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1 Introduction
The importance of understanding the physics behind the com-
paction of granular systems made of soft particles lies in the nu-
merous natural phenomena and human activities that deal with
such kind of materials. They are present from constitutive biologi-
cal cells, foams, and suspensions1–4 to powder compaction, phar-
maceutical industries, and food activities5–8. In some civil engi-
neering construction, mixing coarse grains with rubber residues
exhibit surprising properties such as better stress relaxation9–12

or better foundation damping13–15.
In particular, far beyond the jamming point, the compaction

behavior of soft granular materials is a vast and still open subject,
with notable experimental, numerical, and theoretical challenges.
Among these challenges, a three-dimensional characterization, by
a realistic model that would consider both the change in grain
shape and the assemblies’ multi-contact aspects, remains poorly
studied.

In experiments, an underlying difficulty is to track the change
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in particle shape while detecting the making of new contacts.
Photoelasticimetry16–18 or inverse problem method coupled with
Digital Image Correlation (DIC)19,20 is the most used exper-
imental technic for analyzing hard particles’ two and three-
dimensional behavior. In particular, the DIC method, which has
been very recently extended to analyze two-dimensional soft par-
ticle assemblies far beyond the jammed state21,22, directly quan-
tifies the deformation field inside the particles and characterizes
the deformation mechanisms. For high packing densities, the
image resolution may sharply limit the tracking of the grains
and the detection of contacts between highly deformed parti-
cles, which is crucial for three-dimensional geometries. Further-
more, in three dimensions, it is not always possible to use a di-
rect optical approach to measure local properties of the particles,
and tomography reconstructions may be necessary, but techni-
cally laborious3,23–25. For instance, we can highlight the works
of Mukhopadhyay and J. Peixinho26 that using fluorescent hydro-
gel spheres together with tomography reconstruction were able
to follow the compaction evolution and particle connectivity after
the jammed state up to packing fractions close to 0.85.

Concerning numerical modeling, the discrete element method
(DEM) based on regularized interactions that mimic the Hertz
contact law (also called Smooth-DEM)27,28 have been widely
used for studying elastics properties in the small deformation
domain29–31. Nevertheless, the Smooth-DEM loses accuracy at
larger deformation, where the change in grain shape, which can
no longer be ignored, becomes a key mechanism in the com-
paction. In this case, the DEM coupled with a complementary ap-
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proach such as the Bonded-Particle Method (BPM) or the Finite-
Element Method (FEM) is a more suitable framework to simulate
and analyze the compaction of soft particle assemblies.

In DEM-BPM, deformable particles are seen as aggregates of
rigid particles interacting via elastic bonds32–34. This approach
is relatively straightforward and allows one to simulate 3D pack-
ing composed of a large number of aggregates. However, a major
drawback is that the deformable particles often present a plas-
tic behavior at large strain, and their characterization can be
complex depending on the imposed numerical parameters (e.g.,
size of primary particles or interaction laws)35,36. In contrast,
DEM-FEM strategies have the advantage of being closely rep-
resentative both in terms of geometry and bulk properties of
the particles. The price to pay is that these simulations are
computationally expensive. DEM-FEM methods can be classi-
fied into two classes. The Multi-Particle Finite Element Method
(MPFEM)37, in which regularized contact interactions are used,
and the Non-Smooth Contact Dynamic Methods (NSCD)38,39,
which uses non-regularized contacts laws. To our best knowl-
edge, the first MPFEM simulations applied to the compaction of
deformable disks were performed in the 2000s40,41, and the first
3D compaction simulations appear a few years later42–46. The
first applications of the NSCD to the compaction of soft grains as-
sembly are reported in recent works by Vu et al.21,47,48 for two-
dimensional hyper-elastic disks. In practice, an inherent difficulty
to DEM-FEM methods that explains the small number of studies,
particularly in 3D, is the high computational cost, limiting the
number of particles that can be simulated43,44,46.

Finally, a lack in the description of the microstructural phenom-
ena during the compression limits the development of theoretical
models upon the compaction of soft grain assemblies (i.e., a rela-
tion between the applied pressure P and the evolution of the pack-
ing faction φ). As reviewed in literature5,8,12,49–53, many com-
paction equations have been proposed during the last decades. In
general, existing models are based on macroscopic assumptions,
and, thus, fitting parameters are required to adjust each expres-
sion to the data. Among these equations, the most used is the one
proposed by Heckel5 and later improved by Secondi54. It states
that P ∝ ln(φmax− φ), where φmax is the maximum packing frac-
tion that the assembly can reach. Carroll and Kim justified this
equation by an analogy between the corresponding loss of void
space and the collapse of a cavity within an elastic medium un-
der isotropic compression55,56. Depending on the authors, differ-
ent interpretations have been provided to the fitting parameters,
which are supposed to represent either a characteristic pressure,
a hardening parameter, or it is linked to the assembly’s plastic-
ity8,12. Only recently, Cantor et al.57 and Cárdenas-Barrantes et
al.58 set up a systematic micro-mechanical approach to study the
compaction of soft granular assemblies. By applying this frame-
work to two-dimensional systems modeled with NSCD simula-
tions, new compaction laws entirely determined through the evo-
lution of the connectivity of the particles and the contact proper-
ties were presented.

This article presents a three-dimensional numerical and the-
oretical analysis of the compaction of assemblies composed of
highly deformable (elastic) spherical particles using the Non-

Smooth Contact Dynamics Method. We are interested in the
compaction evolution as a function of the applied stress from the
jammed state to a packing fraction close to unity.

As mentioned before, similar studies were recently performed
in 2D57,58. The transition from 2D to 3D requires additional nu-
merical and technical efforts to manage the particles’ deformation
correctly. Furthermore, as we will see, the resulting compaction
equation differs from those previously established in 2D using the
same micromechanical framework. This will be understood from
the approximation of the Hertz’s contact law in the small defor-
mation regime, where the contact force between two deformable
particles shifts from a linear dependence with the contact deflec-
tion in 2D to a power-law dependence in 3D.

The paper is organized as follows. In Section 2, we introduce
the principal numerical framework used in the simulations. The
numerical results and the theoretical model of the 3D compaction
curves are discussed in Sec.3. Section 3.1 deals with the evolu-
tion of the packing fraction and particle connectivity beyond the
jamming point as a function of the applied stress. In Sec. 3.2, we
present the micro-structural elements behind the evolution of the
packing fraction and the corresponding resulting 3D equation. In
Section 3.3, a more refined description of the particle stresses is
presented within the limit of the representativeness of the consid-
ered samples. Finally, some conclusions are discussed in Section
4.

2 Numerical Approach

2.1 The Non-Smooth Contact Dynamic Method (NSCD)

The simulations are performed using the Non-Smooth Con-
tact Dynamics (NSCD), a method developed by Moreau and
Jean38,39,59. The NSCD extends the Contact Dynamic (CD)
method38 to deformable bodies through a finite element ap-
proach (FEM).

The CD method is based on an implicit time integration of the
equations of motion and non-regularized contact laws. These
contact laws set the non-penetrability and friction behavior be-
tween the particles. No elastic repulsive potentials and no
smoothing of the Coulomb friction law are needed to determine
the contact forces.

Therefore, the unknown variables, i.e., particle velocities and
contact forces, are simultaneously solved via a nonlinear Gauss-
Seidel scheme. Considering deformable bodies (in the sense of
continuous mechanics) is natural with CD, although technically
very complex to implement. In this case, the bodies are dis-
cretized via finite elements, so the degrees of freedom - the co-
ordinates of the nodes - and contact interactions are resolved si-
multaneously.

We used an implementation of the three-dimensional Non-
Smooth Contact Dynamics Method available on the open-source
software LMGC90, capable of modeling a collection of deformable
or non-deformable particles of various shapes, behaviors and in-
teractions60.



2.2 Packing composed of 3D elastic particles

When dealing with three-dimensional and highly deformable par-
ticles, a problematic issue is to find the best compromise between
sample representativeness and numerical efficiency. In this study,
we are interested in the isotropic compression of elastic spherical
particles. Therefore, one necessary condition is to verify that the
mesh used is, at least, sufficiently accurate concerning the Hertz
approximation in the range of small deformations61. Let us first
consider the case of an elastic spherical particle of diameter d,
with a Poisson’s ratio ν equals 0.495 and a Young modulus E. The
sphere is compressed axially as shown in Fig. 1(a). The bottom
wall is fixed while the top wall moves downwards at a constant
velocity v0 chosen, such as the inertial effects are negligible (i.e.,
I << 1), where I = v0

√
ρ0/E 62, with ρ0 being the density of the

particles. Figure 1(b) shows the evolution of the normal force f
as a function of the vertical displacement δ using 444, 808, 6685
and 14688 tetrahedral elements with four nodes, together with
the corresponding prediction of the Hertz law given by61:

f
d2 =

23/2

3
E

1−ν2

(
δ

d

)3/2
. (1)

Compared to this equation, we obtain a good prediction with
14688 and 6685 elements, while with 444 elements, it shows de-
creasing accuracy. On the contrary, with 808 elements, the force-
displacement relation is slightly overestimated at the beginning of
the deformation, but the response quickly reaches the prediction
at higher deformation. Following this simple analysis, we fixed
the number of elements to 808 for all the simulations presented
below.

Concerning the number of particles in an assembly, we adopt
a double approach. First, we rely on previously published works
in which it is shown that a number between 32 and 200 parti-
cles is sufficient to qualitatively represent the loading surfaces,
the compaction, or the plastic flow of a compressed assembly of
deformable spherical particles42–44,46,63. Second, we use a statis-
tical analysis by considering different samples and focus on their
averaged behavior.

Thus, in this study, we consider 8 systems, 4 composed of
N = 50 particles and 4 composed of N = 100 particles. For
each system, particles are spheres made of an elastic material
with Poisson’s ratio equals to 0.495. The particles are first ran-
domly dropped in a cubic box with a small particle size disper-
sity around their mean diameter 〈d〉 in order to avoid crystal-
lization (d ∈ [0.8〈d〉 ,1.2〈d〉]). All packings are then isotropically
compressed under a stress σ0, such that σ0/E << 1 (i.e., the par-
ticles can be considered as rigid, in comparison to the applied
stress). This initial compression ends when the change of the
packing fraction φ is below 0.01%. After this point, all systems
can be considered at the jammed state, characterized by the ini-
tial packing fraction φ0.

Then, the packings are isotropically compressed by imposing a
constant velocity v on the box’s boundaries. The velocity v is care-
fully chosen to ensure that the systems are always in the quasi-
static regime, characterized by an inertial number I << 1. In our
simulations, we use a constant friction coefficient between parti-
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Fig. 1 (a) 3D cross-section of an elastic spherical particle vertically
compressed between two walls. The color intensity is proportional to
the mean displacement field. (b) Normal contact force applied on a
single spherical particle as a function of the deformation for different
meshes. The continuous black line is the approximation given by the
Hertz’s contact law Eq. (1).

cles µ = 0.3, and we keep the friction coefficient with the walls
and gravity equal to zero. Figure 2 presents screenshots of an as-
sembly composed of 100 particles at the jammed state (φ ∼ 0.49)
and near to the maximal dense state with φ ∼ 0.96. In the fol-
lowing, the mean behavior for systems composed of Np = 50 and
Np = 100 particles is obtained by averaging over the 4 correspond-
ing independent sets. The average jammed packing fraction φ0

obtained is 0.5 for 50 particle assemblies and 0.51 for 100 particle
assemblies.

3 Results

3.1 Packing compaction and particle connectivity
In this section we analyze the compaction of the assemblies, char-
acterized by the evolution of the packing fraction φ as a function
of the mean confining stress P and the mean particle connectivity
Z. The mean confining stress, in the granular system, is extracted
from the granular stress tensor σσσ , which is computed at each step
of the compression as64:

σαβ =
1
V ∑

c∈V
f c
α`

c
β
, (2)

where α and β correspond to x, y or z, f c
α is the α th component of

the contact force at the contact c, and `c
β

is the β th component of
the vector that join the two centers of the particles interacting at
the contact c. Note that the total contact force between two de-
formable particles is computed as the vectorial sum of the forces



Fig. 2 View of a granular assembly composed of 100 soft spherical par-
ticles at (a) the initial configuration and (b) close to φ = 0.96. The color
intensity, from blue to red, is related to the mean stresses in the particles.

at the contact nodes along the shared interface. The mean confin-
ing stress is then given by P = (σ1 +σ2 +σ3)/3, where σ1, σ2 and
σ3 are the principal stress values of σσσ . The packing fraction φ is
also related to the macroscopic deformation ε, by ε =− ln(φ0/φ).

Figure 3(a) shows the evolution of φ as a function of the mean
confining stress P, normalized by the reduced Young Modulus
E∗ = E/2(1−ν2). In our NSCD simulations (assemblies of 50 and
100 frictional spheres), the packing fraction increases from the
jammed state and asymptotically tends towards the value φmax, at
high pressure. Note that the compaction curves for 50 and 100
particles collapse on the same curve, agreeing with the previous
works mentioning the minimum number of grains necessary to
capture the average comparative behavior. In Fig. 3(a), we also
plot the compaction evolution obtained with the Smooth-DEM
approach and performed on the software YADE27,28, which we
have punctually used to simulate the isotropic compaction of an
assembly of 2500 quasi-rigid spheres that interact through Hertz-
contact law. The Hertzian-based simulation correctly reproduces
the compaction evolution for reasonable values of packing frac-
tion close to the jammed state but diverges for high values of
pressure due to the inability of the particles to truly deform. On
these compaction curves, we also show the approximation pro-
posed by Heckel-Secondi, with the following form5,54:

P
E∗

=−A ln
(

φmax−φ

φmax−φ0

)
, (3)

with A a fitting constant equal to 0.15 in our case, and φmax =

0.965.

Equation (3), although very simple in its form, is able to cap-
ture the general tendency of the compaction but slightly mis-
matches its evolution for intermediate pressures. Also, the pa-
rameter A does not have a well-established physical meaning,
and different values may be required to fit the data depending
on the friction coefficient65 or the bulk behavior of the parti-
cles12,55. Some improvements to the Heckel-Secondi equation
have been proposed by Ge et al.66, Zhang et al.67, and Wunsch
et al.68 by considering a double log approach (i.e., lnP ∝ log lnφ).
However, unlike the Heckel-Secondi equation, which can be jus-
tified55, these new approaches rely only on data fitting.

In Fig.3(b), we plot the evolution of the mean particle connec-
tivity Z as a function of φ . At the jammed state, the packing struc-
ture is characterized by a minimal value Z0, which depends on the
coefficient of friction, the packing preparation, and the shape of
the particles69–71. For spherical assemblies, Z0 is equal to 6 when
the friction vanishes, and it varies between 4 and 6 for higher fric-
tion coefficients. In our frictional systems, because of size effects,
we find Z0 ' 3.5. Beyond the jammed state, Z continues to in-
crease and, as shown in the previous 2D numerical47,58,65 and ex-
perimental studies1,21,72,73, as well as for soft-particle glasses74,
this increase follows a power law with exponent 1/2:

(Z−Z0) = ψ
√

φ −φ0, (4)

with ψ ≈ 8.5, a constant fully defined through the character-
istics of the jammed state and the final dense state as ψ =

(Zmax−Z0)/
√

φmax−φ0, with Zmax the maximum packing fraction
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Fig. 3 (a) Packing fraction φ as a function of the mean confining stress
P normalized by the reduced Young Modulus E∗. The dotted line is the
approximation given by Heckel Eq. (3), the dashed line is the small strain
approximation given by Eq. (7) (SD), and the continuous black line is
the prediction given by our micromechanical approach Eq. (8). The
inset shows experimental data of the uniaxial compaction of a packing
of hydrogel spheres26, together with Eq. (7) and Eq. (8). (b) Reduced
coordination number Z−Z0 as a function of the reduced solid fraction
φ − φ0 (log-log scale is shown in the inset). The continuous black line
is the power-law relation given by Eq. (4) with exponent 0.5. For the
NSCD simulations, the error bars represent the standard deviation on the
averaged behavior performed over 4 independent samples.
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Fig. 4 The macroscopic volumetric strain ε as a function of the mean
contact strain 〈ε`〉 in the small deformation domain. The continuous
black line is a linear fit with slope Γ≈ 4.4.

as φ→ φmax. Thus, this power-law relation already observed in 2D
can now be extended to the case of 3D soft particle assemblies.

3.2 A compaction equation
As discussed in the introduction, there are many compaction
equations trying to relate the confining stress to the evolution of
the packing fraction. Some of them, such as the Heckel-Secondi
equation, although based on fitting parameters, can be justified by
macroscopic arguments55,56. However, the vast majority are set-
tled on adjustment strategies sometimes involving several fitting
parameters. In this section, we briefly recall the general frame-
work introduced in a previous study58 allowing us to relate the
packing fraction to the applied stress through the micromechani-
cal specificity of a given system. We then apply this general frame-
work to the case of three-dimensional soft spherical particles.

The stress tensor Eq. (2) can be rewritten, as a sum over all
contacts, as:

σαβ = nc〈 f c
α`

c
β
〉c, (5)

where 〈...〉c is the average over all contacts. The density of con-
tacts nc is given by nc = Nc/V , with Nc the total number of con-
tacts in the volume V . Considering a small particle size distribu-
tion around the diameter 〈d〉, ∑p∈V Vp ' NpVp, with Vp = (π/6)d3,
the contact density can be rewritten as nc ' 3Zφ/(πd3), with
Z = 2Nc/Np. From the definition of P via the principal stresses
of σ , we get29,75–77:

P' φZ
π

σ`, (6)

with σ` = 〈 f c · `c〉c/〈d〉3, a measure of the mean contact stress.
This way of writing P as a function of Z, φ , and σ` is, in fact,
very common and has been successfully applied in different con-
texts. For example, it has been used to relate the bulk properties
of an assembly to the elastic contact properties78,79, or to link the
macroscopic cohesive strength to the cohesive behavior between
the interface of particles in contact35,80. The Equation (6) re-
veals the active role of the evolution of the microstructure in the
evolution of P with φ .

First, we focus on the small deformation domain. We can rely
on Hertz’s prediction where, in 3D, the force f c at a contact c be-
tween two touching particles is related to the contact deflection
δ c by f c = (2/3)E∗d1/2δ c3/2. Then, since `c ∼ d in the range of



small deformations, we get σ` ∼ (2/3)E∗〈ε`〉3/2, where ε` = δ c/d
is the deformation at a contact c, assuming that 〈ε3/2

` 〉 ∼ 〈ε`〉3/2

which is well verified in our weakly polydisperse systems. Also,
with a good approximation, we get that Z = Z0. Finally, our sim-
ulations show that the mean contact strain 〈ε`〉 and the macro-
scopic volumetric strain are linearly dependent as ε ∼ Γ〈ε`〉, with
Γ ∼ 4.4 (see Fig. 4). This value is close to the one obtained in
2D with disks and non-circular particles58. Note that Γ≈ 3 in the
ideal case of a cubic lattice arrangement of spheres. Here, in the
small deformation regime, we have that ε ≈ 〈εx〉+〈εy〉+〈εz〉, with
〈εx,y,z〉 the mean contact strain in the x, y and z direction. On the
other hand, we have that 〈εx〉 ≈ 〈εy〉 ≈ 〈εz〉 ≈ 〈ε`〉 for isotropic
compaction, which gives ε ∼ 3〈ε`〉 as a result. For disordered
packings, Γ values greater than 3 are obtained given the complex-
ity of the geometry of the contact network for a random system
of particles. Finally, by considering all these ingredients, Eq. (6)
is rewritten as:

PSD

E∗
=− 2

3πΓ3/2
Z0φ ln(3/2)

(
φ0

φ

)
, (7)

with PSD the limit of P(φ) at small deformations. The prediction
given by Eq. (7) is shown in Fig. 3. As expected, we see a fair
approximation of the compaction evolution in the small-strain do-
main, but it fails to predict the evolution at larger strains. Note
that Eq. (7) diverges faster than the Smooth-DEM results, which
employs the same Hertz principle at small deformations. Never-
theless, as the theory predicts, the simulations are still diverging
from the correct evolution after a certain point.

The critical issue for the large strain domain is to find a proper
approximation of σ`(φ). To do so, we can combine the previ-
ous microscopic approach with a macroscopic development by
Carroll and Kim55,56. Assuming that the compaction behavior
can be equivalent to the collapse of a cavity within the elastic
medium, they showed that P ∝ ln[(φmax − φ)/(φmax − φ0)]. Us-
ing this macroscopic approximation together with the microme-
chanical expression of P given by Eq. (6), and remarking that
the quantity Zφ is finite, it is easy to show that, necessarily,
σ` = α(φ) ln[(φmax − φ)/(φmax − φ0)], with α a function that de-
pends, a priori, on φ . Then, by (i) introducing the above form of
σ` into Eq. (6), (ii) ensuring the continuity to small deformation
(i.e., P→ PSD for φ → φ0), and (iii) introducing the Z−φ relation
(Eq. (4)) into Eq. (6), we get:

P
E∗

=− 2
3πΓ3/2

(
φmax−φ0

φ
3/2
0

)
φ
√

φ −φ0

[
Z0−ψ

√
φ −φ0

]
ln
(

φmax−φ

φmax−φ0

)
.

(8)

The compaction equation given by Eq. (8) is plotted with a
black continuous line in Fig. 3(a) together with our numerical
data. The prediction is able to capture the asymptotic behav-
ior close to the jammed state and the asymptotic behavior at
high pressures. In Eq. (8), and in contrast to previous models,
only one parameter, the maximum packing fraction φmax, is un-
known. Other constants are entirely determined through the ini-
tial jammed state and the mapping between the packing fraction
and coordination curve. Furthermore, to support the strength of
our model, we plot in the inset of Fig. 3(a) experimental results of

the uniaxial compaction, at constant velocity 1µm/s, of hydrogel
spheres performed by S. Mukhopadhyay and J. Peixinho26, to-
gether with Eq. (7) and Eq. (8). The parameters in the equations
are Z0 = 7 and φ0 = 0.65, given in the corresponding article, and
ψ = 8.5 and φmax = 0.95, values identified in our numerical simu-
lations. As we can see, the prediction given by Eq. (8) over the
experimental data has a great agreement. The small deviation
observed can be attributed to several issues, particularly to the
loading geometry (vertical shearing while the compaction model
has been developed for isotropic compression), the potentially
not strictly spherical shape of the grains, and the dynamics of the
system. Nevertheless, apart from these minimal differences, the
experimental data extracted from the literature confirm the valid-
ity of the compaction model.

Finally, it is worth mentioning the differences between Eq.
(8) and its two-dimensional equivalent57,58. In two dimensions,
the numerical simulations show that σ` depends linearly on the
mean contact strain, consistently with the approximation clas-
sically done in 2D Smooth-DEM simulations81. This linear de-
pendence in 2D then simplifies the development by replacing the
terms (2

√
φ −φ0)/(3Γφ0)

3/2) in the Eq. (8) by only 1/(Γφ0).

3.3 Particle shape and particle stress distribution

During the compression, the shape of the particles evolves from
an initial spherical shape to a polyhedral shape, which also mod-
ifies the stress distribution.

At the lowest order, the shape of the particles can be character-
ized by means of the sphericity parameter ρ̂, defined by:

ρ̂ =

〈
π

1/3 (6Vi)
2/3

ai

〉
i

, (9)

with ai the surface area of the particle and 〈...〉i the average over
the particles in the volume V . By definition, the sphericity of a
sphere is one, with values below one for any other geometry. In
Fig. 5, we plot the evolution of (ρ̂ − ρ̂0), with ρ̂0 ∼ 1 the ini-
tial sphericity of the particles, as a function of the excess packing
fraction, φ −φ0. We find that the shape parameter increases as a
power law with exponent β :

ρ̂− ρ̂0 = A(φ −φ0)
β , (10)

with β ≈ 2.5 and A≈ 0.6. It is interesting to note that a similar ten-
dency has been recently observed in 2D for soft-disks assemblies
with a similar exponent, which evidences a seemingly universal
geometrical characteristic of the compaction of rounded soft par-
ticles, as for the relation between Z and φ .

The change in grain shape is necessarily coupled with a re-
distribution of stresses within the grains. Thus, let us consider
the Cauchy stress tensor σσσC calculated inside the grains. Note
that σσσC should not be confused with the granular stress tensor
σσσ defined above and calculated from the contact forces. Figure
6 shows a cross-section images of an assembly of 100 particles,
where the color scale represents the von Mises stress computed at
each node. After the jammed state, strong heterogeneities in the
stress distribution inside the particles can be seen (see Fig.6(a)).
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Fig. 5 Evolution of the excess sphericity, ρ̂− ρ̂0 as a function of the excess
packing fraction φ −φ0 for the isotropic compaction of soft spheres. The
dashed line is the power-law relation given by Eq. (10).

The grains are mainly deformed at the contact points, which gen-
erally support the maximum stress. Far beyond the jammed state
(Fig.6(b,c)), the shape of the grains strongly changes, the size
of the pore declines, and the spatial stress distributions tend to
homogenize.

Fig. 7 shows the evolution of the probability density functions
(PDF) of the equivalent von Mises stress σvm. Close to the jammed
state, we observe exponential decays reminiscent of the distribu-
tion of contact forces classically observed in rigid particle assem-
blies82–85. This underlines the fact that, although the assembly
is isotropically compressed at the macroscopic scale, the particles
may undergo large shear stress. As the packing fraction increases,
the PDFs get narrower and gradually transform into Gaussian-like
distributions centered around a given mean value.

From these observations, and consistently to the previous ob-
servations made in two dimensions, a schematic picture emerges
to describe the compaction from a local perspective. During the
compaction, the assembly shifts from a rigid granular material
to a continuous-like material. In the granular-material state, the
voids are filled by affine displacement of the particles and small
deformations that do not change the spherical shape of the par-
ticles significantly. Then, stress and contact force homogenize
within the packing due to the increasing average contact surface
and the mean coordination number. This progressive shift of the
distributions to Gaussian-like distributions evidence that the sys-
tem is turning into a more continuous-like material as the packing
fraction approaches its maximum value. This is verified by the
decreasing standard deviation of such distributions (inset in Fig.
7(b)).

4 Conclusions
This paper investigates the compaction behavior of three-
dimensional soft spherical particle assemblies through the Non-
Smooth Contact Dynamic Method. From the jammed state to a
packing fraction close to 1, various packings composed of 50 and
100 meshed spherical particles were isotropically compressed by
applying a constant inward velocity on the boundaries. The mean
compaction behavior was analyzed by averaging over the inde-
pendent initial states.

One of the main results of this work is the writing of a new

equation for the compaction of 3D soft spherical particle assem-
blies based on micromechanical considerations and entirely de-
termined from the structural properties of the packing. More pre-
cisely, this equation is derived from the micromechanical expres-
sion of the granular stress tensor together with the approxima-
tion of the Hertz contact law between two spherical particles at
small strain and assuming a logarithmic shape of the compaction
curve at large strain. The prediction given by this model nicely
reproduces our numerical data and previous experimental results
found in the literature.

Moreover, our numerical data shows that the power-law rela-
tion between the coordination number and the packing fraction,
after the jamming, is still valid in three-dimensional compaction
of elastic spheres, which allows us, in fine, to write a compaction
equation nicely fitting our numerical data. Further, we show that
the stress distribution within the particles becomes more homoge-
nous as the packing fraction increases. Close to the jammed state,
the probability density functions of the von Mises stress decrease
exponentially as the maximum stress increases. The distributions
progressively shift into a Gaussian-like shape at high packing frac-
tions, which means that the system turns into a more continuous-
like material.

The general methodology used for the build-up of this 3D com-
paction equation was previously implemented in two-dimensional
geometries. Although the compaction curves in two and three di-
mensions appear to be similar in their overall shape (i.e., in both
cases, the packing fraction increases and tends asymptotically to a
maximum value as the confining stress increases), it is interesting
to note that the equation underlying the variation of P with φ es-
tablished with the same micromechanical framework depends on
the dimensionality. The origin of this dependence on the space
dimension lies in the functional form of the contact law in the
small deformation regime. Thus, for pursuing a more general
compaction equation, it is possible to apply the same microme-
chanical framework described in this article to assemblies whose
particles have more complex behaviors, such as plastic, elasto-
plastic, or visco-elastoplastic, and also to polydisperse systems. It
will be enough to identify the force law between two particles and
integrate it into the framework presented here for all these cases.

Finally, we would also like to point out that, from our best
knowledge, this is the first time that the Non-Smooth Contact Dy-
namics Method is applied to the case of compaction of deformable
grains assembly in three dimensions.

From a purely numerical perspective, many efforts still need
to be made on numerical optimization and parallelization of al-
gorithms to increase performance and system size. In particular,
it would be interesting to consider periodic conditions in 3D, at
least in two directions.
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the simulations in LMGC90 and the fruitful discussions regarding
the numerical strategies for modeling highly deformable particles
in the frame of the Non-Smooth Contact Dynamic method, specif-
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Fig. 6 Three dimensional cross-section of the von Misses stress field σvm at each particle and for different packing fraction φ = 0.66 (a), φ = 0.86 (b)
and φ = 0.96 (c) in an assembly of 100 particles. The color intensity is proportional to the von Mises stress scaled by the Young modulus, σvm/E.
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