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Mechanisms and Active Control of Jet-Induced

Noise

Andreas Babucke, Bruno Spagnoli, Christophe Airiau, Markus Kloker, and Ulrich

Rist

Abstract Fundamental mechanisms of jet noise are investigated by means of direct

numerical simulation. In the mixing layer, subharmonics of the respective vortex

pairing are found to be responsible for the main part of the generated noise which is

directed in downstream direction. By modifying the phase shift between introduced

disturbances it is possible to diminish or enhance relevant portions of the emitted

sound. Optimal control has been applied successfully to a plane mixing layer. In

the far Þeld, the mean noise level could be reduced. Depending on the measurement

line, some distributed control or anti-noise is generated by the control. A more real-

istic conÞguration is achieved by adding a splitter plate representing the nozzle end.

Rectangular serrations lead to a breakdown of the large coherent spanwise vortical

structures and thus provide a noise reduction of 9dB.

1 Introduction

Noise reduction is of great interest for a variety of technical applications. This is

especially the case in aviation. Since most airports are located in highly populated

areas, the reduction of aircraft noise can improve the quality of life for many people.

Especially during take-off, jet noise is the largest aeroacoustic source of an aircraft.

Recent reductions of jet noise are mainly due to an increased bypass ratio in the

turbojet engine. Currently a geometric variation of the nozzle end is considered,

known as chevron-nozzle. Its noise reduction is often explained by an increased
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mixing behind the trailing edge of the nozzle. However the underlying physical

mechanisms are not yet fully understood.

Within the subproject 5Mechanisms and Active Control of Jet-induced Noise, the

mechanisms of noise generation and its reduction are investigated using direct nu-

merical simulations (DNS). Such aeroacoustic simulations face several difÞculties

due to largely different scales of ßow Þeld and acoustics. The hydrodynamic ßuctu-

ations are small-scale structures containing high energy compared to the acoustics

with relatively large wavelengths and small amplitudes. Therefore, high resolution is

required to compute the noise sources accurately. On the other hand a large compu-

tational domain is necessary to obtain the relevant portions of the acoustic far-Þeld.

Due to the small amplitudes of the emitted noise, boundary conditions have to be

chosen carefully, in order not to spoil the acoustic Þeld with reßections.

Since computational resources are limited, one possibility is the simulation of

low-Reynolds-number jets, e.g. done by Freund [12]. Our focus is set on the mix-

ing layer behind the nozzle end which is responsible for the most anoying high-

frequency noise. As sketched in Þgure 1, mixing layers occur between the primary

and the bypass stream and between the bypass stream and the freestream. Having

high Reynolds-number jets at an aircraft’s engine, the large diameter allows to ne-

glect curvature. This approach is widely used [6, 9] for large-eddy or direct numeri-

cal simulations, where an S-shaped velocity proÞle is prescribed at the inßow. This

ßow Þeld allows to investigate the fundamental mechanisms of noise generation and

its control. Beyond this, the nozzle end can be included in the simulation, leading

to a combination of wake and mixing layer. This provides a more realistic conÞgu-

ration and allows to simulate wall-mounted actuators. In this context, the engrailed

nozzle end can be interpreted as a Þrst passive ’actuator’.

Fig. 1 Sketch of a typical bypass jet engine with the occurring mixing layers behind the nozzles.

At the beginning of the project, a high-order, low-dispersion/low-dissipation nu-

merical scheme for the solution of the unsteady compressible Navier-Stokes equa-

tions was available [11]. However, more complex conÞgurations and parallelization

requirements lead to the development of a new DNS code. The code is embedded

in a simulation framework including initial conditions, linear stability theory (LST)

and postprocessing based on EAS3 [10]. The numerical scheme has been veriÞed

for aeroacoustic simulations by comparison with the benchmark problem [9]. An al-

ternative method of handling the multiscale problem is the coupling with an acoustic



solver. Its principle functionality could be shown in cooperation with subproject 3

[2].

IMFT has gained experience in the application of optimal control theory, see e.g.

[1, 19]. The application of the adjoint equations has been extended to compressible

ßows [17, 18]. The open-loop control with DNS is the only approach which allows

to deal with some one million of unknowns for each time step. The main drawback

of the open-looped control is a poor robustness due to the absence of a feedback

loop. With the real ßow conditions being different from the ones used to design the

optimal control, at least the control law can be inefÞcient or may even increase the

noise emission. However, as demonstrated in [18], the sensitivity analysis which

can be seen as an initial step of an optimal control approach can propose some

essential information about the optimality in types and in the positions of sensors

and actuators for a feedback control system. With some few runs it is then possible

to have a better idea of the capacity of controlling the physics of the ßow.

The numerical methods used for DNS and optimal control are addressed in sec-

tions 2.1 and 2.2, respectively. The fundamental mechanisms of noise generation in

a two-dimensional mixing layer are discussed in 3. Section 4 describes the optimal

control applied to such a ßow Þeld. The inßuence of a serrated nozzle end is treated

in section 5 and the emitted sound is compared to the case with a straight trailing

edge.

2 Numerical Method

2.1 Direct Numerical Simulation

Direct numerical simulations are performed by the DNS-code NS3D [5] solving the

unsteady three-dimensional compressible Navier-Stokes equations on multiple do-

mains. The purpose of domain decomposition is not only to increase computational

performance. The combination with grid transformation and the concept of modular

boundary conditions allows to compute a wide range of problems. Computation is

done in non-dimensional quantities: velocities are normalized by the reference ve-

locity ũ!, and all other quantities by their inßow values, marked with the subscript

!. Length scales are made dimensionless with a reference length L̃ and the time t

with L̃/ũ!, where the tilde denotes dimensional values. Temperature dependence of

viscosity " is modelled using the Sutherland law:

"̃(T ) = "̃(T̃!) ·T 3/2 · 1+Ts

T +Ts
, (1)

where Ts = 110.4K/T̃! and "̃(T̃! = 280K) = 1.735 · 10−5kg/(ms). Thermal con-

ductivity # is obtained by assuming a constant Prandtl number Pr = cp"/# . The

most characteristic parameters describing a compressible viscous ßow-Þeld are the

Mach number Ma = u!/c! and the Reynolds number Re = $!u!L/"!. We use the



conservative formulation of the Navier-Stokes equations which results in the solu-

tion vector Q = [$,$u,$v,$w,E] containing the density, the three mass ßuxes and

the total energy per volume:

E = $ · cv ·T +
$

2
·
(

u2 + v2 +w2
)

. (2)

The simulation is carried out in a rectangular domain with x, y, z being the co-

ordinates in streamwise, normal and spanwise direction, respectively. The ßow is

assumed to be periodic in spanwise direction. Thus a spectral discretization is used

in z-direction:

f (x,y,z, t) =
K

%
k=−K

F̂k(x,y, t) · ei(k&0z) . (3)

f denotes any ßow variable, F̂k its complex Fourier coefÞcient, K the number of

spanwise modes and i =
√
−1. The fundamental spanwise wavenumber &0 is given

by the fundamental wavelength 'z,0 representing the width of the integration domain

by &0 = 2(/'z,0.
Spanwise derivatives are computed by transforming the respective variable into

Fourier space, multiplying its spectral components with their wavenumbers (i ·k ·&0)
for the Þrst derivatives or square of their wavenumbers (−k2 · &2

0 ) for the second

derivatives and transforming them back into physical space. Due to the non-linear

terms in the Navier-Stokes equations, higher harmonic spectral modes are generated

at each time step. To suppress aliasing, only 2/3 of the maximum number of modes

for a speciÞc z-resolution are used [7]. If a two-dimensional baseßow is used and

introduced disturbances of u, v, $ , T , p are symmetric and disturbances of w are

antisymmetric, ßow variables are symmetric/antisymmetric with respect to z = 0.

Therefore only half the number of points in spanwise direction are needed (0 ≤ z≤
'z/2), or equivalently, the F̂ks are either purely real or imaginary.

The spatial discretization in streamwise (x) and normal (y) direction is done

by 6th-order compact Þnite differences. The tridiagonal equation systems result-

ing from the compact Þnite differences are solved using the Thomas algorithm. To

reduce the aliasing error, alternating up- and downwind-biased Þnite differences are

used for convective terms as proposed by Kloker [15]. The second derivatives are

evaluated directly which distinctly better resolves the second derivatives compared

to applying the Þrst derivative twice, see [4]. Additionally, the numerical scheme is

more robust since the second derivative does not vanish for the least resolved wave.

Arbitrary grid transformation in the x-y plane is provided by mapping the physical

grid on an equidistant computational ) -* grid:

x = x() ,*) , y= y() ,*) . (4)

Time integration of the Navier-Stokes equations is done using the classical 4th-

order Runge-Kutta scheme as described in [15]. At each time step and each interme-

diate level the biasing of the Þnite differences for the convective terms is changed.



At the borders of each domain where no neighbor exists, speciÞc boundary con-

ditions can be selected. For the current investigation, we use a one-dimensional char-

acteristic boundary condition [13] at the freestream. This allows straight outward-

propagating acoustic waves to leave the domain. An additional damping zone drives

the ßow variables smoothly towards to a steady state solution, avoiding reßections

due to oblique waves. Having a subsonic ßow, we also use a characteristic boundary

condition at the inßow. Additionally amplitude and phase distributions from linear

stability theory can be prescribed to introduce deÞned disturbances. Their phase

shift is deÞned with respect to the maximum amplitude of the streamwise velocity.

The disturbances due to the eigenfunctions are added after the characteristic bound-

ary condition is applied. Thus they are less affected by the characteristic treatment.

The outßow is the most crucial part as one has to avoid large structures passing

the boundary and contaminating the acoustic Þeld. Therefore, a combination of grid

stretching and spatial low-pass Þltering is applied in the sponge region. Disturbances

become increasingly badly resolved as they propagate through the sponge region. As

the strength of the spatial Þlter depends on the step size in x-direction, perturbations

are smoothly dissipated before they reach the outßow boundary. This procedure

shows very low reßections and has been already applied by Colonius et al. [8].

For the splitter plate representing the nozzle end, an isothermal boundary con-

dition is used with the wall temperature being Þxed to its value from the initial

condition. The pressure is obtained by extrapolation from the interior gridpoints.

An extension of the wall boundary condition is the modiÞed trailing edge, where

the end of the splitter plate is no more constant along the spanwise direction. As we

have grid transformation only in the x-y plane and not in z-direction, the spanwise

dependency of the trailing edge is achieved by modifying the connectivity of the af-

fected domains. Instead of regularly prescribing the wall boundary condition along

the whole border of the respective subdomain, we can also deÞne a region with-

out wall, now. At these gridpoints, the spatial derivatives in normal direction are

recomputed, now using also values from the domain on the other side of the split-

ter plate. The spanwise derivatives are computed in the same manner as inside the

ßowÞeld with the Fourier-transformation being applied along the whole spanwise

extent of the domain. Inside the notch the full equations with the newly computed

y-derivateives are solved. The concept of modular boundary conditions, chosen be-

cause of ßexibility and maintainability, requires explicit boundary conditions and

by that a non-compact Þnite-difference scheme, here. Therefore explicit Þnite dif-

ferences have been developed with properties similar to the compact scheme used

in the rest of the domain. The numerical properties of the chosen 8th-order scheme

are compared with standard explicit 6th-order Þnite differences and the compact

scheme of 6th order, regularly used in the ßowÞeld. For the Þrst derivative, the real

and imaginary parts of the modiÞed wavenumber k∗mod are shown in Þgure 2: the

increase from order six to eight does not fully reach the good dispersion relation of

the 6th-order compact scheme but at least increases the maximum of k∗mod by 10%

compared with an ad hoc explicit 6th-order implementation. The imaginary part of

the modiÞed wavenumber, responsible for dissipation, shows similar characteristics

as the compact scheme with the same maximum as for the rest of the domain.
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For the second derivative, shown by the modiÞed wavenumber square (k∗2)mod
in Þgure 3, the increase of its order improves the properties of the explicit Þnite

difference towards the compact scheme.

2.2 Optimal Control

The uncontrolled mixing layer is computed with DNS. Some typical iso-vorticity

lines at one time instance are shown in Þgure 4. The real computational domain

(, ) is much larger than what is shown in the Þgure. A line (,2) located quite far

from the mixing layer instabilities deÞnes the location where the noise emission is

targeted for reduction. It is called the measurement domain, usually where sensors

could be positioned. Two control domains, a smaller one (,11) and a larger one

(,10) are Þxed at the birth of the mixing layer. The measurement and control do-

mains have been determined from the previous sensitivity analysis [18, 17]. There

it has been demonstrated that the noise emission, far from the mixing layer, is very

sensitive to any perturbation at the origin of the mixing layer. To decrease the noise

emission and for the well-posedness of the control problem we target to minimize

the following objective functional:

J(f) =

∫ T

0

∫

,2

(p(x, t)− p(x))2dxdt+ ℓ2
0

∫ T

0

∫

,1n

fTBTBfdxdt (5)
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where p(x) denotes the temporal mean value of the pressure at the location x in the

uncontrolled case. The weighted matrix B allows to test different types of forcing

(control) by keeping only the desired components of the control vector f. The ℓ0

coefÞcient gives a bound to the control cost. Setting ℓ0 = 0 leads to Þnd the most

effective control without taking into account the energy cost which could theoreti-

cally go to inÞnity. Several numerical experiments have shown that for our case, the

cost of the energy is always negligible. Hence we will set ℓ0 = 0 in the following

for simplicity.

The minimum of the functional is obtained from an iterative procedure using a

conjugate gradient algorithm. The gradient of the cost functional with respect to the

control variable is calculated by a small perturbation of an associated Lagrangian

functional including all the constrains: the goal, the control cost, the main Navier-

Stokes equations and the boundary conditions. It can be shown [17, 19] that the

Lagrange coefÞcient associated to the governing equations is the adjoint vector r

of the state variables (density, momentum vector and pressure) called vector q =
($,mx,my, p)). The adjoint variables are solutions of the adjoint compressible two-

dimensional Navier-Stokes equations [17]:

F
∗(q)r = (p(x, t)− p(x))2- (,2), (6)

with r = (p∗,m∗
x ,m

∗
y ,$

∗) as the adjoint vector and - (,2) a function equal to 1 over

,2 and equal to 0 elsewhere. The source term comes from the derivative of the

Lagrangian functional (eq. 5) with respect to the direct state. Finally the gradient of

the Lagrangian functional with respect to the control is given by

.Jf = ℓ2
0Bf+ r. (7)



When the control iterative algorithm is converged, this gradient is equal to zero and

the solution provides the optimal control f from the adjoint state.

3 Fundamentals of Mixing-Layer Noise

3.1 Flow Parameters

The fundamental mechanisms of jet noise are investigated by considering a two-

dimensional mixing layer where an S-shaped velocity proÞle is prescribed at the

inßow. The ßow parameters have been closely matched to the case of Colonius et al.

[9]. This allows to validate the numerical scheme for aeroacoustic simulations. The

Mach numbers of the upper and lower stream areMaI = 0.5 andMaII = 0.25, respec-

tively. As both free stream temperatures are equal (T̃I = T̃II = 280K), the ratio of the

streamwise velocities is uI/uII = 2. The Reynolds number Re= $IuI- (x0)/" = 500

is based on the vorticity thickness at the inßow which is used to normalize length

scales. A cartesian grid is used with 2500x850 grid points in x- and y-direction. In

streamwise direction, the grid is uniform with spacing +x = 0.157 up to the sponge

region where the grid is highly stretched. In normal direction, the grid is contin-

uously stretched with the smallest stepsize +y= 0.15 in the middle of the mixing

layer and the largest spacing +y= 1.06 at the upper and lower boundaries. In case

of the three-dimensional simulation, the z-direction is discretized with 9 grid points

and +z = 0.491. This is equivalent to 10 spanwise modes (dealiased) with &0 = 0.8
in the symmetric case.

The initial condition, obtained from the similarity solution of the boundary-layer

equations, is used for linear stability theory. The most ampliÞed disturbance is found

for the fundamental frequency /0 = 0.6293 at the inßow. The eigenfunctions from

linear stability theory are used to introduce deÞned disturbances at the inßow. The

ßow is forced with the fundamental frequency and its Þrst three subharmonics (1/2,

1/4 and 1/8) with the maximum of |û|= 0.001 for all disturbances. The phase shift

is +0 = −0.028 for the Þrst, +0 = 0.141 for the second subharmonic and +0 =
0.391 for the third subharmonic. In an additional simulation the phase shift of /0/4

is altered to +0 = 3.141. Note that it is not clear how the phase shift is speciÞed in

[9] since the phase distribution varies along the normal direction. Here it is deÞned

with respect to the maximum of |û| such that0 = 0 at the location of |û|max in case

of no phase shift. An additional steady disturbance (0,1) with amplitude |û| = 0.01

is introduced in the three-dimensional simulation with +0 = 3.141. The modes are

denoted as (h,k), with h and k being the multiple of the fundamental frequency /0

and the spanwise wavenumber &0, respectively.



3.2 Two-Dimensional Simulation

The spanwise vorticity is shown in Þgure 6 being similar to the reference solution of

Colonius et al. [9]. Since eigenfunctions from viscous linear stability theory instead

of inviscid ones as used in [9] are used here, disturbances are introduced slightly

more efÞcient. Accordingly the rollup of the mixing layer and the vortex pairing

occur a bit earlier.
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Fig. 6 Snapshot of the spanwise vorticity for +0(/0/4) = 0.141 after 76 fundamental periods.

Contour levels range from −0.26 to 0.02 with an increment of 0.04. The reference solution of

Colonius et al. [9] is shown above.

The maximum amplitudes of the normal velocity v along the y-direction and

the corresponding ampliÞcation rates are shown in Þgures 7 and 8, respectively.

In the initial region of the integration domain the amplitudes grow exponentially.

Despite the spatial ampliÞcation rate (−1i) is a very sensitive value, its values cor-

respond well to those of linear stability theory. Further downstream, modes (1,0),
(1/2,0), (1/4,0) saturate at positions x = 90, x = 120 and x = 240, respectively.

These streamwise locations correlate well with the positions where the respective

vortices are fully developed (Þgure 6). At the location where (1/2,0) and (1/4,0)
saturate (x = 120 and x = 240), the growth of the respective subharmonics (1/4,0)
and (1/8,0) is interrupted before their amplitude increases again.

The alternative phase shift +0(/0/4) = 3.141 does not affect the initial growth

of the amplitudes as shown in Þgure 9. Yet the development of the second sub-

harmonic differs from x ≈ 120 onwards. There, its phase is adjusted to the one

of the Þrst subharmonic. This can be seen in Þgure 10 showing the phase speed

cph = / · (20/2x)−1 of the Þrst two subharmonics at y = 0. Phase adjustment is

found for both cases, but for +0(/0/4) = 3.141, the phase speed varies more and

subharmonic resonance of mode (1/4,0) is achieved with a reduced amplitude com-
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pared to +0(/0/4) = 0.141. Accordingly, its saturation is further downstream and

faster resonance of the third subharmonic is provided. This leads to an increased

amplitude of (1/8,0) by a factor of almost four downstream of x≥ 270.

The acoustic Þeld is visualized by the dilatation which is the divergence of the

velocity Þeld . · u. For both 2-d simulations, the sound with frequency /0/2 is

emitted from x ≈ 120, being the position of the Þrst vortex pairing. Both, intensity

and directivity show good agreement with the reference solution of Colonius et

al. [9]. In case of +0(/0/4) = 0.141, the sound with frequency /0/4 is emitted
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Fig. 11 Emitted sound with frequency

/0/4, visualized by the real part of the

Fourier-transformed dilatation with con-

tour levels ranging from −2 · 10−6 to
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Fig. 12 Real part of the Fourier-

transformed dilatation Þeld with fre-

quency /0/4 for +0(/0/4) = 3.141.

Contour levels are the same as in Þgure

11.

mainly perpendicular to the ßow direction as shown in Þgure 11. With the alternative

disturbance of mode (1/4,0), the emitted sound is more intense and is directed

mainly in downstream direction. The latter case corresponds to the results of [9]

and [4].

3.3 Three-Dimensional Simulation

The quite high amplitude of the introduced mode (0,1) allows two-dimensional

disturbances to interact with, generating unsteady oblique disturbances. The initial

growth of the two-dimensional disturbances is similar up to the saturation of the

Þrst subharmonic as shown in Þgure 13. Non-linear interaction of the steady distur-

bance (0,1) with two-dimensional instability waves rapidly genrates oblique modes,

shown in Þgure 14. At x ≈ 130, disturbances (1,1) and (1/2,1) reach a level of

|v̂| ≈ 5 ·10−5. The increased amplitudes of the oblique modes come up with a large

amplitude of the steady mode (0,1). This inhibits the growth of the second subhar-

monic (1/4,0)), known from the corresponding two-dimensional case. As shown

by the phase speed given in Þgure 15, the phase of the second subharmonic (1/4,0)
is not able to adapt to the dominant disturbance and its resonance is prevented.

For this case, the spanwise vorticity at the symmetry plane z = 0 is shown in

Þgure 16. The initial region is similar to the two-dimensional simulations: the mix-
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y= 0.

ing layer rolls up into vortices and the Þrst pairing takes place at x ≈ 120. Further

downstream three-dimensional effects increase and the vortical structures differ. The

vortices break up into small-scale structures for x> 150. Compared to Þgure 6, large

scales almost disappear.

The emitted sound with frequency of the second subharmonic is shown in Þgure

17. Compared to the corresponding two-dimensional case of Þgure 12, a sound re-

duction by roughly two is observed in the lower half of the domain. An additional

source is located at x ≈ 130. Thus, the emitted sound in upstream direction is due

to the suppressed resonance of mode (1/4,0). The acoustic source at x ≈ 220 is

not tonal but emits broad-band noise. This is shown exemplarily for the undisturbed

frequency 3/4 ·/0 in Þgure 18.
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The above results show that subharmonics play an important role in the mecha-

nism of sound generation. A varied phase shift can alter the process of subharmonic

resonance and thus the major part of the generated noise. The resonance of two-

dimensional modes can be suppressed by a spanwise moculation of the ßow.



4 Optimal Control of Mixing-Layer Noise

4.1 Computational Aspects

A non uniform mesh with 601×501 nodes has been designed to improve accuracy

in the mixing layer. The grid is uniform in the x-direction up to a given value xp
which corresponds to the size of the physical box. Then the streamwise step size

+x is increases successively up to the outßow boundary of the computational do-

main where the step size is +x f inal ≈ 300+x0. This is a simple way for Þltering

undesired upstream convected structures, coming from possible numerical wave re-

ßection from the outlet boundary.

The boundary conditions in the north, south and east frontier of the computational

domain are given from the characteristic theory [16]. They allow the exit of acoustic

and entropy waves, limiting reßections.

At the west frontier, the inlet of the domain, the ßow is excited by its highest

unstable eigenmode, given by linear stability theory. Its frequency is /0 = 1.226.

Forcing the ßow at this location by its eigenmode decreases drastically the numeri-

cal transient behavior and increases the convergence speed.

The upper ßow velocity is the reference velocity with a Mach numberMaI = 0.8.

The Mach number of the lower stream is MaII = 0.2. The reference temperature

is set to T0 = 280K. The reference length L is given from a Reynolds number of

R = 2500. It corresponds to a shear layer thickness of - given by -/L = 0.3738

at the inlet of the computational domain. The total duration of the simulation is

tend = 51.24 being 10 periods of the introduced instability, calculating over 10240

time steps.

The gradient of the Lagrangian functional is determined from the direct simula-

tion of the adjoint Navier-Stokes equation. The design of the adjoint code is very

similar to the one of the direct state simulation. Non-reßecting boundary conditions

based on the characteristic theory are also proposed to prevent numerical errors in

the dual (adjoint) space. Note that incoming and outcoming characteristics are in-

verted between the direct and adjoint equations. A buffer zone is added in the dual

space upstream of the computational domain used in the direct calculations, in the

same way as the one existing downstream in the physical domain. Wave propagation

is very similar in physical and in dual space. The location of the new buffer zone is

explained by the fact that adjoint equations are integrated backward in time.

The optimal control is obtained after approximately 5 to 7 global iterations.

During each global iteration, the gradient of the cost functional is given from a

conjugate-gradient algorithm which requires itself 10 iterations of the direct-adjoint

simulations of the Navier-Stokes equations.
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4.2 Simulation Results

The adjoint simulations have been validated with a sensitivity analysis [18]. Since

the adjoint variables are also gradients of the cost functional, it is possible to com-

pare the evolution of the variation of a non-dimensional cost functional I = Jn/J0
and its gradient given by the adjoint quantity (eq. 7). It has been veriÞed on Þgure

5 where the index on the horizontal axis is the index of the global iterations. ' is

the parameter (or variable) usually used in the conjugate gradient algorithm which

determines the steepest descent direction. The evolution of the functional and its

derivatives correspond perfectly, especially the minimum is reached when the gra-

dient (from adjoint equations) is given as null. In this case, the control is a source

term in the continuity equation and it can be interpreted as some injection of mass on

the larger actuation domain named (,11). The minimum found by the algorithm cor-

responds to a 10,4 % decrease of the functional after 5 global iterations. The mean

noise reduction over the horizontal line (measurement line) is 0.5dB. It is weak

compared to the previous work of Wei and Freund [20] where a reduction of 3dB

was reached after 4 global iterations. Following Wei and Freund’s conclusions the

actuation subtly modiÞes the small space and time scales of the ßow in such a way

that general organization is improved from an aeroacoustic viewpoint. The discrep-

ancy between the success of the control in the two studies is explained as follows.

In [20], the inlet boundary condition is the sum of the fundamental eigenmode and

three harmonics. These 4 modes are perturbed randomly in the frequency domain

and in amplitudes. Such an approach artiÞcially increases the noise emission. The

role of the Þnal control is then to reduce the noise, and it happens that such artiÞcial

noise is canceled. Since we introduce just the fundamental mode without random

perturbation the initial noise level is weak in our test case. Thus the actuation has



less work to do, since the ßow is well organized. Another point is that we have the

Mach number MaI = 0.8 instead of 0.9 in [20], being initially more noisy.

The difference of the sound pressure level (SPL) between the actuated and the

unactuated ßow is shown in Þgure 19. The decrease is not important on the mea-

surement line (,2) where noise reduction was targeted, but a reduction of 3dB is

reached in other locations in the shear layer. In an opposite way, some local 3 dB

increase of noise level can be observed, but the noise seems not to propagate but to

stay localized. Finally, noise control appears effective in a larger part of the ßow,

outside of the targeted line. This mean global reduction is not discussed in [20].

An analysis of the pressure spectrum has been performed. We chose to calculate

the spectrum at a point on the measurement line ,2 of coordinates (43.5,−25)
with the largest noise reduction. The spectra in the actuated and unactuated case are

presented in Þgure 20. A local minimum at a reduced frequency /0 ≈ 0.61 is shown

in the unactuated spectrum. This could be a subharmonic at frequency /0/2 of the

initial fundamental mode. Even if the reduction is weak, actuation plays a positive

role in a broad band of frequency, except close to /0 ≈ 0.61 where noise emission

is increased. Actuation seems to regularize the acoustic spectrum. This broadband

effect should be investigated more closely in the future.

A Principal Component Analysis (PCA) of the control function (actuation mode)

has been used to compare with the conclusions of Wei and Freund [20]. It is a

singular value decomposition following a Karhunen-Love transform, also known as

Proper Orthogonal Decomposition (POD). The actuation is decomposed as

f(x, t) =
N

%
i=1

'i(t);i(x). (8)

Details can be found in [17]. The Þrst mode is dominant and 55.7 % of the energy is

contained in the Þrst two modes. There is a discrepancy with the previous work [20]

where 10 modes are necessary to provide 50 % of the total energy. The structure

of the actuation is less simple in our study than in Wei’s ßow. However, similar to

Wei’s conclusion, the modes are essentially spatially distributed around the mixing

layer and the characteristic length scale decreases with the rank of the mode but

remains in the same order of magnitude. This agreement conÞrms that the control

essentially acts on some large scale, deeply modifying the ßow structure.

Simultaneous actuation on the fourth equation of the Navier-Stokes model has

weakly increased the efÞciency of the control, since a noise reduction of 0.6 dB

has been pointed out. The conclusions given above are always valid but the area of

local increase or decrease of noise emission are larger than in the previous case. The

actuation on the whole Navier-Stokes equations is not so different from a unique

actuation by injection of mass. It only conÞrms that the highest sensitivity of the

noise emission is a mass source [18]. Spectrum and PCA analysis just support this

conclusion. Some studies where the actuation domain was small (called ,10 on

Þgure 4) have demonstrated that noise reduction can be difÞcult or even might be

impossible when the distribution of the control is too restrictive. This seems to be a

limit of the open-loop control approach.
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(control on the fourth component of the Navier-Stokes equations). The measurement line , ′
2 is in

white, at y= −24

If the measurement line is small (white line , ′
2 on Þg. 21) and the actuation

domain is the larger one, a larger noise reduction of 6 dB has been reached with

6 global iterations in the control algorithm. As in the previous example, locally a

reduction or an increase of 9 dB can be seen in some parts of the physical domain.

However, globally and far from the mixing layer a mean reduction is conserved.

The Principal Component Analysis has shown that with a small size of the targeted

line which is quite far away from the noise emission, the optimal control approach

provides an anti-noise control. The actuation acts as a wave which arrives at the

small measurement line (approximately seen as a point) with an opposite phase and

with the same amplitude as the wave which arrives at the same location but in the

unactuated case. The actuation is more effective since the noise to be reduced is

concentrated in a small area and the Þnal goal is easier than the reduction of noise

on a long line.

5 Serrated Nozzle End

5.1 Flow Parameters

The nozzle end of a jet is modelled by a Þnite ßat splitter plate with two-different

free-stream velocities above and below. The Mach numbers MaI = 0.8 for the up-



per and MaII for the lower stream have been chosen according to chapter 4. Again

the free-stream temperatures are equal (T̃I = T̃II = 280K), leading to a ratio of the

streamwise velocities uI/uII = 4. The Reynolds number Re= $!U1-1,I/"! = 1000

is based on the displacement thickness -1,I of the upper stream at the inßow. With

-1,I(x0) = 1, length scales are normalized with the displacement thickness of the

fast stream at the inßow. The boundary layer of the lower stream corresponds to the

same origin of the ßat plate.
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Fig. 22 Streamwise velocity proÞles of the

baseßow at the inßow (similarity solution of

the BL equations).
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ing layer behind the thin splitter plate, ob-

tained from downstream integration of the

BL equations.

The cartesian grid is made of sixteen subdomains: eight in streamwise and two

in normal direction. Each subdomain contains 325 x 425 x 65 points in x-, y- and

z-direction, resulting in a total number of 143.6 million gridpoints. The origin of

the coordinate system (x = 0, y = 0) is located at the end of the nozzle end. Since

the ßow is symmetric to z = 0, the spanwise resolution corresponds to 42 spanwise

modes (dealiased). The fundamental spanwise wave number is &0 = 0.2, where +z=
0.2454 and 'z/2 = (/&0 = 15.708 is the spanwise extent of the domain. The mesh

is uniform in streamwise direction with a step size of +x = 0.15 up to the sponge

region, where the grid is highly stretched. The inßow is located at x = −97.5 and

from x= 250 on, the mesh is smoothly stretched. In normal direction, the Þnest step

size is +y = 0.15 in the middle of the domain with a continuous stretching up to a

spacing of +y = 1.06 at the upper and lower boundaries. Due to the tiny thickness

+y = 0.15 of the splitter plate, an isothermal boundary condition at the wall has

been chosen. The temperature of the plate is Twall = 296K, being the mean value of

the adiabatic wall temperatures of the two streams.

The initial condition along the ßat plate is obtained from similarity solutions

of the boundary-layer equations, given in Þgure 22. Further downstream, the full

boundary-layer equations are integrated downstream, providing a ßow-Þeld sufÞ-



cient to serve as an initial condition and for linear stability theory. To avoid a peak

of the normal velocity near the trailing edge, it is smoothed there. Since linear sta-

bility theory does not account for the wallnormal velocity, this modiÞcation does

not affect its results. As shown in Þgure 23, the ßow Þeld keeps its wake-like shape

for a long range. As high ampliÞcation rates occur here, the ßow is already unsteady

before a pure mixing layer has developed.

5.2 Linear Stability Theory
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The stability diagram for two-dimensional disturbances in the upper boundary

layer is shown in Þgure 24. In accordance to the maximum ampliÞcation, the fun-

damental frequency /0 = 0.0688 is chosen. In the boundary layer, the ampliÞcation

rate is only weakly dependent on the streamwise position. As the two boundary

layers emerge from the same position, the lower boundary layer is stable up to the

nozzle end. Behind the splitter plate, ampliÞcation rates 50 times higher than in the

upper boundary layer occur due to the inßection points of the streamwise-velocity

proÞle. Maximum ampliÞcation in the mixing layer takes place for a frequency of

roughly three to four times of the fundamental frequency of the boundary layer as

illustrated in Þgure 25.



5.3 Simulation Results

The upper boundary layer is forced with the two-dimensional Tollmien-Schlichting

(TS) wave (1,0) with an amplitude of |û| = 0.005 and an additional oblique wave

pair (1,1) with |û| = 0.0005. Within this simulation, a rectangular serration with

one notch per spanwise wavelength and a depth of 10 is considered. For the straight

trailing edge, three-dimensional effects are less important and the reader is referred

to [3].
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x

|v
|

0 100 200
10

-6

10
-4

10
-2

10
0

(1,0)

(1,1)

(2,0)

(2,1)

(3,0)

(3,1)

^

Fig. 27 Maximum amplitude of the normal

velocity v for unsteady modes (h,0) and

(h,1).

A spectral decomposition is shown in Þgures 26 and 27, based on the maximum

of v along y. The normal velocity has been chosen as it is less associated with up-

stream propagating sound. In the upper boundary layer, non-linear interaction of the

introduced disturbances (1,0) and (1,1) generates the steady mode (0,1) up to an

amplitude of |v̂| = 2 ·10−5 (Þgure 26). From x = −25 onwards, this is exceeded by

the upstream effect of the engrailment. The serrated trailing edge (−10 ≤ x ≤ 0)

generates steady spanwise disturbances (0,k) up to |v̂| = 8 ·10−3. In the notch, the

combination of wake and mixing layer originates further upstream, which corre-

sponds to the steady spanwise mode (0,1). Its amplitude decreases behind the trail-

ing edge up to x = 15. Higher harmonics in spanwise direction (0,2) and (0,4) are

generated at the notch as well, staying almost constant behind the splitter plate.

Figure 27 shows that the TS-wave generates higher harmonics in the upper

boundary layer. With an amplitude of the driving TS-wave of |v̂| = 2 ·10−3, modes

(2,0), (3,0) reach amplitudes of |v̂| = 3 ·10−4 and |v̂| = 2 ·10−3, respectively. The

increased steady modes at the engrailment interact with the two-dimensional waves,

generating unsteady oblique modes (h,1). Behind the splitter plate, the Þrst two

higher harmonics are growing stronger than the fundamental disturbance. Saturation



is found at x ≈ 70 and x ≈ 160 for the higher harmonics and mode (1,0), respec-

tively. With relevant amplitudes of the oblique waves, these disturbances grow sim-

ilarly to their two-dimensional counterparts and saturate at a level of |v̂| ≈ 4 ·10−2.

Non-linear interaction of modes (h,1) creates steady modes (0,k). As Þgure 26

shows, this exceeds the direct effect of the notch at x ≈ 15 and x ≈ 35 for mode

(0,1) and its higher harmonics, respectively.
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The spatial growth rates are compared with linear stability theory in Þgures 28

and 29. In the upper boundary layer, good agreement is observed. However a super-

imposed variation with wavelength 'x ≈ 20 is visible. This is equivalent to a phase

speed |cph| = 0.22 which corresponds to the upstream propagating acoustic wave

with cph ≈ 1−1/MaI = −0.25. Hence the difference to LST is caused by the emit-

ted noise of the mixing layer and not due to the three-dimensional geometry. Good

agreement with LST is observed for the fundamental disturbance (1,0) behind the

splitter plate. Yet higher frequencies show a slightly lower mean ampliÞcation com-

pared to linear stability theory.

Figure 30 shows an instantaneous view of the vortical structures, visualized by

the isosurface of the <2 vortex criterion [14]. Due to the earlier beginning of the

mixing layer in the notch a spanwise deformation of the Kelvin-Helmholtz vortices

occurs. At x = 50, the croissant-shaped vortex is still one coherent structure. The

strong spanwise gradients lead to streamwise vortices which are twisted around the

spanwise eddies. This leads to an early breakdown of the large spanwise rollers.

Further downstream, the Kelvin-Helmholtz vortices known from dominantly two-

dimensional cases, e.g. [3], are now an accumulation of small-scale structures.

The acoustic Þeld is visualized by the real part of the Fourier-transformed di-

latation Þeld. The emission with the fundamental frequency is compared with the

straight trailing edge in Þgure 31. The engrailed nozzle end leads to a notable reduc-



Fig. 30 Snapshot of vortical structures behind the engrailed splitter plate along two spanwise

wavelengths, visualized by the isosurface <2 = −0.005.

a) b)

Fig. 31 Real part of the Fourier-transformed dilatation Þeld at the symmetry plane z = 0 for /0:

a) engrailment, b) straight trailing edges. Contour levels are in the range of .u = ±3 ·10−3.

tion of the generated noise which propagates in downstream direction. In both cases

an upstream emission originates from x ≈ 50 in the upper half of the domain. Its

characteristic corresponds to the one due to the suppressed resonance in Þgure 17

for the pure mixing layer. Hence this emission is due to the phase adaptation for res-

onance or its suppression, respectively. The acoustic Þeld with frequency 7/4 ·/0 is

illustrated in Þgure 32 where the emitted sound is reduced as well. For both geome-

tries, its main source is located at x≈ 140.

For a more quantitative evaluation of the generated sound, a virtual microphone

is placed at (x = 195, y = −121.8, z = 0). At this position, a detailed time record is

taken along 8 periods of the fundamental frequency. The temporal Fourier-analysis

of the pressure ßuctuations is given in Þgure 33 for the straight and the serrated

trailing edge. The main reduction is found for frequencies up to the third higher har-
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Fig. 32 Same as Þgure 31 but for frequency 7/4 ·/0: a) engrailment, b) straight trailing edges.
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Fig. 33 Acoustic spectrum of the pressure at the virtual microphone (x= 195, y= −121.8, z= 0)

for the rectangular engrailment and a straight trailing edge.

monic. For high frequencies, the sound spectrum decays. The overall sound-pressure

level is p′rms = 0.003047 and p′rms = 0.00108 for the straight and the serrated trail-

ing edge, respectively. Thus the rectangular engrailment reduces the sound pressure

level by 9dB.

6 Conclusions

A numerical scheme for direct numerical simulation including direct sound com-

putation has been developed and veriÞed by comparing with linear stability theory

and the benchmark problem of Colonius et al. [9]. The existence of a markable

subharmonic could be identiÞed as the main acoustic source in a mixing layer. Ac-

cordingly it is possible to reduce the emitted sound by a varied phase shift of the

introduced particular subharmonic. An additional spanwise mode with high ampli-

tude is capable to inhibit the resonance mechanism. Three-dimensional effects lead



to a broad-band emission of noise instead of the tonal noise of a two-dimensional

mixing layer.

Optimal control of noise emission in a mixing layer has been successfully carried

out. The methodology of DNS plus Adjoint DNS plus conjugate gradient algorithm

works with efÞciency. Depending on the size of the targeted area for noise reduction,

a small or a signiÞcant decrease of the local noise level has been reached. Globally,

far from the mixing layer, the mean noise level always decreases. The principal

component analysis has shown two kind of actuation: some distributed control for a

large measurement area and some anti-noise control for a small measurement area.

Including the nozzle end, modelled by a thin splitter plate, provides a more re-

alistic conÞguration of the ßow Þeld. Additionally, it allows to investigate possible

actuators directly at the wall and forcing terms inside the ßow Þeld can be avoided.

In this context, passive control by a rectangular engrailment of the trailing edge

has been investigated. The resulting spanwise modulation of the Kelvin-Helmholtz

vortices leads to a breakdown of the coherent structures further downstream. This

simple modiÞcation of the geometry showed a noise reduction of 9dB.

The next step is to add the splitter plate in the optimal control algorithm, too. Fu-

ture direct numerical simulations will focus on various actuators at the splitter plate.

This includes various shapes of the trailing edge as well as active actuators. One

possible strategy can be the forcing of the most ampliÞed frequency and its subhar-

monics. Optimizing the phase shifts may prevent the resonance mechanism accord-

ingly to the pure mixing layer. Further simulations with larger Reynolds numbers

are planed, where one or both boundary layers along the splitter plate are turbulent.

This will be realized by a turbulent inßow, prescribing time-dependent quantities

from previous simulations. Due to the ßexibility of the DNS-code, it can be ap-

plied to other geometrical conÞgurations as well, e.g. a complete airfoil at a low to

moderate Reynolds numbers is conceivable.
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Paul Sabatier, Toulouse, 2006.

18. B. Spagnoli and C. Airiau. Adjoint analysis for noise control in a two-dimensional compress-

ible mixing layer. Computers and Fluids, 37(4):475–486, 2008.

19. S. Walther, C. Airiau, and A. Bottaro. Optimal control of Tollmien-Schlichting waves in a

developing boundary layer. Phys. Fluids, 13:2087–2096, 2001.

20. M. Wei and J. Freund. A noise controlled free shear ßow. J. Fluid Mech., 546:123–152, 2006.





Index

acoustic spectrum, 15, 23

adjoint, 7, 14, 15

ampliÞcation rate, 9, 21

boundary condition, 5, 14

cost functional, 6, 15

dilatation, 10, 13, 21

direct numerical simulation, 3–6

domain

actuation, 7, 15

decomposition, 3

measurement , 6

Þnite difference, 4, 5

measurement domain, 15

mixing layer, 2, 8, 14

optimal control, 6–8, 14

phase

shift, 8, 11

speed, 9, 21

resonance, 9, 11

splitter plate, 5, 18, 22

vortex, 9, 12, 21


