(f(z̄′), p, t′), and a = h ◦
hπ,σ,σ′(f(z̄)) = h ◦ hπ,σ,σ′(f(z̄′)), b = h ◦ hπ,σ,σ′(t) and b′ = h ◦ hπ,σ,σ′(t′).
Therefore h ◦ hπ,σ,σ′(t) ̸= h ◦ hπ,σ,σ′(t′). Suppose by contradiction that for all
J, h′ s.t. J solution for Iπ,σ,σ′ to Σfd and h′ : Iπ,σ,σ′ → J the corresponding
homomorphism we have (hπ,σ,σ′ ◦ h′)(t) = (hπ,σ,σ′ ◦ h′)(t′). We are then able to
construct a contradiction to the fact that I is a consistent source instance that
satisfies the source functional dependencies.

A.1.2 Node kind consistency

We start with a slight generalization of the construction of a universal simulation
solution presented in Section 6 that will be used for computing CoTypes(J)
and for the proofs of Lemma 10 and Lemma 11. We recall the definitions from
Section 6 are useful for this definition.

Fix a source instance I, and suppose that J is a solution for I to Σst∪ΣTP
S ∪ΣPF

S .
The types associated to a node in a typed RDF graph typesG(n) = {T | T (n) ∈
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G}. The IRIs required by a set of types X is the set Req(X) = {p | ∃S, µ, T ∈
X. p :: Sµ ∈ δ(T )}. The frontier of J is the following set

F = {(n, p) | n ∈ nodes(J), p ∈ Req(typesJ(n)), ∄m.Triple(n, p,m) ∈ J}.

For any set of types X and IRI p, ∆(X, p) is the set of types that must hold at
any node having a type from X and reachable by a p-labeled edge:

∆(X, p) = {S | p :: Sµ ∈ δ(T ) for some T ∈ X and µ ∈ {?, 1, +, *}}.

Whether J can be augmented to a solution that satisfies ΣS depends on
the sets of types that co-occur in the frontier of J . Define the set of subsets
of T ∪ {Literal}: N0 = {∆(typesJ(n), p) | (n, p) ∈ F}. Then let NJ =

⋃∞
i=0Ni,

where Ni = {∆(X, p) | X ∈ Ni−1, p ∈ Req(X)} for any i ≥ 1. This process
reaches a fixed point in a final number of steps.

Lemma 26 For any typed graph J , NJ = CoTypes(J).

As a corollary of Lemma 26 we get that CoTypes(J) can be effectively computed.

Proofs of Lemma 10 and Lemma 11

Lemma 27 For any instance I of R and any J solution for I to Σst∪ΣTP
S ∪ΣPF

S ,
if NJ contains a set X with {Literal , T} ⊆ X for some type T in T , then I does
not admit a solution to E that includes J .

Proof. [Sketch of proof] We first show that if X is a set in NJ , then any solution
G for I to E that includes J must contain a node nX with X ⊆ typesG(nX).
This is done by induction on the index i s.t. X ∈ Ni. Next we show that
if Literal is in X, then nX must be a literal, and if some type T from T is
in X, then nX must be an IRI or a blank node. Then the lemma follows by
contradiction.

Remark that Lemma 10 is an immediate consequence of Lemma 26 and
Lemma 27.

Now, if NJ does not contain any set X in which Literal co-occurs with some
type T from T , then we can construct a solution for I to E that includes J ,
as follows. For any X ∈ NJ s.t. X ⊆ T , let nX be a fresh blank node, i.e.
nX ∈ NullIri \ dom(J). For any X ∈ NJ and p ∈ Req(X), let nX,p be a fresh
null literal, i.e. nX,p ∈ NullLit \ dom(J). Define the graph GS as follows.

GS ={Triple(n, p, nX) | (n, p) ∈ F ∧X = ∆(typesJ(n), p) ⊆ T } ∪
{Triple(nX , p, nX,p) | (n, p) ∈ F ∧ ∆(typesJ(n), p) = {Literal}} ∪
{Triple(nX , p, nX′) | X ∈ NJ ∧ p ∈ Req(X) ∧X ′ = ∆(X, p) ⊆ T } ∪
{Triple(nX , p, nX,p) | X ∈ NJ ∧ p ∈ Req(X) ∧ ∆(X, p) = {Literal}} ∪
{T (nX) | X ∈ NJ ∧ T ∈ X}.

Lemma 28 For any source instance I and any J solution for I to Σst∪ΣTP
S ∪ΣPF

S ,
if NJ does not contain a set X with {Literal , T} ⊆ X for some type T in T ,
then J ∪GS is a solution for I to E .
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Proof. [Sketch of proof.] J ∪ GS satisfies Σst as J does. It is easy to see by
its definition that J ∪ GS also satisfies the TP and PE dependencies in ΣS.
Regarding the PF dependencies in ΣS: on the one hand, J satisfies the PF
dependencies by hypothesis. On the other hand, by construction, the triples
added in GS are such that no node has more than one p-outgoing edge for
any IRI p. Therefore J ∪ GS does not contain a trigger for a PF dependency.
We point out that Lemma 11 is an immediate consequence of Lemma 26 and
Lemma 28.

Proof of Theorem 12
Let E = (R,S,Σst,F) and let S = (T , δ). We first show that it is decidable

whether E is node kind consistent.
Let N0 be the set of subsets of T ∪ {Literal} such that X ∈ N0 iff there

exists a function symbol f ∈ F s.t. X = {T | (T, f) accessible in E }. Then we
define CoTypes(E ) =

⋃∞
i=0Ni, where Ni = {∆(X, p) | X ∈ Ni−1, p ∈ Req(X)}

for any i ≥ 1. Note that CoTypes(E ) converges to a fix point in a finite number
of steps.

Lemma 29 E is node kind consistency iff CoTypes(E ) does not contain a set
X s.t. {T,Literal} ⊆ X for some T ∈ T .

Proof. We need to show that for any I instance of R CoTypes(J0) does not
contain a set X with {T,Literal} ⊆ X for some T ∈ T iff CoTypes(E ) does not
contains a set X s.t. {T,Literal} ⊆ X for some T ∈ T .

For the left-to-right direction we show that if CoTypes(E ) contains such X,
then there exists an instance I s.t. CoTypes(J) contains a set X ′ with X ⊆ X ′.
It is enough to take the I such that it contains exactly one fact for any relation
in R, and such that dom(I) = {b} for some constant b.

For the right-to-left direction, define the graph R which vertices are T and
that has an edge labelled with p from T1 to T2 iff δ(T1) contains a triple constraint
p :: T 1

2 or p :: T +
2 . Intuitively, a p-edge from T1 to T2 in R indicates that the label

p is required in every node that has type T1, and every p-edge leads to a node
that must have type T2.

We show that if there is an instance I and a type T ∈ T s.t. CoTypes(J0)
contains X with {T,Literal} ⊆ X then necessarily the frontier of J0 contains
some (n, p) s.t. n is not null and there exist types S, resp. S′ in typesJ0

(n) that
are, intuitively, the reasons why T , resp. Literal , were added to X during the
construction of CoTypes(J0). Note that such S, S′ are not necessarily distinct.
Moreover, there is a sequence w of IRI’s and a path in R from S to T labelled
with w and a path in R from S′ to Literal labelled with w.

Using Lemma 6 we deduce that (S, f) and (S′, f) are accessible in E , where
f is the function symbol s.t. n ∈ ran(fF ). Then we show inductively on the w
that during the construction of CoTypes(E ) we will reach a set X ′ that contains
both T and Literal .

We now describe a coNP decision procedure for E being node kind consistent.
A certificate for a node kind inconsistency is composed of types T, S, S′ and a
function symbol f ∈ F as in the proof of the right-to-left direction of Lemma 29.
More precisely, choose non-deterministically T, S, S′ and f s.t. (S, f) and (S′, f)
are accessible in E (the latter can be tested in polynomial time). According to
the proof of Lemma 29, it is enough to test whether there exists a sequence w
of IRIs s.t. R has paths labelled with w from S to T and from S′ to Literal .
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The latter can be polynomially tested by considering two finite state automata
AS and AS′ that are both derived from the graph R. That is, both automata
have the vertices of R as states and the edges of R as transitions. AS has S as
initial state, while S′ is the initial state of AS′ . We then compute the product
automaton AS ×AS′ in polynomial time. Then there exists w as above iff state
(T,Literal) is accessible in the product automaton. In this case, w is the shortest
path from (S, S′) to (T,Literal) in this automaton.

Now the proof of Theorem 12 can be completed:

� If I is an instance of R and the core pre-solution for I to E is value consistent
and node kind consistent, then I admits a solution to E (Lemma 11).

� If I is an instance of R and the core pre-solution of I to E is not value
consistent, resp. is not node kind consistent, then I does not admit a
solution to E (corollary of Theorem 8, resp. Lemma 10).

� It is decidable whether E is value consistent (Lemma 30) and it is decidable
whether E is node kind consistent (here above).

A.1.3 Proof of Theorem 13

Upper bound
Checking node kind consistency is in co-NP as shown in Section A.1.2.
Regarding value consistency:

Lemma 30 Deciding whether E is value consistent is in coNP.

Proof. The contraposition of Theorem 8 implies that E is value inconsistent iff
there exists a source instance (J in the theorem) that satisfies the source integrity
constraints Σfd but is value inconsistent. This gives a co-NP decision procedure
for value consistency. Indeed, J as in the theorem is a certificate for the value
inconsistency. We now argue that such certificate has size polynomial in the size
of E and we can test in polynomial time whether it is indeed value inconsistent.
First, guess a violation sort (T, f, p), an elementary sequence π = σ0, . . . , σn and
two st-tgds σ, σ′ from Σst. This is done in polynomial time as π is elementary.
Then check that (T, f) is accessible in E with π and that σ, σ′ are contentious
with sort (T, f, p) and construct the source instance Iπ,σ,σ′ . This step is done
in polynomial time as well. Finally, chase Iπ,σ,σ′ with Σfd. The latter can also
be done in polynomial time because the instance Iπ,σ,σ′ has a polynomial size,
and all bodies of dependencies in Σfd contain exactly two atoms, thus require to
compute a unique join in order to be evaluated. Additionally, Σfd chase steps
do not increase the size of the instance, and only a polynomial number of chase
steps can be executed before a solution or a failure is reached. The result of the
chase is the certificate J . Consequently, deciding whether E is value consistent
is in coNP.

Lower bound We prove coNP-hardness with reduction from the complement
of SAT. Take any CNF

φ = c1 ∧ . . . ∧ cm, where cj = ℓj,1 ∨ . . . ∨ ℓj,kj is a clause over the variables
x1, . . . , xn. We construct the corresponding data exchange setting Eφ as follows.
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The relational schema consists of the following binary relation names (each
having the first attribute as a key A→ B)

Vt(A,B), Vf (A,B), R1(A,B), . . . , Rm(A,B)

The constructor set is
F = {f1, . . . , fm, fm+1}

and their implementation is very straightforward fi(x) = ”i:” + str(x). We use
the types

T = {T1, . . . , Tm, Tm+1}

and the shape constraints:

Tj → a :: T *
j+1 for 1 ≤ j ≤ m and (1)

Tm+1 → a :: Literal1. (2)

The source to target dependencies are as follows. First, we have the two rules:

Vt(x, y) ⇒ Triple(fm+1(x), a, y) (3)

Vf (x, y) ⇒ Triple(fm+1(x), a, y) (4)

Next, for any 1 ≤ j ≤ m let cj = ℓj,1 ∨ . . . ∨ ℓj,kj
and for q ≤ k ≤ kj if ℓj,k = xi,

then we add this rule

Ri(x, y) ∧ Vt(x, y) ⇒ Triple(fj(x), a, fj+1(x)) (5)

and otherwise if ℓj,k = ¬xi, then we add this rule

Ri(x, y) ∧ Vf (x, y) ⇒ Triple(fj(x), a, fj+1(x)) (6)

And finally, we add the following two rules:

Vt(x, y) ⇒ T1(f1(x)) (7)

Vf (x, y) ⇒ T1(f1(x)) (8)

We claim that
φ ∈ SAT iff Eφ is not consistent.

For only if part, we take a valuation V that satisfies φ and construct an
instance IV as follows. We fix 3 constants c, t, and f . The instance is

IV = {Vt(c, t), Vf (c, f)} ∪ {Ri(c, t) | i ∈ {1, . . . , n}, V (xi) = true} ∪
{Ri(c, f) | i ∈ {1, . . . , n}, V (xi) = false}.

It is easy to see that IV is consistent and with a simple inductive proof we
can show that the result of chase on IV contains Tm+1(fm+1(c)) and the two
triples Triple(fm+1(c), a, t) and Triple(fm+1(c), a, f) which violates the shape
constraint on the type Tm+1.

For the if part, we take a consistent instance I such that chase of I with Eφ

is equal to J and violates the shape constraints. The only shape constraint that
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can be violated is the constraint on the type Tm+1 (all remaining constraints can
be satisfied by chase by adding null values if needed). Consequently J contains
Tm+1(tm+1), Triple(tm+1, a, t), and Triple(tm+1, a, f), for some tm+1, f , and t.
Naturally, the two triples must be introduced with the rules (3) and (3), and
therefore, there is a constant c such that tm+1 = fm+1(c), Vt(c, t) ∈ I, and
Vf (c, f) ∈ I. Furthermore, with a simple inductive proof we can show that for
every j ∈ {1, . . . ,m} we have Tj(fj(c)) ∈ J , Triple(fj(c), a, fj+1(c)) ∈ J . We
observe the triples Triple(fj(c), a, fj+1(c)) can be only added by chase with the
use of rules (5) and (6), and the inductive proof also shows that every clause cj
has at least one literal for which the corresponding rule must have been triggered.
Since I is consistent for no i ∈ {1, . . . , n} can I have both Ri(c, t) and Ri(c, f)
(I may have none of the two). We can therefore define the following valuation

V (xi) =

{
true if Ri(c, t) ∈ I,

false otherwise.

We show that V satisfies φ by observing that if for the chase triggers a clause
(5) or (6) that corresponds to some literal ℓ of cj , then V satisfies cj . We finish
the proof by observing that the proposed reduction is polynomial.

A.2 Consistency of Non-Constructive st-tgds

Using the notations from Section 5.3, recall that any pair of rules in Σst use
pairwise disjoint variables, θ is the set of terms that appear in the heads of Σst,
and T is the set of type names of the shapes schema S. Denote V the universally
quantified variables that appear in Σst. We write A ∈ Σst when the atom A
appears in some head in Σst, thus Σst is viewed as a monadic relation over atoms.
We use t, t′, u, u′ to denote terms, and x, x′, y, y′ and x̄, ȳ to denote variables and
vectors of variables, respectively. The relations Acc ⊆ θ × T , Eq ⊆ θ × θ and
Rev ⊆ θ are defined by the following mutually recursive rules, where X,X ′, Y, Y ′
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are variables over θ.

T (t) ∈ Σst :– Acc(T, t) (9)

Eq(f(x̄), f(ȳ)) whenever f(x̄) ∈ θ, f(ȳ) ∈ θ
(10)

Rev(x) whenever x ∈ V
(11)

Rev(f(x̄)) whenever f(x̄) ∈ θ
(12)

Acc(T,X),Triple(X, p, Y ) ∈ Σst :– Acc(U, Y ) for every δ(T, p) = Uµ

(13)

Acc(T,X),Eq(X,Y ) :– Acc(T, Y ) for every T ∈ T
(14)

Triple(X, p, Y ) ∈ Σst,Triple(X ′, p, Y ′) ∈ Σst,

Eq(X,X ′),

Acc(T,X),Acc(T,X ′) :– Eq(Y, Y ′) for every δ(T, p) = Uµ, µ ∈ {1, ?}
(15)

Triple(X, p, Y ) ∈ Σst,Triple(X ′, p, Y ′) ∈ Σst,

Eq(X,X ′),Rev(Y ),

Acc(T,X),Acc(T,X ′) :– Rev(Y ′) for every δ(T, p) = Uµ, µ ∈ {1, ?}
(16)

Two terms are contentious if they satisfy the relation Cont ⊆ θ × θ defined by

Triple(X, p, Y ) ∈ Σst,Triple(X ′, p, Y ′) ∈ Σst,

Eq(X,X ′),Acc(T,X),

Rev(Y ),Rev(Y ′) :– Cont(Y, Y ′) for every δ(T, p) = Uµ, µ ∈ {1, ?}
(17)

This captures the fact that triples generated from the atoms Triple(X, p, Y )
and Triple(X ′, p, Y ′) might lead to value inconsistency caused by the functional
predicate egd for δ(T, p) = Uµ.

The rules defining Acc, Eq , Rev and Cont can be turned into a Datalog
program over the signature {Acc,Eq ,Rev ,Cont , ∈ Σst} by creating as many
rules as required by the conditions on δ. The size of P is polynomial in the size
of E . Then we can use P to materialize in polynomial time the relations Acc,
Eq , Rev and Cont .

Example 31 (Example 14 continued.) With the data exchange setting as
defined in Example 14, the materialized relations contain the following facts (non
exhaustive).

Acc(T, f(x′)),Acc(U, g(y′′)),Acc(U, g(y))

Rev(w′′),Rev(y′)

Eq(g(y′′), z′),Eq(g(y), z′),Eq(g(y), g(y′′)),Eq(f(x), f(x′))

□
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Let Cont(t, t′) for some terms t, t′ in θ. A proof tree for Cont(t, t′) is a
derivation of the program P which root is Cont(t, t′) and which other nodes are
facts from the Acc, Eq , Rev and ∈ Σst relations. In particular, the children
of the root of such proof tree are Triple(u, p, t) ∈ Σst, Triple(u′, p, t′) ∈ Σst,
Eq(u, u′), Acc(T, u), Rev(t) and Rev(t′) for some terms u, u′ and some type T
and predicate p.

Example 32 (Example 31 continued.) With the data exchange setting as
defined in Example 14, there is a proof tree for Cont(w′′, y′) which nodes are
exactly the facts listed in Example 31 and has additionally as leaves all the facts
of the form A ∈ Σst for all the atoms A that appear in some rule head in Σst:

Triple(f(x), p, g(y)) ∈ Σst,Triple(g(y), q, z) ∈ Σst

T (f(x′)) ∈ Σst,Triple(f(x′), p, z′) ∈ Σst,Triple(z′, q, y′) ∈ Σst

Triple(g(y′′), q, w′′) ∈ Σst

□

With every such proof tree π we can associate an instance Iπ,t,t′ of R s.t.
when chased with Σst ∪ ΣTP

S would produce a violation in which (two constants
derived from) the terms t, t′ need to be equated by an functional predicate egd for
δ(T, p). The instance Iπ,t,t′ is effectively constructed by a backchase procedure.
We claim that

Lemma 33 If I instance of R is value inconsistent, then there exist two terms
t, t′ in Σst s.t. Cont(t, t′) holds and there is I ′ ⊆ I and π a proof tree for
Cont(t, t′) s.t. I ′ is isomorphic Iπ,t,t′ .

The proof is similar the proof of Theorem 8.
Then in order to check value inconsistency of E it is enough to enumerate

all t, t′ s.t. Cont(t, t′), all proof trees π for Cont(t, t′) and the corresponding
instances Iπ,t,t′ . If such Iπ,t,t′ exists and is a valid instance of R, that is, satisfies
the source functional dependencies, then Iπ,t,t′ is value inconsistent for E thus
E is value inconsistent. If there is no Iπ,t,t′ that satisfies the source functional
dependencies, then E is value consistent.

Example 34 (Example 32 continued.) With the data exchange setting as
defined in Example 14 and the proof tree mentioned in Example 32, we construct
the source instance

{R(x, y, z), S(x, y′), R(x′′, y, z′′)}.

One can see that when chasing the above source instance we can derive the facts

{Triple(f(x), p, g(y)),Triple(g(y), q,⊥1), U(g(y))

T (f(x)),Triple(f(x), p,⊥2),Triple(⊥2, q, y
′), U(⊥2)

Triple(g(y), q, w′′)}

Then using the functional predicate egd for δ(T, p) = U1 we reveal ⊥2 as being
equal to g(y). Finally applying the functional predicate egd for δ(U, q) = Literal?

we need to equate w′′ and y′ thus the chase fails and I is value inconsistent. □
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On the other hand, node kind consistency of a non-constructive data exchange
setting E can be tested in the same way as for constructive data exchange settings.
This concludes the proof of Theorem 15.

A.3 Complexity of consistency for nondeterministic shape
schemas

We reduce the problem of validity of ∀∃∀∃∀∃QBF formulas to testing the consistency
of constructive data exchange settings with nondeterministic shape schemas.

We fix a formula Φ = ∀x̄.∃ȳ.φ, where φ = c1 ∧ . . . ∧ ck is a conjunction of
clauses over x̄ = x1, . . . , xn and ȳ = y1, . . . , ym. We construct the following data
exchange setting EΦ. The relational source schema consists of relations (each
relation with a single key)

Vt(x, y), Vf (x, y), Rx1(x, y), . . . , Rxn(x, y).

We employ a non-overlapping library that for every variable v ∈ x̄ ∪ ȳ contains
the unary IRI constructors fv, f

t
v , f

f
v and for every clause c it contains a unary

fc.
The source-to-target dependencies and the shape schema will introduce a

gadget for every variable v ∈ x̄ ∪ ȳ that will be the only possible source of
inconsistency. We identify 3 forms of the gadget, Gv when the valuation of v
is (yet) undetermined, and Gt

v and Gf
V for when the variable takes the value

true and false respectively. The 3 kinds of gadgets are presented in Figure 3 The

Gv(x)

fv(x) : Tv, T
val
v

f tv(x)

t

f fv (x)

f
o

o

Gt
v(x)

fv(x) : Tv, T
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v

f tv(x)

t

Sv, T
t
v :

1

f fv (x)

f
o

o
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f
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v

f tv(x)

t

Sv, T
f
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f
o

o

: Sv, T
f
v
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Figure 3: Three gadgets for a variable.

shape schema for every variable v ∈ x̄ ∪ ȳ contains the following types and their
definitions

Tv → t :: Sv, f :: Sv

Sv → o :: Sv,1 :: T∅?,1 :: T∅?

T val
v → t :: T t

v?, f :: T t
v?, t :: T f

v?, f :: T f
v?

T t
v → 1 :: T∅1, 0 :: T∅0, o :: T f

v

T f
v → 1 :: T∅0, 0 :: T∅1, o :: T t

v

T∅ → ϵ

We point out that imposing the types Tv and T val
v on a node fv(x) in Gv(x)

creates a tension that can only be resolved by adding the necessary outgoing

34



edges 0 and 1 to the nodes f tv(x) and f fv (x) but only in one of the two ways
Gt

v(x) or Gf
v(x); in particular no node f cv(x) can have both outgoing edges 0

and 1 and every such node must have at least one of the two. In fact, this is
the principal reason why an result of chasing any source instance would fail and
we shall refer to such situation as type overlap. The schema also contains the
following type that shall be used to enforce satisfiability of the clauses

C → l :: Tt+, l :: Tf*

Tt → 1 :: T∅1

Tf → 0 :: T∅1

Now, the source-to-target dependencies are as follows. For every x ∈ x̄ we have

Vt(z, y) ∧Rx(z, y) ⇒ Gt
x(z)

Vf (z, y) ∧Rx(z, y) ⇒ Gf
x(z)

For every y ∈ ȳ we have

Vt(x, y1) ∧ Vf (x, y2) ⇒ Gy(x)

For every clause c we also introduce the following st-tgd. Let c = ℓ1 ∨ . . . ∨ ℓa,
let vi be the variable used by the literal ℓi, and let bi ∈ {t, f} be the valuation
of vi that satisfies c. The st-tgd we introduce for c is

Vt(x, y1) ∧ Vf (x, y2) ⇒ Triple(fc(x), l, f b1v1 (x)) ∧ . . . ∧ Triple(fc(x), l, f bava (x)) ∧ C(fc(x)).

For instance, if c = ¬x2 ∨ y4 ∨ x3, then the corresponding st-tgd is

Vt(x, y1) ∧ Vf (x, y2) ⇒Triple(fc(x), l, f fx2
(x)) ∧

Triple(fc(x), l, f ty4
(x)) ∧

Triple(fc(x), l, f tx3
(x)) ∧

C(fc(x)).

We claim that Φ is valid if and only if EΦ is consistent.

� For the if part we fix an instance I and observe that a result of chasing I
may only fail due to type overlap in the nodes of some gadget Gv(c). This
is only possible if c is present in both Vt(c, t) and Vf (c, f) for some t and
f . In fact, for each such c we can consider the subset Ic ⊆ I containing
only the facts of I that use c as their key, and the problem can be treated
independently for Ic. From this subinstance we construct the (possibly
partial) valuation VC : x̄ → {t, f} and we take any V ∗ : ȳ → {t, f} such
that Vc ∪ V ∗ |= φ. We use V ∗ to construct a consistent solution Jc to Ic.
The solution to I is obtained from taking the union of all Jc’s (and the
result of chasing any elements of I that do not belong to any Ic but those
cannot create any inconsistency).

� For the only if part we take any valuation V : x̄ → {t, f} and build the
instance

IV = {Vt(c, t), Vf (c, f)} ∪ {Rx(c, V (x)) | x ∈ x̄}
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Since this is a consistent source instance, it has a solution J for EΦ. This
solution contains either the gadget Gt

y(c) or Gf
y(c) for every universally

quantified variable y ∈ ȳ. We construct the corresponding valuation
V ∗ : ȳ → {t, f}. That V ∪ V ∗ |= φ follows from the fact that J satisfies
the constraints imposed by the type C

A.4 Proofs for Section 6(Certain Query Answering)

Note that ↞↠ is an equivalence relation on nodes of G, and we denote by [n]
the equivalence class of node n and by nodes(G)/↞↠ the set of all equivalence
classes. For each equivalence class C ∈ nodes(G)/↞↠ we fix an arbitrarily chosen
representative node ηC ∈ C. Now, the bisimulation quotient of G, denoted by
G/↞↠ is the graph G/↞↠ = {(η[n], p, η[m]) | (n, p,m) ∈ G}. The choice of the
representative does not matter because a non-null value is bisimilar only to itself,
and consequently, every non-singleton equivalence class in nodes(G)/↞↠ contains
null values only. The bisimulation quotient of a typed graph (G, typing) is the
typed graph (G/↞↠, typing

′), where typing ′(ηC) =
⋃
{typing(n) | n ∈ C} for any

C ∈ nodes(G)/↞↠. Take a regular acyclic pattern E. We claim.

Lemma 35 For any two nodes n of G and m of H such that n↠ m, for any
n′ of G, (n, n′) ∈ JEKG implies there is a m′ of H such that (m,m′) ∈ JEKH
and n′ ↠ m′

Proof. The proof is by induction on the structure of E. The base cases are E
with |E| = 1 (E ∈ {ϵ, p,□, ⟨ℓ⟩}). We have the following cases:

� When E = ϵ. Since n↠ m, trivially (m,m) ∈ JϵKH .

� When E = p. Assume (n, n′) ∈ JpKG. By semantics of JpKG and n ↠ m,
there is a m′ such that (m, p,m′) ∈ H. Since (m, p,m′) ∈ H, then
(m,m′) ∈ JpKH and n′ ↠ m′

� When E = □. Assume (n, n′) ∈ J□KG. By semantics of J□KG and n↠ m,
there is a m′ such that (m, p,m′) ∈ H. Since (m, p,m′) ∈ H, then
(m,m′) ∈ JpKH and n′ ↠ m′.

� When E = ⟨ℓ⟩. Assume (n, n) ∈ J⟨ℓ⟩KG. Since n↠ m and m ∈ nodes(G)
and J⟨ℓ⟩KG ̸= ∅, then ℓ = n = m. Since ℓ = m, then (m,m) ∈ J⟨ℓ⟩KH and
n↠ m.

Now assume (IH) that for every expression E with |E| < i, we have that for any
two nodes n of G and m of H such that n↠ m, for any n′ of G, if (n, n′) ∈ JEKG
then there is a m′ such that (m,m′) ∈ JEKH and n′ ↠ m′. Let E be a regular
expression with |E| = i. Assume n↠ m. We distinguish the following cases:

1. E = E1 +E2. We have that |E1| < i and |E2| < i. Assume (n, n′) ∈ JEKG.
We have to prove that there is a m′ such that (m,m′) ∈ JEKH and n′ ↠ m′.
Let m′ be in H. By definition, (n, n′) ∈ JE1KG ∪ JE2KG. By IH, there is
m1 of H such that (m,m1) ∈ JE1KG and n′ ↠ m1. Let m1 = m′. By IH,
there is m2 of H such that (m,m2) ∈ JE2KG and n′ ↠ m2. Let m2 = m′.
By (m,m1) ∈ JE1KG and (m,m2) ∈ JE2KG and m1 = m = m2, we have
that (m,m′) ∈ JE1KH ∪ JE2KH . Hence, we conclude (m,m′) ∈ JEKH and
n′ ↠ m′.
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2. E = E1 · E2. We have that |E1| < i and |E2| < i. Assume (n, n′) ∈ JEKG.
By semantics of ·, (n, n′) ∈ JE1KG ◦ JE2KG. By composition of binary
relations, there is n2 such that (n, n2) ∈ JE1KG and (n2, n

′) ∈ JE2KG. Since
(n, n2) ∈ JE1KG and n↠ m, then there is m2 such that (m,m2) ∈ JE1KH .
By applying IH, we have that n2 ↠ m2, and together with (n2, n

′) ∈ JE2KG,
we obtain that (m2,m

′) ∈ JE2KH for some m′ in H. We can use IH to
conclude that n′ ↠ m′. By (m,m2) ∈ JE1KH and (m2,m

′) ∈ JE2KH , we
have that (m,m′) ∈ JE1KH ◦JE2KH . By semantics of ·, (m,m′) ∈ JE1 ·E2KH .
Thus, we obtain (m,m′) ∈ JEKH and n′ ↠ m′.

3. E = E′∗. We have that |E′| = i − 1. Assume (n, n′) ∈ JEKG. Since
i > 1 and by semantics of ∗, we have that (n, n′) ∈

⋃
2≤kJE

′KkG. Applying

transitive closure of binary relation, we obtain (n, n′) ∈ JE′K2G ∪ JE′′∗KG
and |E′′∗| < i. Then, we have that (n, n′) ∈ JE′KG ◦ JE′KG, or (n, n′) ∈
JE′′∗KG. By n ↠ m and the prove of E1 · E2, we know that there is
(m,m′) ∈ JE′KG ◦ JE′KH and n′ ↠ m′. Applying IH in |E′′∗| < i, there is
(m,m′) ∈ JE′′∗KH and n′ ↠ m′. By the two statements above, we have
(m,m′) ∈

⋃
2≤kJE

′KkH and n′ ↠ m′. Thus, we conclude (m,m′) ∈ JEKH
and n′ ↠ m′.

4. E = [E′]. Assume (n, n) ∈ J[E]KG and n ↠ m. By definition of [E′],
there is n′ such that (n, n′) ∈ JE′KG. Applying IH, there is m′ such that
(m,m′) ∈ JE′KH . By definition, (m,m) ∈ J[E′]KH and n ↠ m. Thus, we
conclude that (m,m) ∈ JEKH .

Finally, we claim.

Lemma 36 For any two graphs G and H, if G ↠ H then if G |= E implies
H |= E.

Proof. Take any two graphs G and H. Assume G ↠ H and G |= E. By
definition of G |= E, JEKG ̸= ∅, and in consequence there is a pair (n, n′) ∈ JEKG.
By G↠ H, there is a node m in H such that n↠ m. By lemma 35 and n↠ m
and (n, n′) ∈ JEKG, there is m′ of H such that (m,m′) ∈ JEKH . Since JEKH ̸= ∅,
then H |= E.

Take two graphs G and H. Assume G |= E. By lemma 36, it holds that
H |= E. Consequently, E is robust under simulation.

A.4.1 Proof of Theorem 20

Take any consistent instance I of R. Now, we prove that the typed graph
U = J0 ∪ GS, is a universal simulation solution. First, we define reachability
from a node n with a path π as follows:

RG(N, p) = {n′ | ∃n ∈ N.Triple(n, p, n′) ∈ G}
R∗

G(n, π · p) = RG(R∗
G(n, π), p)

R∗
G(n, ϵ) = {n}

Then, we extend the canonical function ∆ as follows.

� ∆∗(X,π · p) = ∆(∆∗(X,π), p)
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� ∆∗(X, ϵ) = X

Now, we claim

Lemma 37 For any solution J to E for I and for any frontier (n0, p0) ∈ F and
for any path in U of the form π = p0 · p1 · . . . · pk. Let X = ∆∗(typesJ0

(n0), π).
Then

1. π is also in J

2. if n = R∗
U (n0, π) then typesU (n) = X

3. ∀m ∈ R∗
J(n0, π). X ⊆ typesJ(m)

Proof. Take any solution J for I to E and any frontier (n0, p0) ∈ F. We prove
by induction in the size of the path π. Let |π| ≤ k. The base case is when π is
of size 1, i.e. π = p0. Let X = ∆∗(types(n0), π). Then

1. For case 1. We know (n0, p0) ∈ F and because p0 is in U then p0 ∈
Req(typesJ0

(n0)). Since J is a solution then the IRIs required by typesJ0
(n0)

must be satisfied. Since p0 ∈ Req(typesJ0
(n0)) then there is m such that

Triple(n0, p0,m) ∈ J . Thus, π is in J .

2. For case 2. Assume n = R∗
U (n0, p0). By definition of ∆∗, we have

X = ∆(typesJ0
(n0), p0). Then, we take a type T ∈ typesU (n), and by

definition, we have T (n) ∈ GS, n ∈ N and T ∈ n. By construction of GS

and (n0, p0) ∈ F, we obtain n ∈ N0. Also by construction of N0 and X
definition, we obtain n = ∆(typesJ0

(n0), p0) = X. Finally, by construction
of GS, we have that T ∈ X. Similar process is done in left direction. Thus,
we conclude that typesU (n) = X.

3. For case 3. Take any m ∈ RJ(n0, p0), i.e. Triple(n0, p0,m) ∈ J . By
definition of ∆∗, we have X = ∆(typesJ0

(n0), p0). Then, take any T ∈ X.
Since (n0, p0) ∈ F and J is a solution, then there is a type T ′ such that
T ′(m) ∈ J . Let T ′ = T . By T (m) ∈ J , we have that T ∈ typesJ (m). Thus,
we conclude that X ⊆ typesJ(m).

Now we fix k > 1 and assume (IH) for any path π in U such that |π| ≤ k holds
that (a) π is also valid in J , and (b) if n = RU (n0, π) then typesU (n) = X; and
(c) for any m ∈ RJ(n0, π) holds that X ⊆ typesJ(m).

Let |π| ≤ k + 1. Take any path π in U such that |π| ≤ k + 1. Let
X = ∆∗(types(n0), π) and π = π′ · p such that |π′| ≤ k. We have the following
cases:

1. Case 1. By definition of path, there is n0, . . . , nk+1 such that (ni−1, pi, ni) ∈
U for i ∈ {1 . . . , k, k+ 1} and π′ = p1 · . . . · pk. Applying IH, we have that
π′ is a path in J and there are m,mk in J such that Triple(m, pk,mk) ∈ J .
Since (n0, p0) ∈ F and pk+1 ∈ Req(X) and J is a solution, then it holds
that Triple(mk, pk+1,mk+1) ∈ J . Thus, π is a path in J .

2. Case 2. Assume n = R∗
U (n0, π

′ · p). Let X ′ = ∆∗(typesJ0
(n0)). By

definition of ∆∗, it is equivalent to X = ∆(X ′, p). Let n1 = R∗
U (n0, π

′).
By definition of R∗

U , we have RU (n1, p) = n. Applying IH, we obtain
that typesU (n1) = X ′, and by definition of path π′ · p, we have that
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Triple(n1, p, n) ∈ U . Now, we take any T ∈ X. By the statements above
and considering that p ∈ Req(X ′) and by construction of U , we have that
T (n) ∈ U , i.e. T ∈ typesU (n). A similar process is done for proving the
right direction. Thus, we conclude that typesU (n) = X.

3. Case 3. Takem′ ∈ R∗
J (n0, π

′·p). By definition of RJ , there is Triple(m, p,m′) ∈
J where m ∈ R∗

J(n0, π
′). Now, we take any T ∈ X and applying the IH,

we obtain that there is a type T ′ such that T ′(m) ∈ J . Since J is a
solution and p ∈ Req(X) and statements above, we have that T (m′) ∈ J ,
i.e. T ∈ typesJ(m′). Thus, we conclude that X ⊆ typesJ(m).

Next, we claim the following.

Lemma 38 U is simulated by every solution J for I to E .

Proof. We construct

R = {(n,m) ∈ J0 × J0 | n = m} ∪
{(n,m) | ∃(n0, p0) ∈ F.∃π = p0 ·p1 · . . . ·pk. n ∈ RU (n0, π)∧m ∈ RJ(n0, π)}.

We show that R is a simulation of U by J . Then, we take any pair (n,m) ∈ R
and p ∈ Iri. We have the following cases:(a) n ∈ J0 ∧ (n, p) ̸∈ F and (b)
(n, p) ∈ F ∨ n ∈ nodes(GS).

For case a. We know that (n,m) ∈ J0×J0 and n = m. We take n′ ∈ nodes(J0)
such that Triple(n, p, n′) ∈ J0. As a result of consider m′ = n′, we obtain
m′ ∈ nodes(J0) then m′ ∈ nodes(J). Since Triple(n, p, n′) ∈ J0, we have
Triple(m, p,m′) ∈ J0, and by (n′,m′) ∈ J0 × J0, we conclude (n′,m′) ∈ R.

For case b. We prove only when n ∈ nodes(GS) since the other is implied
by this proof. By n ∈ nodes(GS) and (n,m) ∈ R, we have that n = R∗

U (n0, π)
where π = p1 · . . . · pk and (n0, p1) ∈ F and m ∈ RJ(n0, π). Then, we take p, n′

such that Triple(n, p, n′) ∈ U , i.e. n′ ∈ R∗
U (n0, π · p) and π · p is valid in U .

By lemma 37, we have π · p is a path in J , i.e. there is a node m′ ∈ RJ (n0, π · p).
Thus, we conclude that (n′,m′) ∈ R. By lemma 38, U is a universal simulation
solution. Then the proof is relatively straightforward, and for the if part, it
suffices to use Lemma 18 and for the only if part, it suffices to notice that a
universal simulation solution is also a solution.

A.4.2 Proof of Theorem 21

Before proving this theorem, we show that U0 is indeed the minimal universal
simulation solution. We take any universal simulation solution U and create
an injective mapping from the nodes of U0 to the nodes of U . The mapping
is an identity on J0 which is contained in any solution. Now, for a node n of
GS/↞↠ we observe that there must be at least one path π from a frontier node
n0 to n, and because U is simulated in U0, there exists at least one node m in
U that is reachable from n0 by path π. Consequently, we map n to an arbitrary
such m. Now, suppose that two different nodes n1 and n2 of GS/↞↠ are mapped
to the same node m. Because U0 is a bisimulation quotient and the nodes n1
and n2 are different, they are not bisimilar. However, since U0 is simulated by
U , and vice versa, and n1 is reachable with the same path in U0 as m in U
and n1 is reachable with the same path in U0 as m in U , n1 is bisimilar to m
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and m is bisimilar to n2. By transitivity of bisimulation, we get that n1↞↠n2, a
contradiction.

Take an instance I of R. We construct a typed graph as follows U0 =
J0 ∪GS/↞↠ where GS/↞↠ is the bisimulation quotient of GS. We claim that

Lemma 39 U0 is a universal simulation solution.

Proof. The proof is similar to Lemma 38. We construct a relation as follows:

R = {(n,m) ∈ J0 × J0 | n = m} ∪ {(C,m) | ∃(n0, p0) ∈ F.∃π = p0 · p1 · . . . · pk.
∃n ∈ C. n ∈ RU (n0, π) ∧m ∈ RJ(n0, π)}.

The first case is the same as lemma 38. The second case is proven when
C ∈ nodes(GS)/↞↠. Since C ∈ nodes(GS)/↞↠ and (C,m) ∈ R, then there is
n ∈ C such that n = R∗

U (n0, π) where π = p1 · . . . · pk and (n0, p1) ∈ F
and m ∈ RJ(n0, π). Now, we take p ∈ Iri, C ′ ∈ nodes(GS)/↞↠ such that
(ηC , p, η

′
C) ∈ U0, i.e., there are n ∈ C and n′ ∈ C ′ such that (n, p, n′) ∈ GS.

From this fact, we have that n′ ∈ R∗
U0

(n0, π · p) and π · p is valid in U0. By
lemma 37, π · p is valid in J , i.e., there is a node m′ ∈ RJ(n0, π · p). As a
consequence, we conclude that (C ′,m′) ∈ R yielding that U0 is a universal
simulation solution. Next, we claim.

Lemma 40 For any universal simulation solution U it holds, |U | ≥ |U0|

Proof. We take any universal simulation solution U and create an injective
mapping from the nodes of U0 to the nodes of U . The mapping is an identity
on J0 which is contained in any universal simulation solution. Now for a node
n of GS/↞↠ we observe that there must be at least one path π from a frontier
node n0 to n, and because U is simulated in U0, there exists at least one node
m in U that is reachable from n0 by path π. Consequently, we map n to an
arbitrary such m. Now, suppose that two different nodes n1 and n2 of GS/↞↠
are mapped to the same node m. Because U0 is a bisimulation quotient and
the nodes n1 and n2 are different, they are not bisimilar. However, since U0 is
simulated by U , and vice versa, and n1 is reachable is reachable with the same
path in U0 as m in U and n1 is reachable with the same path in U0 as m in U ,
n1 is bisimilar to m and m is bisimilar to n2. By transitivity of bisimulation, we
get that n1↞↠n2, a contradiction. Finally, we claim.

Lemma 41 There is a polynomial formula such that for any n,m ∈ N, there
exists a data exchange setting E and instance I of R such that the size of U0

is asymptotic to exp(m) and it holds |E | + |I| ≤ poly(n) where poly(n) is the
polynomial formula.

Proof. Let I = {R(1)} and Σst contains only R(x) ⇒ T (f(x)) and S be as
in Figure 4 that contain cycles of length 2, 3, 5, . . . , prime numbers with one
shape type name different such as T23, T34, and T56. Let Pm stands for the m-th
prime number for m ∈ N. When constructing the universal simulation solution
U0 we can observe that |U0| ≡ 1( mod 2) and |U0| ≡ 1( mod 3) and so on.
Then, we can apply the chinese reminder theorem such that |U0| ≡ 1( mod k)
such that k = 2 ∗ 3 . . . ∗ Pm. The product of m prime numbers is approximately
2 ∗ 3 ∗ . . . ∗ Pm ≤ 22m. We compute the size of the universal simulation solution
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Figure 4: Shape Schema Graph

U using the prime number counting function, denoted by π(m) that counts the
number of primes less or equal to m ∈ N. It follows from the prime number
theorem that for all m ∈ N, π(m) ∼ m/ log(m), i.e., lim

m→∞
(π(m)× log(m)/m) = 1.

The prime number theorem guarantees that the set of all natural numbers up
to a fixed size asymptotically contains an exponential number of prime number.
By the prime number theorem, Pm is asymptotic to m ∗ logm as m→ ∞. The
sum of m prime numbers is

2 + 3 + . . .+ Pm ≤ m ∗ Pm

≤ m ∗m ∗ logm

≤ m3

Let n = |I|. Since the application of Σst is founding an homomorphism in every
tuple of I, in the worst case we can have that the size of the core pre-solution
|J0| ≤ n2. Let poly(n) = n2 + 1. Finally, we get for m,n ∈ N, the size of
|U0| ≤ n2 + 22m/3. Let exp(m) = 22m/3. Thus, U0 is asymptotic to exp(m) and
|E |+ |I| ≤ poly(n). By lemma 41, the size of U0 is bounded by a polynomial in
the size of I and an exponential function in the size of S. Since U0 exists, then
we can construct a size-minimal universal simulation solution.

A.4.3 Proof of Theorem 22

Let E be a constructive data exchange setting with fixed IRI constructors, and
Q a regular acyclic pattern. Take any instance I of R.

Following the semantics of nSPARQL [24], we find equivalences to NRE→ as
follows:

JϵKG = JselfKG, J[E]KG = Jself :: [exp]KG,
JpKG = Jnext :: aKG, JE1 + E2KG = Jexp1|exp2KG,
J□KG = JnextKG, JE1 · E2KG = Jexp1/exp2KG,

J⟨ℓ⟩KG = Jself :: aKG, JE∗KG = Jexp∗KG,

where next, self are navigational axes that nSPARQL uses and exp is an expression
in nSPARQL where the axis of expression ∈ {next, self}.

We use the polynomial decision algorithm presented in section 3.1 of [24] for
evaluating Q in I w.r.t. E . It is known in [24] that the evaluation of a query in
a graph is O(|G| · |exp|). By theorem 21, we construct a size-minimal universal
simulation solution for I to E such that its size bounded by a polynomial in
the size of I and an exponential function in the size of S. Since S is fixed and

41



because the universal simulation solution is bounded, the data complexity is
O(|U0| · |E|), which is O((n2 + 2c∗m) · |E|) where n is the size of I and m is the
number of shape types.

A.5 Proof of Proposition 23

The proof is by reduction of intersection non-emptiness of n regular expressions
E1, . . . , En over Σ. Indeed, we only need a simple schema δ(T, a) = T + for a ∈ Σ,
a single st-tgd R(x) ⇒ T (f(x)), and a instance I = {R(0)}. If we let # = f(0),
then true is the consistent answer to Q = # ·□∗ · [E−

1 · #−] · . . . · [E−
n · #−] if

and only if E1 ∩ . . . ∩ En is nonempty.
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