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Abstract—Envelope detection is one of the essential steps
for ultrasound B-mode image reconstruction. Typically, this
reconstruction is based on one dimensional (1D) radio frequency
(RF) signal demodulation. In the literature, 1D envelopes are
usually stacked to achieve two or three dimensional (2D or
3D) envelope detection, which leads to possible losses of multi-
dimensional context information. In this paper, we propose a
hypercomplex analytical signal in the form of Clifford biquater-
nion, which is called 3D Clifford analytic signal (3D CAS).
Firstly, the convolution is utilized to define the 3D CAS in
terms of biquaternion. Next, the relation between the 3D CAS
and the classical Hahn’s analytical signals in the 3D case is
illustrated with the help of Hilbert transforms, which enables a
reliable numerical implementation of 3D CAS. Then, the modulus
of 3D CAS is proposed and applied to a straightforward 3D
ultrasonic RF envelope detection by taking into consideration
the information of amplitude of all three directions of space.
Experiments were carried out on the ultrasound volume from a
phantom with a biopsy needle inserted. The experiments provide
a better visual experience from envelope images of RF volume
than the compared 1D and 2D methods. The 3D and 2D envelopes
present 36.5% and 15.2% improvement to 1D, respectively, from
the contrast to noise ratio between the needle region and the
adjacent background. From an independent public 2D liver
tumor RF sequences of 29 mice, the average structural index
similarity (SSIM) and peak signal to noise ratio (PSNR) were
improved by 53.0% and 39.0%, respectively, from 2D envelopes
comparing to 1D envelopes.

Index Terms—3D Clifford analytic signal, Clifford biquater-
nion, hypercomplex analytical signal, Ultrasound imaging

I. INTRODUCTION

It is well known that the analytic signal (AS) is able to split
a signal into local phase and local amplitude [1]. Different
definitions of the complex and hypercomplex analytical signal
are proposed for applications of signal and image processing
[2], [3]. In the medical image processing domain, the local
phase is also widely used in, for example, 2D and 3D ultra-
sound image registration [4], motion estimation [5], etc. The
envelope of the ultrasonic RF signal can be computed from the

instantaneous amplitude of the AS. Traditionally in 1D case,
only one type of AS can be defined, which is to define the input
ultrasonic RF signal and its Hilbert transform are defined as
the real part and imaginary part, respectively, in a 1D AS [6].
In the 2D case, several definitions of AS are proposed and
they provide their own instantaneous amplitudes differently
for 2D envelope detection. For example, two instantaneous
amplitudes should be considered in Hahn’s 2D single-quadrant
complex signal [3] for a full envelope reconstruction. Three
definitions of 2D quaternion signal (QS) can be obtained based
on the two-side, left-side, and right-side quaternion Fourier
transformation (QFT), respectively [7]. They lead to three
ways of instantaneous amplitude calculation. Moreover, 2D
monogenic signal is also adopted for 2D envelope detection
[6]. In the 3D case, several state-of-the-art work adopted 1D
RF scan line in the envelope detection step, without taking care
of the spatial relation between 1D scan lines in the second and
third dimension [8], [9].

Generally, without taking into account all the 3D spatial
relations of the signal, both of the above 1D or 2D AS-
based methods may bring potential loss of information during
the full 3D envelope detection processing. Moreover, it is
difficult to find a uniform manner for multi-dimensional signal
envelope detection in 1D, 2D, and 3D cases. In this paper, we
propose a 3D CAS within the Clifford algebra framework. The
convolution form is utilized for the signal definition instead
of using the Fourier transformation form in this work. The
advantage of the definition in convolution form is that allows
us to extend the definition from 1D and 2D to 3D case with
a unique form.

Furthermore, we use the convolution form to represent
Hahn’s 2D single-quadrant complex signal in a 3D case and
deduced that it has a linear relation with the proposed 3D
CAS based on the Hilbert transform. Finally, the modulus of
the proposed 3D CAS is presented. Experiments were carried
out on the private ultrasound volume data from a phantom with



a biopsy needle inserted. Moreover, an independent public
2D liver tumor RF sequences of 29 mice were used for
evaluation [10]. Advantages of 3D CAS were shown for RF
ultrasound volume processing from these experiments.

II. 3D HAHN SINGLE-ORTHANT AS

The theory of complex signals was extended to nD by Hahn
et al. [3] in 2011. In this paper, we would call the 3D Hahn
single-orthant AS as 3D Hahn AS for short. The Hermitian
symmetry, which is one property of 3D Fourier transform in
3D case, is applied to calculate the 3D Hahn AS. As shown in
Fig. 1, the 3D frequency space has eight (23) orthants. Based
on the Hermitian symmetry of the Fourier transformation, that
the input signal can be recovered from any of its half plane
spectrum, the 3D real signal can be represented by four (23/2)
analytic signals. In the following, without loss of generality,
we work on the half space spectra with u > 0 to calculate the
four single-orthant analytic signals, that is to say the orthants
with the labels I, III, V, and VII in Fig. 1. By the definition in
[3], we can obtain four Hahn AS (ψ1, ψ3, ψ5, and ψ7) from
the orthants I, III, V, and VII, respectively, from a 3D real
signal f(x, y, z). Hence, we have:

ψn(x, y, z) = f(x, y, z) ? ? ?

{[
δ(x) + susvsw

i

πx

]
(1)[
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i

πy

] [
δ(z) + susvsw

i

πz

]}
,

where n = 1, 3, 5, 7, ? ? ? is the 3D convolution. su, sv ,
and sw are the sign function for axes u, v, and w in Fig.
1, respectively. When developing ψ1(x, y, z), we have:

ψ1(x, y, z) =

f(x, y, z) ? ? ?
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}
= (f −Hxy{f} −Hxz{f} −Hyz{f}) + i (Hx{f}
+Hy{f}+Hz{f} −H{f}) = a1 cosϕ1 + ia1 sinϕ1, (2)

where H{f} is the total Hilbert transform of f(x, y, z),
and Hx{f}, Hy{f}, Hz{f} are the partial Hilbert transforms
for one direction x,y and z of f(x, y, z), separately, and
Hxy{f}, Hyz{f}, Hxz{f} are the partial Hilbert transforms
for two directions (x, y), (y, z), and (x, z) of f(x, y, z), sepa-
rately. a1 and ϕ1 are the modulus and the phase, respectively,
of the polar form of ψ1. Similarly, the 3D Hahn AS from
the third, fifth and seventh orthant of Fourier spectra are,
respectively:

ψ3(x, y, z) = (f +Hxy{f} −Hxz{f}+Hyz{f}) + i (Hx{f}
−Hy{f}+Hz{f}+H{f}) = a3 cosϕ3 + ia3 sinϕ3, (3)
ψ5(x, y, z) = (f −Hxy{f}+Hxz{f}+Hyz{f}) + i (Hx{f}
+Hy{f} −Hz{f}+H{f}) = a5 cosϕ5 + ia5 sinϕ5, (4)
ψ7(x, y, z) = (f +Hxy{f}+Hxz{f} −Hyz{f}) + i (Hx{f}
−Hy{f} −Hz{f} −H{f}) = a7 cosϕ7 + ia7 sinϕ7. (5)

Fig. 1. The eight orthants frequency space with a label number of each
orthant. u, v, w are the spatial frequencies.

Equations (2)-(5) illustrate that the four 3D Hahn ASs can be
represented by the 3D Hilbert transforms of the input signal.
Further, the 3D Hilbert transforms can be recovered by the
phases and modulus of its 3D Hahn ASs. These properties are
adopted in the next section.

III. 3D CLIFFORD ANALYTIC SIGNAL

In [3], it is proved that the 2D hypercomplex quaternion
signal can be recovered by classical complex 2D Hahn ASs.
Inspired by this idea, we propose the 3D CAS by taking
the framework of 3D Clifford algebra (with three generators).
Then we deduce a relation between 3D hypercomplex Hahn
AS signal and the 3D complex signal, which help to define
and implement the modulus of the 3D CAS.

A. Definition of 3D CAS in Clifford biquaternion form

In order to extend the notion of AS to the 3D case
with the Clifford algebra, the Clifford biquaternions could be
considered [11], which have three generators as e1, e2, e3. The
full algebra contains eight elements:[

1, i = e2e3, j = e3e1, k = e1e2,
ε = −e1e2e3, εi = e1, εj = e2, εk = e3

]
, (6)

with ε2 = 1, e21 = e22 = e23 = −1. For a 3D input real signal
f(x, y, z), the 3D CAS ψcas(x, y, z) can be defined as below
in Clifford biquaternion form:

ψcas(x, y, z) = (7)

f(x, y, z) ? ? ?

{[
δ(x) +

e1
πx

] [
δ(y) +

e2
πy

] [
δ(z) +

e3
πz

]}
.

From (6) and (7), one obtains:

ψcas(x, y, z) = f + iHyz{f}+ j(−Hxz{f}) + kHxy{f}
+ ε(−H{f}) + εiHx{f}+ εjHy{f}+ εkHz{f}, (8)

where e1, e2, e3 are the imaginary units with the relation in
(6). All the eight elements constitute a biquaternion.



B. Expression of the 3D CAS in terms of 3D Hahn ASs

From (8) and section II, it is found that all the elements in
both of the 3D Hahn AS and 3D CAS can be represented
by the total and partial Hilbert Transform of the original
real signal, except that their imaginary units are different.
Therefore, to substitute the 3D Hahn AS polar form results
from Eqs. (2)-(5) to 3D CAS ψcas in (8), we obtain the 3D
CAS that represented by the modulus and phases of 3D Hahn
single-quadrant AS as follows:

ψcas = (9)
1

4
[(a1 cosϕ1 + a3 cosϕ3 + a5 cosϕ5 + a7 cosϕ7)

+ i (−a1 cosϕ1 + a3 cosϕ3 + a5 cosϕ5 − a7 cosϕ7)

+ j (a1 cosϕ1 + a3 cosϕ3 − a5 cosϕ5 − a7 cosϕ7)

+ k (−a1 cosϕ1 + a3 cosϕ3 − a5 cosϕ5 + a7 cosϕ7)

+ ε (a1 sinϕ1 − a3 sinϕ3 − a5 sinϕ5 + a7 sinϕ7)

+ εi (a1 sinϕ1 + a3 sinϕ3 + a5 sinϕ5 + a7 sinϕ7)

+ εj (a1 sinϕ1 − a3 sinϕ3 + a5 sinϕ5 − a7 sinϕ7)

+ εk (a1 sinϕ1 + a3 sinϕ3 − a5 sinϕ5 − a7 sinϕ7)].

Using the biquaternion product and the biquaternion
conjugate defined in [11], one obtains the property:
ψcas(ψcas)c =

1
4 [a

2
1+a

2
3+a

2
5+a

2
7]+ε

1
2 [a1a3 sin (ϕ1 − ϕ3)−

a5a7 sin (ϕ5 − ϕ7)] where (ψcas)c is the biquaternion con-
jugate of ψcas. Let ψcas = |ψcas|eεφa, where |ψcas| is the
modulus for ψcas, a is the unit biquaternion. One obtains:
ψcas(ψcas)c = |ψcas|2e2εφ = |ψcas|2[ch(2φ) + εsh(2φ)],
with ch(·) and sh(·) the hyperbolic cosine and sine function,
respectively. Hence, we can define ψcas(ψcas)c = A + εB,
with A = |ψcas|2ch(2φ), B = |ψcas|2sh(2φ), where A and B
is the scalar part and pseudo-scalar part of the biquaternion
ψcas(ψcas)c. Then, A2−B2 = |ψcas|4[ch(2φ)2− sh(2φ)2] =
|ψcas|4. Therefore, we have: |ψcas| = 4

√
A2 −B2. As the

result, the modulus |ψcas| of ψcas can be obtained as below:

|ψcas| =

{[
a21 + a23 + a25 + a27

4

]2

−
[
a1a3 sin (ϕ1 − ϕ3)− a5a7 sin (ϕ5 − ϕ7)

2

]2} 1
4

, (10)

which can be employed to calculate the modulus of a 3D
input signal as an application. In addition, |ψcas| is a general
modulus form for 1D Hahn AS and 2D QS. For a 1D input
signal, a1 = a3 = a5 = a7, and ϕ1 = ϕ3 = ϕ5 = ϕ7 ,
respectively, in (10), then |ψcas| = a1. For a 2D input signal,
a1 = a5, a3 = a7, and ϕ1 = ϕ5, ϕ3 = ϕ7, respectively, in

(10), then |ψcas| =
√

a21+a
2
3

2 . They are equivalent to the work
in [3].

IV. EXPERIMENTS: APPLICATION OF 3D ENVELOPE
DETECTION BY 3D CAS

The 3D CAS of the RF ultrasound volume is constructed
with the ultrasound imaging platform at CREATIS Laboratory.

(a)

y: axial  

3D ultrasound probe 

Biopsy needle 

Slice 15 

Slice 1 

Slice 33 

(b)

Fig. 2. (a) RF ultrasound volume acquisition platform with a biopsy needle in
a homemade agar ultrasound phantom. (b) An illustration of the experimental
platform.

The acquisition of the volume was carried out using an Ul-
trasonix MDP scanner and an ultrasound linear probe 4D mo-
torized abdominal transducer: 4DC7-3/40 (Ultrasonix) with a
40-MHz sampling frequency. Then the modulus |ψcas(x, y, z)|
of (10) of the 3D CAS is used as an envelope of the ultrasound
volume. As shown in Fig. 2(a), a biopsy needle was inserted
into a homemade agar ultrasound phantom.

The acquired data was 33 slices with a field of view
was 45.6◦. Figure 2(b) illustrates the numerical calculation
that corresponds to the acquisition platform of the ultrasound
volume data in Fig. 2(a). The biopsy needle is inserted into a
plane around the middle of the 3D ultrasound volume around
z-direction slice 15. We compared the 3D CAS envelope
results with the 1D Hahn AS and 2D classical QS envelope
detection results as showed in Fig. 3. To compare the results
under the same reference, the gray value of the slice images
was normalized between the minimum and maximum values
of all three types of data for all the envelope slices. One slice
of the total 33 slices along the elevation direction is presented.
On slice 15 along the z-direction, the profile on the envelope
image of the 3D CAS shows the biopsy needle structure more
clearly. The vertical profiles of the envelope from the 1D,
2D, and 3D methods are presented in Fig. 3(d). Moreover,
the parallelograms in Fig. 3(a)-(c) indicate the position of
the biopsy needle. In the parallelogram region, the profiles
along the direction of the biopsy needle axis are presented in
Fig. 3(e). From these profiles, the 3D CAS envelope result
shows a contrast optimization compared with 1D and 2D
envelope results. Generally, the 3D and 2D envelopes present
36.5% and 15.2% improvement to 1D, respectively, from the
contrast to noise ratio between the needle region and the
adjacent background. In addition, from an independent public
2D liver tumor RF sequences of 29 mice [10]. An example
of this dataset (case “Cage04 B loc”) was shown in Fig. 4.
All the envelopes were normalized under the same scale.
According to the ground truth tumor region indicated in red
color in Fig. 4(d), better visual experiences could be obtained
from the edge of the tumor region in 2D (Fig. 4(b)) and



Fig. 3. RF ultrasound filtered envelope comparison of a slice in elevation direction: (a) 1D Hahn envelope; (b) 2D
QS envelope (based on two-side QFT); (c) 3D CAS; (d) three vertical profiles of 1D, 2D, and 3D envelope in the
same position; (e) three profiles along the biopsy needle axis of 1D, 2D, and 3D envelope at the same position.

(a) (b)

(c) (d)

Fig. 4. Reconstructed B-mode image
from (a) 1D, (b) 2D, and (c) 3D en-
velopes with (d) ground truth tumor
region (in red) on 1D envelope.

3D (Fig. 4(c)) envelopes than the one in the 1D envelope
(Fig. 4(a)). In addition, the 2D and 3D envelopes show a lower
amplitude of noise from the background region in Fig. 4(b) and
(c) than the 1D envelope in Fig. 4(a). From the whole dataset
of 29 mice, the average SSIM and PSNR of reconstructed B-
mode image were improved by 53.0% and 39.0% from 2D
envelopes comparing to 1D envelopes, respectively.

V. CONCLUSION

The 3D CAS is proposed in this work firstly, which is
defined based on an extension of convolution form of 1D
AS definition in the framework of Clifford algebra. Next,
the relation between the 3D CAS and four single-orthant
3D Hahn ASs is discussed. Then, a straightforward relation
was established between them by the total and partial Hilbert
transform of the input signal. The 3D CAS modulus is defined
and applied for a 3D envelope detection of a RF ultrasound
volume. The results demonstrate that the 3D CAS has ad-
vantages for RF ultrasound volume processing. We calculated
the 1D, 2D, and 3D envelopes for a RF ultrasound volume
that was acquired from an ultrasound phantom with a biopsy
needle inserted. Comparing the three types of envelope results,
the 3D CAS envelope gives a more precise local feature image
of the biopsy needle. This potentially improves the quality for
applications such as object detection, 3D segmentation and
registration, etc.
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