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Detection of variance changes and mean value

jumps in measurement noise for multipath

mitigation in urban navigation
Mariana Spangenberg, Vincent Calmettes, Olivier Julien, Jean-Yves Tourneret, Senior Member, IEEE,

and Grégoire Duchâteau

Abstract

This paper investigates an urban navigation filter for land vehicles. Typical urban canyon phenomena

due to multipath and GPS outages seriously degrade positioning performance. To deal with these scenarios

a hybrid navigation system using GPS and dead-reckoning sensors is presented. This navigation system is

complemented by a two-step detection procedure that aims at classifying outliers according to their associated

source of error. Two different situations will be considered in the presence of multipath. These situations

correspond to the presence or absence of line of sight signal for the different GPS satellites. Therefore, two

kinds of errors are potentially “corrupting” the pseudoranges, modeled as variance changes or mean value

jumps in noise measurements. An original multiple model approach is proposed to detect, identify and correct

these errors and provide a final consistent solution.

I. INTRODUCTION

Personal land navigation is becoming one of the most widely spread global navigation satellite system (GNSS)

applications. In particular, vehicle navigation is nowadays part of many people’s daily life. New navigation-based

services are demanding higher precision solutions in more challenging environments. Different types of obstacles

such as high buildings, trees or tunnels, create an important degradation in the precision of the estimated position.

In urban canyon scenarios two main problems have to be considered: a partial or total outage in the satellite

visibility, and the lack of reliability in the received pseudorange measurement.

Usual strategies employed by commercial receivers to verify the quality of the received signals are based on

integrity checks. If any outlier is present, due for example to a clock failure, the integrity system aims at detecting
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its presence. This test is based on a receiver autonomous integrity monitoring (RAIM) strategy for detecting the

“defective” signals [1]. However, this approach was conceived for aviation purposes under hypotheses that cannot

be always applied to urban vehicle navigation. For instance, a minimum number of unbiased measurements is

needed in order to do this integrity check. This condition cannot be ensured in urban canyon scenarios. Moreover,

the RAIM is usually complemented by a fault detection and exclusion (FDE) strategy. This strategy enables not

only the detection but also the identification and further exclusion of outliers. However, if more than one outlier is

present, the capabilities of the FDE to exclude them and provide a reliable solution will be also restricted by the

total number of visible satellites. Within this context, this paper proposes a modified “reliability strategy” adapted

to urban areas where visibility is reduced and the presence of outliers is mainly due to multipath interference.

Several methods can be found in the literature concerning multipath mitigation. Different configurations of

antenna arrays are among the hardware solutions [2], [3]. Working on the receiver correlator output to mitigate

the impact of multipath during tracking is another well known approach [4], [5]. However, all these strategies

are characterized by their high complexity. In order to avoid these difficulties (and be hardware-independent),

multipath mitigation can be performed on the position computation stage (i.e., after the pseudorange calculation).

Each “defective” pseudorange is considered to be affected by an error that represents the total contribution of all

the multipath signals to the measurement computation.

To address the multipath detection and correction problem Giremus et al. [6] studied a Rao Blackwellized particle

filter based on a jump Markov system. This approach consisted of modeling the multipath presence by a mean

value jump on the pseudorange whose magnitude was jointly estimated with the vehicle position and velocity.

Another two-hypothesis Bayesian approach was considered in [7]. The interfered signals were characterized by

error models based on Gaussian mixtures and the tracking was performed using particle filtering. However, the

existing algorithms described above require to define a priori distributions for the errors. This a priori knowledge

is not easy to obtain in real urban scenarios. Moreover, the high computational cost of particle filters is a problem

for land vehicle applications.

This paper proposes to consider two different kinds of errors depending on the conditions in which the GPS

signal is received. Reflected signals can arrive to the receiver either in a line-of-sight (LOS) situation where the

direct path is present (i.e., direct visibility over the corresponding satellite), or in a non-line-of-sight (NLOS)

situation where the received signal contains reflected components only. In particular, this paper will assume that in

this latter case just the strongest reflected signal is significant. Thus, the proposed algorithm aims at detecting and

classifying pseudorange errors, depending on the reception condition, in order to provide consistent measurements.

A conventional extended Kalman filter (EKF) is considered for determining the navigation solution. This filter

is coupled with a two step approach for the detection and correction of errors affecting the received measurements.

This approach is based on a hierarchical structure corresponding to a three hypothesis model. A first check is

performed to detect the presence of erroneous measurements using the EKF innovations. The second step consists

of classifying the different sources of errors depending on the presence or absence of direct signal. Once the type
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of error has been identified, the algorithm proceeds to its compensation.

Dead reckoning sensors (DR) are also studied as an augmentation of the proposed system. Accelerometers,

gyrocopes and odometers are found among the most popular sensors for land vehicle navigation. They are not

affected by space propagation phenomena or radio-frequency (RF) channel impairments such as multipath, and

they provide accurate short term precision [8]. The “autonomous integrity monitoring extrapolation” [9] and the

“multiple solution separation” [10] are examples of integrity schemes that use inertial information to improve fault

detection and exclusion functions. However they were developed according to civil aviation requirements and their

functioning and assumptions are not directly suitable for land vehicle navigation. In this paper, the performance of

the proposed detection/identification/correction multipath algorithm will be tested in the presence of dead reckoning

sensors. Odometric data obtained from the already on board anti-lock braking system (ABS) and gyroscopic data

will be used to improve tracking performance.

The paper is organized as follows: Section II briefly introduces multipath phenomenon for urban navigation.

Section III describes the navigation filtering models for urban scenarios. The standard RAIM+FDE approach to deal

with integrity problems is presented in section IV. Section V discusses the different conditions in which the signal is

received and its associated errors. The proposed multiple hypothesis algorithm for multipath interference mitigation

is also presented. Sections VI and VII provide a deeper analysis about the detection/identification/correction

approach. DR measurements and their contribution to the error control strategy are presented in section VIII.

Section IX is devoted to the analysis of experimental results obtained using simulated and real data. Conclusions

and suggested future works are finally reported in Section X.

II. MULTIPATH INTERFERENCE

In urban areas, the signal emitted from a satellite is very likely to get reflected and to follow different paths

before arriving to the receiver. Therefore, a sum of different and attenuated delayed replicas is usually present in the

received signal. For satellite navigation purposes, only the direct signal is useful while the multipath components

are considered as undesired signals.

In the presence of multipath the pseudorange measurements will be affected by errors [11], [12]. In order to

detect the presence of an anomaly in the pseudorange measurement, the actual error distribution will be studied

and contrasted to the nominal error distribution due to the sole presence of noise. Therefore, several pseudorange

samples will be needed. Though instantaneously a pseudorange might seem affected by a bias, within an observation

window, this error can remain constant or vary over time. This phenomenon will depend on the characteristics of

the received reflected signal at each time instant, that themselves depend on the navigation scenario and vehicle

dynamics. This paper proposes to consider two kinds of errors affecting the GPS pseudoranges modeled as mean

value jumps and variance changes in the additive noise. The first kind of error was studied in [13] for the aerial

navigation while the second type of error was considered in [14], [15]. To validate these two hypotheses Fig. 1

presents results for a real test field campaign done an urban area. The displayed results were obtained from a 25
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minute and 5.6 km campaign held in Toulouse centre, France (for more details please refer to section IX-B). The

pseudorange errors for two different satellites are shown in the top figures. The probability distribution functions

(pdf s) of the normalized errors (i.e., errors divided by their corresponding noise standard deviations) are displayed

in the bottom figures. In open sky scenarios the normalized pseudorange errors follow a Gaussian distribution [16].

Conversely, the bottom figures show that the Gaussian density assumption is not valid for the considered satellites.

In Fig. 1(c) the noise variance seems to be underestimated by the fitted Gaussian pdf, whereas Fig. 1(d) shows a

mean shifted pdf. Note that the pseudorange errors presented similar characteristics in [7] and [17] under different

conditions.

Hereafter, errors introduced in the pseudorange measurement by the presence of reflected signals will be referred

to as the NLOS case (when the presence of a reflected signal in the absence of the direct signal introduces a mean

value jump) and the LOS case (when both multipath and the direct signal are present and a noise variance jump

is induced). In the NLOS case, only a reflected signal is received and tracked (a constant bias is present in the

pseudorange measurement). In the LOS case, the measurement is composed by the direct signal plus delayed

reflections. Considering that the tracking is done for a moving vehicle, the multipath signal amplitude, phase and

time of arrival will rapidly vary over time. Hence, the value and sign of the introduced errors will be constantly

changing and this situation will be modeled by a noise variance jump. Indeed, the actual mean value jump does

not only represent a NLOS situation but also an LOS situation where the vehicle is not moving (i.e., the multipath

amplitude, delay and phase are constant, so its final contribution to the direct received signal is also a mean value

jump). However, as this error is finally considered under the hypothesis H1, the approach is still valid without loss

of generality. The following section makes explicit the relation between these two types of errors and the received

measurement model.

III. GENERAL NAVIGATION MODELS

A. State Model

The state equation considered in this paper for the GPS navigation filter is

Xt = ΦtXt−1 + vt, (1)

where Xt is the state vector, Φt the state transition matrix and vt is the system noise vector. The state vector

includes the following parameters:

Xt = (λt, φt, ht, vn,t, ve,t, vd,t, bt, dt)
T , (2)

where (λt, φt, ht) describes the vehicle position in earth-centered earth-fixed (ECEF) geodetic coordinates (i.e.,

latitude, longitude and height), and (vn,t, ve,t, vd,t) contains the vehicle velocities in the north-east-down (NED)

frame. The receiver clock bias and drift are denoted as (bt, dt) respectively. The noise vector vt in (1) corresponds

to a random walk model where the acceleration has a zero mean Gaussian distribution modeled by the system
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noise covariance matrix Qt. The acceleration variances associated to (vn,t, ve,t, vd,t) are denoted as
(
σ2

n, σ
2
e , σ

2
d

)
where σ2

n = σ2
e and σ2

d << σ2
n. This variance choice considers no a-priori knowledge on the vehicle privileged

direction and no important changes in the vehicle altitude (which is usually the case in dense urban areas). Details

on the NED to ECEF frame transformation can be found in [18, page 191].

B. Measurement Model

The pseudorange measurement model associated to the ith satellite can be written as

Yt,i =
∥∥ps

t,i − pt

∥∥ + bt + mt,i +
√

(σ2
t,i + r

2
t,i)wt,i, (3)

where Yt,i is the ith corrected pseudorange measurement associated to the ith visible GPS satellite for i = 1, ..., ny

(ny being the number of visible satellites) and ps
t,i = (xs

t,i, y
s
t,i, z

s
t,i) is the ith GPS satellite position expressed

in ECEF rectangular coordinates. Note that the term corrected was used for the pseudorange because ionosphere,

troposphere, ephemeris and satellite clock errors are considered to be already compensated in (3) (using EGNOS

or WAAS for instance). The vehicle position vector expressed in ECEF rectangular coordinates is denoted as pt.

It is obtained from the state variables (λt, φt, ht) with an appropriate frame transformation (for more details see

[18, ch. 2]). The receiver clock bias is denoted as bt, while σ2
t,i is the measurement noise variance in nominal

conditions for the ith satellite, and wt,i is a zero mean Gaussian variable such that wt,i ∼ N (0, 1). The possible

multipath errors are denoted as mt,i and r
2
t,i, where mt,i represents a mean value jump for the ith satellite (i.e. a

departure from the nominal mean value in eq. (3) given by
∥∥ps

t,i − pt

∥∥ + bt) and r
2
t,i a respective noise variance

jump (i.e. a departure from the nominal measurement variance given by σ2
t,i). The ny measurements are usually

concatenated according to

Yt = h(Xt) +Mt +R
1/2

t wt (4)

where Yt = (Yt,1, ..., Yt,ny
)T is the measurement vector, and h(Xt) = ‖ps

t − pt‖+ bt represents the measurement

function including a frame transformation from the geodetic state coordinates to the rectangular coordinates. The

mean value jump vector Mt = (mt,1, ...,mt,ny
)T is such that mt,i �= 0 if the ith satellite is affected by a mean

jump and mt,i = 0 otherwise. Assuming the pseudoranges are independent, the measurement noise covariance

matrix Rt is expressed as

Rt = diag
[(
σ2

t,1 + r
2
t,1, . . . , σ

2
t,ny

+ r
2
t,ny

)]
, (5)

where the diag operator denotes a diagonal matrix, and rt,i �= 0 ∀i = 1, . . . , ny if the ith satellite is affected by

a noise variance jump and rt,i = 0 otherwise.
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IV. INTEGRITY STRATEGY: SNAPSHOT RAIM+FDE

Integrity is generally defined as a measure of the trust that can be placed in the correctness of the information

supplied by a system. In accordance, an error bound is a measure of trust on the accuracy of the estimation. Among

the different existing integrity procedures, the snapshot RAIM is the best known and widely implemented approach

[1]. The FDE is a complement to this system where not only the presence of an anomaly is detected but its source

(i.e., the corresponding satellite) is identified and excluded. The weighted least square (WLS) estimator of the state

vector at time instant t, derived from the measurement model in (4), is defined as

X̂t = X̂t−1 + ΔX̂t, (6)

with

ΔX̂ = (HT
t R

−1
t Ht)

−1HT
t R

−1
t ΔYt,

ΔYt = Yt − h(X̂t−1),

where Ht is the linearized measurement matrix around X̂t−1 and X̂t−1 is the previous value of the state vector.

The vector of WLS residuals is defined as:

et = Yt − h(X̂t) = ΔYt −
[
h(X̂t)− h(X̂t−1)

]
=

[
Iny

−Ht(H
T
t R

−1
t Ht)

−1HT
t R

−1
t

]
ΔYt.

where Iny
is the ny × ny identity matrix. Different test statistics can be used with the snapshot RAIM strategy

to detect an anomaly. The range comparison method [19], the least square (LS) residual method [20] and the

parity method [21] are three of the main snapshot RAIM algorithms that use different test statistics. Due to its low

computational cost, the LS residual method is going to be used in this paper. The corresponding test statistics is

defined as:

SSE = ete
T
t = ‖et‖2 . (7)

where SSE stands for sum of the squared errors. The test statistics SSE follows a χ2 distribution with ny − 4

degrees of freedom [22]. Therefore a minimum of 5 satellites is needed to perform the integrity test. However

its detection capability presents many drawbacks. For instance, as the state vector used to compute the residuals

was initially computed using the received “defective” measurements, an assimilation of the error might already be

present in X̂t. Especially in the occurrence of large or multiple biases, a compensation might be done within the

residuals so the abnormal situation is finally not detectable. This occurs because when computing the residual term

(7), a projection of ΔYt is done on the null space of HT
t [22]. If the combination of measurement errors is such

that the angle between ΔYt and this subspace is big enough, many information will be lost in the projection. The

norm of the residual vector e will be small and the error detection will fail.

The exclusion procedure is performed after an error detection has been achieved. The classical assumption used

by the snapshot RAIM+FDE approach is that just one outlier can be present. A total of ny subsets each containing
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ny − 1 satellites is built. For this purpose a minimum of 6 satellites must be available. A fault detection condition

is performed over the ny subsets as in the detection step. Just the subset excluding the outlier will be under a

given fault detection threshold. Therefore, this subset will be kept to compute the final position estimation.

V. MULTIPATH MITIGATION APPROACH

A. Multi-hypothesis approach

Usual multipath mitigation schemes based on pseudorange measurements consider a binary system where the

received signals are either bias-free or subjected to a multipath interference [6], [7]. In this paper we propose to

further develop the interference processing by introducing two different models for LOS and NLOS cases. The

assumption considering an error introduced by the presence of multipath is decomposed in order to identify the

specific source of this error. Although a change in the noise variance (i.e., LOS case) does not have such a strong

impact on the positioning accuracy when compared to a mean value jump, it reveals to be a crucial factor when a

precise bounding must be given for the final position solution. As a consequence, we propose a three hypothesis

model to detect, identify and correct measurement errors due to multipath:

• H0: absence of error (only the direct signal is tracked and nominal σ2
t,i is considered to correctly model the

pseudorange zero-mean measurement noise),

mt,i = 0, r2t,i = 0. (8)

• H1: the received measurement is in NLOS situation and affected by a mean value jump,

mt,i �= 0, r2t,i = 0. (9)

• H2: the received measurement is in LOS situation and is affected by a variance change in the additive noise,

mi,t = 0, r2i,t �= 0. (10)

Under hypothesis H0, the model error (i.e., the additive noise) has a Gaussian distribution. However, under

hypotheses H1 and H2, the nominal Gaussian distribution is no longer valid because of multipath presence. 1

The errors associated to the two hypotheses H1 and H2 were modeled as Gaussian mixtures in [7]. However,

when analyzed more in detail, these mixture models (obtained from a real navigation scenario) can also be

decomposed into a mean-shifted or a variance-increased Gaussian distribution (see Fig. 4 of [7]). This decomposition

considerably facilitates the analysis when compared to a Gaussian mixture model. Indeed, determining the number

of components participating in a Gaussian mixture is fairly complicated.

1A fourth hypothesis associated to multiple NLOS signals but no LOS signal situation and defined by non zero m and r might also be
considered. However, including this hypothesis would significantly increase the algorithm complexity. Since this hypothesis has a very small
probability compared to H0, H1 and H2, it has not been considered in this study.
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B. System outline

Due to the non linearity of the measurement model in (3) an EKF is used for the general navigation solution.

A hierarchical method is proposed for error detection and later for error identification and correction. The idea is

that this multi-stage approach enables an urban-adapted navigation filter without entailing heavy computations in

clear sky scenarios. This multi-stage scheme can be summarized as follows:

1) Error detection:

The presence of an error is detected by performing a statistical test on the innovations.

2) Error identification:

In case an error has been detected, a parallel processing is achieved for classifying the two possible sources

of error. Two “time of occurrence” tests are performed simultaneously for the detected outliers. These outliers

can be affected by a mean value jump or by a variance change in the additive noise. The most likely hypothesis

(H1 or H2) is then considered for error correction.

3) Error correction:

The innovation model is updated by correcting either the noise mean value or the noise variance, depending

on the hypothesis that has been detected in the identification step. The corrected model is then fed back to

the main system (composed by the EKF) that computes the final position.

A block diagram for the proposed detection/identification/correction system is depicted in Fig. 2.

C. EKF innovations

The proposed multi hypothesis approach can detect outliers, identify and correct different types of errors. The

detection of measurement errors will be conducted by using the EKF innovations

It = Yt − Y (X̂t|t−1), (11)

where It = (It,1, ..., It,ny
)T is the EKF innovation vector and Y (X̂t|t−1) = h(X̂t|t−1) is the vector containing the

pseudorange measurements predicted from the propagated state vector (see [23] and [24] for similar approaches). In

nominal condition (hypothesis H0), the innovations are distributed according to a zero mean Gaussian distribution

whose covariance matrix St is defined as

St = HtPt|t−1H
T
t +Rt, (12)

where Ht is the linearized measurement matrix around X̂t|t−1 (according to (4)), X̂t|t−1 is the propagated EKF

state vector at time t and Rt is computed according to (5) with r2t,i = 0 ∀i = 1, ..., ny . The a priori state covariance

noise matrix is denoted as Pt|t−1. No correlation is assumed between different satellite measurements. The variance

of the ith innovation at time instant t (denoted as s2t,i) is given by the ith element of the diagonal of St. As a

consequence, the ith innovation error under hypothesis H0 (i.e., in nominal situation) is distributed according to a
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zero-mean Gaussian distribution with variance s2t,i and pdf

p(It,i|H0) =
1√

2πst,i

exp

(
− 1

2s2t,i
I2
t,i

)
. (13)

VI. ERROR DETECTION

The first step of the algorithm detects the presence of corrupted signals referred to as outliers. The type of error

affecting the signal is not specified at this point. This hierarchical approach, where the outliers are first detected

and their source of error is later identified, is preferred to a strategy where the three hypothesis are simultaneously

studied for every received signal because of its lower computational cost (considering that usually the number

of received signals largely exceeds the number of outliers). A binary hypothesis test is performed to determine

the absence (hypothesis H0) or presence (hypotheses H1 and H2) of an error in the measurements. The test is

achieved for each of the ny received signals through their respective innovations. A test based on the knowledge

of the C/N0 ratio was presented in [7] to decide whether the received signal is error corrupted or not. However,

in the H2 case where the multipath is in phase with the direct signal, this test may no longer be valid. This paper

considers a sliding window of N samples as observation window and assumes that the error (when it exists) is

constant during this period of time. It is important to notice that the choice of N is always ruled by a trade-off

between the sensitivity and detection time of the test. The normalized energy of the innovations for each of the

ny observation windows containing N samples is computed. The detection of errors is then achieved as follows:

Tt,i =

t∑
j=t−N+1

I2
j,i

s2j,i

H0

≶
H1 or H2

α ∀i = 1, . . . , ny (14)

where α is the detection threshold, Ij,i and s2j,i are obtained as explained in the previous section, and Ij,i

sj,i
represents

the normalized measurement innovation. The test statistics Tt,i is distributed according to a central chi2 distribution

with N degrees of freedom (denoted as χ2
N ), under hypothesis H0. The detection threshold α is obtained from the

probability of false alarm (PFA) of the test as:

α = C−1

χ2

N

(1− PFA) , (15)

where C−1

χ2

N

(·) represents the inverse cumulative distribution function of the χ2
N distribution. An accurate estimation

of each innovation error distribution under H0 (i.e., N (0, s2j,i)) is supposed to be available. The critical factor to

obtain a precise value of s2j,i is the ability to correctly determine the nominal measurement noise variance σ2
t,i

associated to each ith measurement. Further details on the way this variance is calculated in practice are given in

section IX.

If the test statistics Tt,i exceeds the threshold α, the presence of an error is declared for the ith measurement

and the error estimation procedure is used to determine the kind of error affecting the received measurement.

Fig. 3 shows hypothetic innovation error distributions under the hypotheses H0, H1 and H2. It can be seen that

the presence of error in the measurements (hypotheses H1 and H2) yields innovations with larger energy than
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under hypothesis H0. It is important to note that the threshold determination does not depend on the innovation

distributions associated to H1 and H2. Moreover, no knowledge about the mean value jumps and the variance

changes in the additive noise has to be known to compute the test statistics.

At this point it is necessary to introduce the vector Ot which contains the position of the different detected outliers

with respect to the measurement vector Yt. It is defined as Ot ⊂ [1, ..., ny], where Ot = (Ot,1, . . . , Ot,no
) ∈ R

no ,

and no denotes the number of detected outliers.

VII. ERROR IDENTIFICATION AND CORRECTION

Once an outlier has been detected, its source of error has to be identified and corrected. Estimates of m and r

are simultaneous computed and the most likely type of error is used to determine the final navigation solution. Due

to the recursive nature of the EKF, not only the error magnitude has to be estimated but also its time of occurrence.

Note that the error magnitude is generally smoothed within the observation window in (14), so that the effective

time of detection of the error does not match its real time of occurrence k. In case of miss detection, the error

gets propagated through the state vector, and the estimated error magnitude can differ significantly from the real

value. As a consequence, both hypotheses H1 and H2 depend not only on the error parameter m or r (that are

supposed to be constant inside the observation window) but also on the time of occurrence k (where k can take

any value within the observation window containing samples from time instant t −N + 1 to time t) that should

be estimated carefully. Change detection techniques such as the Neyman Pearson test [25, page 33] need to know

the model parameters conditionally to each hypothesis in order to provide an optimal solution. Unfortunately, this

is not the case in practical applications where neither the time of occurrence of the change nor its magnitude are

known. This paper derives a test for error identification appropriate to such situations.

A. Time of occurrence estimation

The time of occurrence estimation can be achieved by using the marginalized likelihood ratio test (MLRT)

proposed by Gustafsson [26]. However, this test requires an a priori knowledge about the probability distributions

of the parameters to be estimated (mean value jumps or variance changes in our case). In the generalized likelihood

ratio test (GLRT) [27] the jump is considered as an unknown constant (as opposed to a random variable). The

GLRT proceeds for each of the qth detected outlier to a double maximization over the variable of interest (m or

r) and the time of occurrence k. However, implementing the GLRT in our system presents two main drawbacks.

On one hand, a bank of Nno recursive least square filters must be deployed for each hypothesis (considering that

the ensemble of outliers follows either H1 or H2), which presents a heavy computational cost for systems where

the estimation delay must be extremely short. On the other hand, the GLRT proposed in [27] is based on the

idea that the relation between the error affecting the measurement and the EKF innovations can be made explicit

and represented as a linear regression. However, even if a linear and recursive model can be easily stated for a

mean value jump, this is not the case for noise variance changes. Hence, a time of occurrence test adapted to land
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navigation phenomena is proposed hereafter where just one filter is deployed for each hypothesis. For the sake of

simplicity, the estimation scheme will be developed under the assumption that the whole ensemble of no outliers

follows either H1 or H2. It will be discussed later in this section the performance of the strategy in a more general

situation where each outlier is independently affected by H1 or H2.

A first estimation of the possible jump magnitudes ( m̂(k) or r̂(k), ∀k = t−N +1, . . . , t ) and their associated

log-likelihood ratios ( l [k, m̂(k)] or l [k, r̂(k)], ∀k = t−N + 1, . . . , t ) is followed by the detection of the time of

occurrence k̂. More precisely, the most likely time of occurrence k̂t,q for hypothesis H1 is defined as:

k̂t,q(H1) = arg min
k
{k|lt [k, m̂t,q(k)] > γ1} , (16)

where lt [k, m̂t,q(k)] is the log-likelihood ratio for the qth outlier (q = 1, . . . , no) under hypothesis H1 at time

instant k, and γ1 is the test threshold that is fixed according to given prior probabilities for hypotheses H1 and H0.

Once the likelihood function corresponding to a given k overpasses the threshold, H1 is considered more likely

than H0 at time instant k and thus k is chosen as the time of occurrence of the error (i.e. k̂t,q = k). Indeed, the

smallest k fulfilling the aforementioned condition is considered as the actual time of occurrence candidate k̂t,q .

The estimate m̂t,q(k) is kept as the actual mean value jump affecting the measurement (considering it remains

constant for the rest of the observation window). The estimation of the mean value jump for the qth detected

outlier associated to a time of occurrence k is obtained as the mean value of the (t−k)th previous EKF innovation

samples

m̂t,q(k) =
1

t− k + 1

t∑
j=k

Ij,Ot,q
, ∀k = t−N + 1, ..., t. (17)

where Ij,Ot,q
denotes the nominal Ot,qth innovation computed under hypothesis H0 (i.e., Ij,Ot,q

= Ij,Ot,q
(H0)).

It should be noted that eq. (17) is valid under the assumption that a suitable observation window length has been

chosen (i.e., the window is long enough to filter the noise contribution and short enough so that the state estimates

have not significantly responded to the error). The log-likelihood ratio lt [k, m̂t,q(k)] for every possible time of

occurrence k is calculated using the innovation samples at time instant k as follows

lt[k, m̂t,q(k)] = log

[
p
(
Ik,Ot,q

|H1

)
p
(
Ik,Ot,q

|H0

)] , (18)

with

p
(
Ik,Ot,q

|H1

)
= p[Ik,Ot,q

(H1)], (19)

where p(Ik,Ot,q
|H1) represents the Ik,q pdf considering an error m̂t,q(k) at time instant k to be present. The EKF

innovation Ik,Ot,q
(H1) calculated under hypothesis H1 is obtained from

Ik(H1) = Yk − Y [X̂k|k−1(H1)]− M̂k, (20)

where Ik(H1) is the innovation vector, Ik,Ot,q
(H1) is its Ot,qth element, X̂k|k−1(H1) is the propagated state vector

11
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under hypothesis H1 and M̂k is the mean value jump vector of dimension ny × 1. The ith element of vector M̂k

is defined as

• M̂k,i = 0, (non corrupted measurement) if i /∈ Ot where Ot is the vector containing the index of all the

detected outliers,

• M̂k,i = m̂t,q(k), if i = Ot,q and the time of occurrence has not yet been detected for the qth outlier,

• M̂k,i = m̂t,q(k̂t,q(H1)), if i = Ot,q and the time of occurrence has already been detected for the qth outlier

(i.e., k > k̂t,q(H1)).

According to (20), each Ik,Ot,q
(H1) follows a Gaussian distribution N (0, s2k,Ot,q

), where s2k,Ot,q
is calculated under

hypothesis H0 according to (12). The propagated state vector X̂k|k−1(H1) in (20) is computed as X̂k|k−1(H1) =

Φk X̂k−1(H1), where X̂k−1(H1) is the corrected state vector under hypothesis H1 at time k− 1. If no outlier has

been detected at k − 1 then X̂k−1(H1) = X̂k−1(H0). Consider for instance that the first outlier appears at time

instant k. Then X̂k−1(H1) = X̂k−1(H0) and X̂k(H1) is calculated after the corresponding innovation is corrected

for the error presence (i.e. the corresponding element of the M̂k vector is set to the estimated bias). For every

observation window X̂t−N (H1) is initialized as X̂t−N (H1) = X̂t−N (H0). The corrected state vector at time k

which depends on Ik(H1) and will be used at time k + 1 for the computation of X̂k+1|k(H1), is obtained from

the EKF update state equation as

X̂k(H1) = X̂k|k−1(H1) +KkIk(H1), (21)

where Kk is the EKF gain matrix under nominal conditions (hypothesis H0) and Ik(H1) is obtained from (20).

Eqs. (20) and (21) highlight the relation between a correct innovation model and an unbiased position estimation(
contained in X̂k(H1)

)
and viceversa.

Similarly to the “time of occurrence estimation” for hypothesis H1 presented in Eqs. (16) to (19), the most

likely time of occurrence for hypothesis H2 is

k̂t,q(H2) = arg min
k

{
k|lt

[
k, r̂2t,q(k)

]
> γ2

}
, (22)

where γ2 is the test threshold that is fixed according to given prior probabilities for hypotheses H2 and H0. The

noise variance jump estimation r̂2t,q(k) for each possible time of occurrence k is defined as

r̂2t,q(k) =
1

t− k + 1

t∑
j=k

[
I2
j,Ot,q

− s2j,Ot,q

]
. (23)

The nominal innovation variance s2j,Ot,q
(estimated under hypothesis H0 and obtained from (12)) is subtracted

from the calculated innovation variance in order to obtain the noise variance jump associated to the measurement.

The log-likelihood ratio for each possible time of occurrence k considering that outliers are affected by an error

of type H2 is defined as

lt[k, r̂
2
t,q(k)] = log

[
p
(
Ik,Ot,q

|H2

)
p
(
Ik,Ot,q

|H0

)] , (24)

12
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with

p
(
Ik,Ot,q

|H2

)
= p[Ik,Ot,q

(H2)], (25)

where p(Ik,Ot,q
|H2) represents the Ik,Ot,q

pdf considering an error r̂2t,q(k) at time instant k to be present. The

EKF innovation Ik,Ot,q
(H2) calculated under hypothesis H2 follows a Gaussian distribution N (0, s2k,Ot,q

(H2))

such that

Rk(H2) = diag(Θ̂k), (26)

Sk(H2) = HkPk|k−1H
T
k +Rk(H2), (27)

where s2k,Ot,q
(H2) corresponds to the Ot,qth element from the diagonal of Sk(H2) and Θ̂k is the measurement

noise variance vector whose ith element is defined as

• Θ̂k,i = σ2
k,i, if i /∈ Ot (non corrupted measurement),

• Θ̂k,i = σ2
k,i + r̂2t,q(k), if i = Ot,q and the time of occurrence has not yet been detected for the qth outlier,

• Θ̂k,i = σ2
k,i + r̂2t,q(k̂t,q(H2)), if i = Ot,q and the time of occurrence has already been detected for the qth

outlier (i.e., k > k̂t,q(H2)).

The corrected state vector under hypothesis H2 is then calculated as

X̂k(H2) = X̂k|k−1(H2) +Kk(H2)Ik(H2), (28)

where the EKF gain matrix Kk(H2) under hypothesis H2 is computed using (27) according to

Kk(H2) =
PkH

T
k

Sk(H2)
, (29)

and the innovation vector Ik(H2) (where Ik,Ot,q
(H2) is its Ot,qth element) is described as follows

Ik(H2) = Yk − Y [X̂k|k−1(H2)]. (30)

In this way, Eqs. (26) to (30) highlight the dependence among the estimated noise variance parameter r̂2t,q , the

final position solution contained in X̂k(H2) and the innovations Ik,Ot,q
(H2) to be used for the “time of occurrence

test” in (24).

Some pertinent remarks are made on the “time of occurrence test” algorithm related to both hypotheses H1 and

H2 to facilitate the comprehension of the proposed approach:

1) For the computation of X̂k(·) all the available ny innovations are used.

2) Only the innovations associated to the detected no outliers are corrected.

3) The innovation vector Ik(·) contains (ny − no) non corrected innovations.

The proposed strategy was presented under the assumption that the whole ensemble of detected outliers was affected

by the same type of error. For a more general case, where no correlation among the errors of the measurements

is assumed, a straightforward strategy would be to build a bank of 2no filters, each of them considering a possible

13
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combination of error sources (mean value or noise variance jump) for the no detected outliers. In urban areas where

many simultaneous outliers can be present, this solution presents a too high computational cost. However, we will

now explain why the above developed strategy is also well suited to independent error measurements. Consider

the general case where two measurements are simultaneously corrupted at time instant (t − d) (where d < N )

and that the error detection (14) is achieved at time instant t. Assume for instance that the first measurement Y1

is affected by a mean value jump and the second measurement Y2 is affected by a noise variance jump. At the

output of each of the two filters considering exclusively H1 or H2 we will obtain:

• For the H1 filter: the H1time of occurrence test (16) will detect the presence of an error in Y1 at the (t− d)
instant. For Y1 a mean value jump will correctly compensate the innovation model. However, no mean value

jump will be detected for Y2. According to (17), any possible mean value jump affecting Y2 will approximately

equal zero ( because Y2 was just affected by a noise variance jump). Thus, for any time of occurrence candidate

the test in (16) will not overpass the threshold γ1. As previously stated in the paper, a non corrected noise

variance jump affects mainly the covariance matrix of the state vector, not its mean value. Therefore the Y1

corrected innovations (20) won’t be significantly affected by the non detected noise variance jump in Y2.

• For the H2 filter: the H2 time of occurrence test (22) will detect an error in the two measurements at (t−d).
The innovation model corresponding to Y2 will be correctly compensated by a jump in the noise variance. The

Y1 innovation model will be compensated by a fictitious noise variance jump. The value of this variance jump

will be proportional to the actual mean value jump affecting Y1 (23). In theory, any non detected mean jump

entails important biases in the state vector parameters (which will later condition the innovation calculation).

However, the contribution of Y1 to the state vector estimation is inversely proportional to its associated noise

variance (i.e., if the noise variance is high, the EKF gain (29) for the measurement innovation will be low).

Therefore, potentially high mean value jumps will be deweighted during the H2 filtering. In this way, the

corrected Y2 innovation model (30) won’t be significantly affected by the non-compensated bias in Y1.

It is important to note that this discussion is valid even if the times of occurrence of the errors are not the same.

B. Error identification

After the time of occurrence detection has been performed in parallel for H1 and H2, a decision has to be taken

on the actual source of error affecting each outlier (i.e., either H1 or H2). Two different situations have to be

considered at the output of the time of occurrence test:

1) An error estimation for the qth outlier has been obtained under both hypotheses H1 (with k̂t,q(H1), m̂t,q)

and H2 (with k̂t,q(H2), r̂
2
t,q)

2) The presence of an error for the qth outlier has been detected for only one hypothesis (i.e. for only one of

the log-likelihood ratio tests (16) or (22) the threshold has been exceeded).

In the second situation, no further test is required to decide on the measurement error source: the sole hypothesis

under which the error has been detected is considered as the actual source of error (mean value jump for H1 or
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noise variance jump for H2). However, if an error has been detected under both hypotheses, a final solution must

be taken regarding the real origin of this error (remember that the measurement is exclusively affected by H1 or

H2). Assuming both H1 and H2 have the same probabilities, the test for deciding between H1 and H2 is defined

by

p
[
It−N+1:t,Ot,q

|k̂t,q(H1)
] H1

≷
H2

p
[
It−N+1:t,Ot,q

|k̂t,q(H2)
]

(31)

with

p
[
It−N+1:t,Ot,q

|k̂t,q(H1)
]

=
t∏

j=t−N+1

p
[
Ij,Ot,q

(H1)
]
, (32)

p
[
It−N+1:t,Ot,q

|k̂t,q(H2)
]

=

t∏
j=t−N+1

p
[
Ij,Ot,q

(H2)
]
, (33)

where It−N+1:t,Ot,q
= (It−N+1,Ot,q

, ..., It,Ot,q
).

C. Error correction

Once a decision has been taken regarding the source of error affecting each outlier, their associated innovation

model has to be corrected and fedback to the update stage of the EKF algorithm. More precisely, if the qth outlier

is affected by NLOS errors (H1) the associated innovation is corrected according to

Ĩt,Ot,q
= It,Ot,q

− m̂t,q

[
k̂t,q(H1)

]
, (34)

whereas if it is affected by LOS errors (H2) the measurement variance is corrected as

σ̃2
t,Ot,q

= σ2
t,Ot,q

+ r̂2t,q

[
k̂t,q(H2)

]
, (35)

where σ̃2
t,Ot,q

and Ĩt,Ot,q
denote the corrected parameters to be updated in the EKF algorithm. In the last case, the

corrected measurement variance is used for the new computation of the measurement noise covariance matrix Rt.

In this way, a final unbiased navigation solution is calculated. It is important to observe that for the future error

detection test in t + 1 (14), the Ĩt,Ot,q
term will not replace the original innovation parameter It,Ot,q

calculated

for H0. The observation window always contains the non corrected innovations to enable the detection of an error

during its whole duration.

VIII. LAND NAVIGATION SYSTEM WITH DEAD RECKONING SENSORS

A. Principles

During partial and total GPS outages the contribution of dead reckoning (DR) sensors is crucial. They enable

continuity over the position estimation. If left alone for a long period, the DR sensors provide highly biased

solutions [28]. However, for short GPS outage periods, they can be used as a reliable source of navigation. If the
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initial position is known, by integrating the measurements, they can provide a position estimation similarly to an

autonomous navigation system. Moreover, as they give a priori information about the vehicle dynamics, GNSS

reliability checks as the one proposed in the previous sections can become more efficient. A second navigation

system allows the presence of an outlier to be more easily detected. Corrupted pseudorange measurements are

not compared to a statistical model of the vehicles dynamics as described by matrix Qt in section III, but to the

solution computed from the real DR measurements. This paper will considers a tightly-coupled GPS/DR integration

strategy in an open-loop configuration. We assume that the measurements from two wheel speed sensors (WSS)

located in the vehicle rear wheels and a one-dimension gyroscope are available. The WSS provide a measurement

of the wheel angular velocities w in rad/s. Assume first that the wheel radii Rrr and Rrl (where the subindexes

refer to the wheel position as either rear right rr or rear left rl) are constant and known. The norm of the vehicle

mean speed (in the along track direction) at time t is computed in [29] as

|v|t =
wrr(t)Rrr + wrl(t)Rrl

2
. (36)

On the other hand a gyroscope is used to provide the angular yaw rate ψ̇. By combination of these two types of

sensors a self contained land navigation system is obtained. The errors associated to these DR sensors are estimated

in a state vector Xt defined as

Xt =
(
δλt, δφt, δht, δSFt, δψt, δψ̇t, bt, dt

)
, (37)

where δ represents the error associated to each parameter, SFt is the average of the two wheel’s scale factors

associated to |v|t and ψt is the vehicle effective yaw angle. The transformation frame expression to obtain the

variation in the geodetic coordinates (i.e., Δλt and Δφt) from the along track velocity |v|t is given by

Δλt (|v|t , ψt) = |v|t cos(ψt)
1

Rλ + ht
, (38)

Δφt (|v|t , ψt) = − |v|t sin(ψt)
1

(Rφ + ht) cos(λt)
. (39)

where Rλ is the earth radius of curvature in a meridian at a given latitude λt and Rφ is the transverse radius (we

consider the WGS84 model for which the earth is an ellipsoid). This paper assumes that the vehicle height ht is

known. Once the state vector gets propagated and corrected, the final geodetic position is given by λt = λDR
t +δλt,

φt = φDR
t + δφt and ht, where the index DR means that the parameters have been calculated by the stand alone

DR system (i.e., using the raw DR measurements only).

B. DR innovations

Though the reliability test principle (as already detailed in sections VI and VII) does not change for the augmented

system, a slight modification is introduced in the computation of the observation window innovations Ij,i used in

(14), (17) and (23). The idea is to exploit the immunity of the DR navigation system against multipath effects to
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compute these innovations. The N innovation samples corresponding to the observation window are not taken from

the already calculated innovations in (11), where the state vector was used to predict the received measurements.

Instead, they are recalculated using only the initial state vector at (t−N ) and DR measurements for [t−N +1 : t]

as follows

IDR
j,i = Yj,i − Ỹj,i, (40)

where

Ỹj,i =
∥∥ps

j,i − p̃j

∥∥ + bt−N +

j∑
u=t−N+1

dt−NΔt, (41)

p̃j =

(
at−N +

j∑
u=t−N+1

ȧDR
u Δt

)
llh2rec

, (42)

for j = t − N + 1, ..., t and i = 1, ..., ny . The expression (·)llh2rec denotes a frame transformation from geodetic

coordinates to rectangular coordinates. In (42), at−N = (λt−N , φt−N )T is the DR vehicle position in the geodetic

frame compensated by errors (δλt−N , δφt−N ) (estimated in Xt−N ), bt−N and dt−N are respectively the clock

bias and drift at time t−N , and ȧDR
u is expressed as

ȧDR
u =

⎡⎢⎣ Δλ̇u

(
˜|v|u, ψ̃u

)
Δφ̇u

(
˜|v|u, ψ̃u

)
⎤⎥⎦ , (43)

with

˜|v|u = (SF + δSFt−N ) |v|u , (44)

ψ̃u = ψt−N + δψt−N +
u∑

e=t−N+1

(
ψ̇e + δψ̇t−N

)
Δt. (45)

Note that ȧDR
u contains the vehicle relative motion (Δλ̇u,Δφ̇u) at time u according to (38) and (39) (calculated

from the corrected DR measurements in Eqs. (44) and (45)). Indeed, DR measurements are corrected by errors

(δSFt−N , δψt−N , δψ̇t−N ) estimated at time t−N . In this way, potentially biased state parameters resulting from a

non detected multipath error within the observation window do not affect (44) or (45). The new covariance matrix

SDR
j associated to innovations in (40) does no longer correspond to (12). As the state vector is not corrected by

the pseudorange measurements after time (t−N), SDR
j is now iteratively obtained as,

SDR
j = HjβjH

T
j +Rj (46)

with

βu = Φuβu−1Φ
T
u +Qu, ∀u = t−N + 1, ..., j (47)

where β is initialized as βt−N = Pt−N , Pt−N being the updated state covariance matrix of the EKF at time instant

t − N . The estimated pseudorange measurements Ỹj,i are obtained according to (41) by propagating an initial

position estimation at−N with ȧDR
u . Therefore, a faster and more accurate error detection is achieved. However, it

17



SPANGENBERG, CALMETTES, JULIEN, TOURNERET AND DUCHÂTEAU

must be observed that this DR position propagation strategy is independent of the EKF implementation, i.e., the

new IDR
j,i does not replace the standard EKF innovations (11) at time j and is only used for (14), (17) and (23).

The approach studied in this section presents the advantage of including a second navigation system, not affected

by multipath, that enables a more efficient detection/identification/correction strategy. In the following section, the

performance of the augmented DR system is tested with real navigation signals and compared to the stand alone

GPS approach.

IX. SIMULATION RESULTS

A. Simulated Data

This section validates the proposed detection/estimation algorithm for a stand-alone GPS approach (without DR

measurements) using simulated data. A land vehicle trajectory has been generated according to the state model (1)

with acceleration standard deviations (stds) σn = σe = 2m/s2 and σd = 0.2m/s2 (i.e. these acceleration stds apply

to both the trajectory generator and the EKF’s Q matrix). The received pseudorange measurements correspond to

a simulated GPS constellation with nominal noise std σ = 12m mainly accounting for thermal noise and other

possible error sources in urban environments. The number of visible satellites ny is constant such that ny = 7.

There are no changes in the constellation during the simulation period. The satellite constellation is generated from

online available GPS almanac data, with a 5◦ visibility mask. The pseudoranges are supposed to be compensated

by any type of atmospheric error. The errors introduced in the measurements have been generated according to the

model (3) as follows

• a mean value jump of 40m is introduced in the satellite number 1 between t = 30s and t = 60s,

• a noise std jump of 40m affects the same satellite for a time interval of 40 seconds between t = 100s and

t = 140s,

• a second satellite (satellite number 2) experiences a mean value jump of 40m between t = 110s and t = 150s.

The simulated errors were introduced to validate and highlight the performance of the proposed navigation filter in

terms of error detection and identification efficiency. The first isolated mean value jump on satellite 1 (corresponding

to hypothesis H1) is the type of error that more visibly affects the positioning accuracy. The correct functioning

of the filter is tested for this critical situation. A simultaneous appearance of different errors is then studied. Two

satellites are corrupted by different types of errors during overlapped time intervals. In this way, the algorithm

is tested for its capacity to identify several defective measurements and their corresponding source of error. The

threshold for the error detection in (14) has been adjusted in order to obtain PFA = 10−5. Based on several tests

done using real data, a suitable observation window length of N = 5 was used. This choice was motivated by the

need to detect fast changing errors and to achieve fast detection times, with no important losses in sensitivity. The

data sampling period equals 1Hz. The estimation of the time of occurrence in (16) or (22) has been achieved with

a threshold γ1 = γ2 = 1 (considering no a priori knowledge on the error time of occurrence, so both H0 and H1

or H2 are given the same probability within the observation window).
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The error detection/identification results for the interfered satellites are presented in Fig. 4. The top figure shows

results for satellite 1 and the bottom figure for satellite 2. The strategy reveals a very good performance since

the correct error hypothesis (H0, H1 or H2) is almost always detected. Figs. 5 and 6 show the innovation pdfs

corresponding to the two corrupted satellites. The nominal Gaussian pdf is depicted as a solid line while the actual

normalized pdf for the EKF innovations is shown with bars. The pdfs are obtained from all the available samples

of the simulated satellites. Top figures (a) present results for a standard EKF while bottom figures (b) correspond

to the enhanced detection/identification/correction algorithm proposed in this paper. The innovations do not have

a Gaussian distribution in the first case because the corrupted measurements are not compensated by the filter.

Conversely, when errors are corrected with the proposed algorithm, the histograms of the corrected innovations are

close to the adjusted Gaussian pdf.

The results for the final estimated position are presented in Fig. 7. The horizontal position errors (in 2D and

illustrated with a solid line) are compared to their corresponding bounds (dashed line). The bounds are calculated

from the updated EKF state covariance matrix Pt. In particular the eigenvalues (λ1,t, λ2,t), corresponding to

the sub-matrix PH
t formed by just the horizontal covariance error components, are used for the calculation. An

overbounding confidence circle is used rather than an ellipse to illustrate the worst case [30]. Only one dimension

is used for the bound computation, since the cross-track tolerance is usually larger than the along-track tolerance in

deep urban canyon scenarios (due to the strong directional characteristics of the visible satellite geometry). In other

words, one of the eigenvalues (λ1,t or λ2,t) usually dominates the other one. The biggest eigenvalue corresponding

to the worst case dimension is used. Considering a certain PFAb, the horizontal bound Bt, illustrated in Figs. 7, 9

and 10, is calculated according to

Bt =
√

max (λ1,t, λ2,t) C−1

N

(
1− PFAb

2

)
, (48)

where C−1

N (·) is the inverse cumulative distribution function of the N (0, 1) distribution. Herein, bounds were

calculated using a PFAb = 6.10−5 which corresponds to a confidence level of 4 stds. Result for a standard EKF

(i.e., without any error control) are depicted in Fig. 7(a), whereas Fig. 7(b) shows results obtained with the proposed

detection/identification/correction filter. In the first case (Fig. 7(a)), the final solution is either biased or not bounded

during the intervals where errors are present. However, in the second case (Fig. 7(b)) the corrected position estimates

are in good agreement with the bound thanks to the enhanced scheme. In particular, the sawtooth effect observed

in Fig. 7(b) is due to a few incorrect error identifications during t = 100s and t = 400s for satellite 1, as observed

in Fig. 4(b).

B. Experimental data

The previous subsection proved the relevance of the proposed algorithm under totally known conditions. The

estimated magnitude and time of occurrence of interferences could be compared to the corresponding known true

values. This subsection studies the reliability strategy on real experimental data. Its performances in terms of
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position error and correct bounding will be analyzed. Moreover, dead reckoning data resulting from the WSSs and

a gyroscope will be used to show the performance gain obtained when the system is augmented with a second

navigation reference. The experimental data was obtained from a test field campaign carried out in Toulouse centre

(France). The performed circuit shown in Fig. 8 has a duration of 25 minutes. The total distance traveled is 5.6km.

EGNOS corrections [30] were used to compensate ionospheric, tropospheric and ephemeris errors. In this way,

it can be assumed that only urban phenomena were perturbating the received signal. The Ublox TIM-LP GPS

receiver [31] was used at a data rate of 4Hz. A synchronized position attitude navigation (SPAN) system composed

by a Novatel receiver, with differential GPS (DGPS) approach, and a high accuracy IMAR inertial unit was taken

as reference for the navigation solution [32]. Height measurements were also obtained from this system. The

instantaneous noise variance σ2
t,i, that is a crucial factor in the reliability process, is computed as follows

σ2
t,i = σ2

i,URA + σ2
i,uire + σ2

i,tropo + σ2
i,rec, (49)

where the error components are denoted as URA for the user range accuracy (satellite clock and ephemeris error),

uire for the user ionospheric range error, tropo for the tropospheric error and rec for the receiver noise. The first

three terms in (49) are obtained from the EGNOS corrections whereas the last one is calculated as a function

of the signal to noise ratio (C/N0) [33]. The bound is computed as in (48) with the same PFAb = 6.10−5. The

acceleration stds used for the computation of the system noise covariance matrix Qt are σn = σe = 2m/s2 and

σd = 0.2m/s2. The proposed algorithm is compared to the WLS estimator resulting from the snapshot RAIM+FDE

approach. The bound for this latter approach is defined as in (48), where the state covariance matrix is calculated

as Pt = (HT
t R

−1
t Ht)

−1. Results obtained with the standard EKF, the snapshot RAIM+FDE strategy (as described

in section IV) and the proposed error control algorithm, using only GPS signals for the navigation, are depicted

in Figs. 9(a), 9(b) and 9(d). For the used RAIM+FDE system the black points depicted in Figs. 9(b) and 9(c)

represent two situations where the integrity monitor is not available. The first case is when there are less than 6

visible satellites which prevents the use of the FDE function. The second corresponds to the presence of more

than one outlier in the different satellite channels. In this case, though a problem was detected, none of the ny − 1

satellite subsets can be considered bias-free which prevents the use of the exclusion function. On the other hand,

the error values and time instants where anomalies were detected and successfully corrected are shown as a shaded

area under the horizontal error curve (for both integrity/reliability approaches). According to these figures the

following observations can be done:

• The standard EKF implemented without the proposed detection/identification/correction strategy presents

significant errors and inconsistent solutions (that are not within the computed bounds).

• The widely applied snapshot RAIM+FDE solution presents a poor performance in terms of positioning error.

The integrity monitor is unavailable during 10% of the time inducing very important errors. For instance, three

main errors may be outlined around the time instants t = 600s, t = 950s and t = 1200s. In the first case, the

RAIM+FDE does not performed satisfactorily because only 4 satellites are visible. For the other two errors,
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the exclusion function could not be performed because multiple outliers were present among the received GPS

signals. Moreover, a bound that largely exceeds the real errors entails an excessively big confidence interval.

• The proposed enhanced EKF reliability strategy clearly outperforms the other two algorithms by eliminating

aberrant errors (with a final mean error of 7.7m) and by providing an appropriated bounded solution during

98.8% of the time.

For the augmented GPS+DR system the velocity measurements were obtained from the on board WSS via the

control area network (CAN) bus. The velocity data was produced and processed at 50Hz. The WSS noise std is

0.1m/s and the WSS scale factor error std is 3%. An external gyro specially developed for land vehicle navigation

(Melexis MLX90609) was used. This gyro works at 70Hz and has an associated noise std equal to 23 deg/h

and a dynamic bias std equal to 19 deg/h. No significant loss of information was found when interpolating the

Melexis-gyro data at 50Hz, so as to align the frequency from both DR sensors. The propagation rate of the EKF

was set to 50Hz following the sensor frequency. The stand alone EKF (Fig.10(a)) is compared to the enhanced

EKF+error control strategy (Fig. 10(b)). A zoom was done for the first 450 seconds to facilitate the comparison

between the two techniques. The following observations can be done:

• The hybrid navigation system (GPS+DR) without any error control presents very interesting performances.

From the comparison between Figs. 9(a) and 10(a) it can be observed that the highly informative state model,

that corresponds to the multipath-free navigation system, minimizes the influence of outliers on the position

solution. Indeed, in Fig. 10(a) outliers are strongly filtered due to the high gain given to the DR sensors on

the short term. Only in the presence of long lasting errors the solution could eventually drift. However, this

is an unusual phenomenon in urban scenarios. Nevertheless, some inconsistent results are found around the

time instants t = 40s, t = 200s, t = 700s and t = 1300s.

• The detection/identification/correction strategy (Fig. 10(b)) compensates most of the inconsistent errors in Fig.

10(a) and provides bounded solutions. Moreover, when the error correction function is active (see shaded area

under solid line in Fig. 10(a)), the position error is reduced. Though outliers are highly filtered by the system,

when corrected, they allow a more accurate solution.

• The contribution of DR sensors to the final enhanced system using the proposed detection/identification/correction

algorithm is easily highlighted from the comparison between Figs. 9(d) and 10(b) : the mean positioning error

is decreased, peak errors are smoothed and a more precise bounding is achieved. Indeed, the mean error is

reduced to 6.8m and the solution is bounded during 97.3% of the time. This slight difference between the

bounding performance of the GPS and GPS+DR approach might be due to an actual underestimation of the

noise values associated to the sensors.

X. CONCLUSIONS

This paper presented an enhanced navigation system adapted to urban canyon scenarios. The originality of the

proposed approach relies on the way the received signals are processed: a two step procedure is used to detect
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multiple outliers and to classify these outliers according to the different types of errors affecting the navigation

signal. A hierarchical three-hypothesis test was implemented. Two different situations were considered in the

presence of multipath. These situations correspond to the presence or absence of line of sight (referred to as LOS

and NLOS situations) over the multiple GPS satellites. Therefore two kinds of errors were potentially “corrupting”

the pseudoranges, modeled as noise variance or mean value jumps. The time of occurrence and magnitude of these

errors were estimated. In this way, realistic measurement models could be obtained. A multiple model EKF was

considered as the best adapted solution for this fast-decision/on-line application. An augmented system including

speed sensors and a gyroscope was also proposed for the land vehicle solution. The reliability strategy was adapted

to exploit the “multipath independence” of these dead reckoning sensors. Simulated and real data validated the

relevance of the proposed algorithm. The detection/identification/correction approach did not only overcome the

RAIM availability problem but it also enabled a low error, accurate bounded solution.

The authors acknowledge that more extensive test field campaigns will be certainly necessary to provide a full

validation of the proposed strategy. At the same time different GPS receivers and DR sensors should be tested.

It will be also interesting to speculate about a fourth signal reception hypothesis (in addition to those proposed

in section V-A) where both a mean value and noise variance jump are considered. The application of the Student

t and Fisher F tests on the innovation vector (to detect mean value jumps and variance changes respectively) is

another interesting idea to explore in future works. Future investigations also include the application of the proposed

scheme to different areas where similar problems may be encountered. For example, similar errors were considered

to affect the mobile communication signals [15]. The proposed strategy could be interesting in this context.
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Fig. 1. Pseudorange errors in urban scenarios. (a-b) actual pseudorange errors for two different satellites. (c-d) normalized pseudorange error
pdfs (solid-dotted line) and nominal Gaussian pdfs (solid line).
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Fig. 2. Proposed strategy for the detection, identification and correction of outliers.
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Fig. 3. Innovation pdf p(It,i|Hj) (solid line for j = 0, dashed line for j = 1 and dashed-dotted line for j = 2).
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Fig. 4. Error identification for the two interfered satellites. Dashed lines contain time intervals where errors are present.
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Fig. 5. Innovation distributions for satellite 1.
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Fig. 6. Innovation distributions for satellite 2.
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Fig. 7. Final position errors (solid line) and horizontal bounds (dashed line).

Fig. 8. Vehicle circuit in Toulouse centre.

29



SPANGENBERG, CALMETTES, JULIEN, TOURNERET AND DUCHÂTEAU
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Fig. 9. Position errors (solid line) and horizontal bounds (dashed line) with GPS measurements. For the error control strategies (b-c) and (d),
the instants where a correction took place are shown as shaded areas under the position error curve.
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0 500 1000 1500
0

20

40

60

80

100

Time [s]

E
rr

or
 [m

]

Horizontal error
Horizontal bound

100 200 300 400
0

5

10

15

20

25

30

35

(a) Standard EKF

0 500 1000 1500
0

20

40

60

80

100

Time [s]

E
rr

or
 [m

]

Horizontal error
Horizontal bound

0 100 200 300 400

5

10

15

20

25

30

35

(b) Proposed detection/identification/correction algorithm

Fig. 10. Position errors (solid line) and horizontal bounds (dashed line) with GPS+DR measurements. For the error control strategy (b), the
instants where a correction took place are shown as shaded areas under the position error curve.
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