
HAL Id: hal-03474561
https://hal.science/hal-03474561v1

Submitted on 10 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Parallel CN-VN processing for NB-LDPC decoders
Hassan Harb, Cédric Marchand, Ali Chamas Al Ghouwayel, Laura

Conde-Canencia, E. Boutillon

To cite this version:
Hassan Harb, Cédric Marchand, Ali Chamas Al Ghouwayel, Laura Conde-Canencia, E. Boutillon.
Parallel CN-VN processing for NB-LDPC decoders. IEEE Workshop on Signal Processing Systems
(SiPS’2021), Oct 2021, combria, Portugal. �hal-03474561�

https://hal.science/hal-03474561v1
https://hal.archives-ouvertes.fr

Parallel CN-VN processing for NB-LDPC decoders
Hassan Harb, Cédric Marchand,

Laura Conde-Canencia and Emmanuel Boutillon
Lab-STICC, CNRS UMR 6285

Université Bretagne Sud, Lorient, France
Email: emmanuel.boutillon@univ-ubs.fr

Ali Chamas Al Ghouwayel
Embedded Systems Division

EFREI Paris
Villejuif, France.

Email: ali.ghouwayel@efrei.fr

Abstract—In this paper, a novel and innovative approach to
implement the check node and variable node phases of the EMS
algorithm is proposed. The novelty is not only from the hardware
side, but also from the algorithmic point of view. An unusual
manner of processing some steps of the check and variable nodes
are shown. The performance and implementation results are
promising to dig deeper in this work. Compared to its serial
counterpart, the synthesis results of the proposed architecture
show a factor gain greater than two in terms of area efficiency,
with negligible performance loss.

Index Terms—Channel coding, ASIC, NB-LDPC, Min-Sum.

I. INTRODUCTION

Non-Binary (NB) Low-Density Parity-Check (LDPC) codes
allow to close the performance gap with the Shannon limit
[1] when using small or moderate frame lengths. They are
defined on high-order Galois Fields (GF) of order q with q > 2
and have been proven to be more robust than convolutional
turbo-codes and binary LDPC codes [2]. NB-LDPC codes are
already adopted in two space communication standards [3],
[4] but the high complexity of NB-LDPC decoders remains a
major drawback. Fortunately, prior art has already shown the
feasibility of NB-LDPC decoder implementation. In particular,
Trellis-Extended Min Sum (T-EMS) based algorithms allow
very high decoding throughput (greater than 10 Gbit/s) [5],
[6]. In this paper, we show that it is also possible to reach
decoding throughput of the same order with Extended Min-
Sum (EMS) based algorithms. This is achieved with massive
parallelization of a joint Check Node (CN)-Variable Node
(VN) unit. Adopting the parallel approach in hardware design
arises some difficulties that should be faced wisely. In this
context, the main two contributions in this work are: 1)
merging the CN and the VN blocks in a single block to
avoid the costly sorting of the check-to-variable messages;
2) a method to determine, without any sorting, the default
value associated with the check-to-variable messages. These
two main contributions led to a significant saving in terms of
hardware resources.

The paper is organized as follows: Section II shows the no-
tations, the NB-LDPC codes and the EMS algorithm. Section
III presents the proposed parallel pipelined CN-VN unit and its
architecture. The performance and implementation results are
shown in section IV and V, respectively. Finally, the conclusion
and perspectives are presented in section VI.

II. NB-LDPC CODES AND EMS ALGORITHM

This section introduces NB-LDPC codes, describes the
calculation of the intrinsic messages and the principles of the
EMS algorithm.

A. NB-LDPC codes defined over Galois Fields

A NB-LDPC code is a linear block code defined on a very
sparse parity-check matrix H whose non-zero elements belong
to a finite field GF(q), where q > 2. The elements of GF(q) are
{0, α0, α1, . . . , αq−2}. The dimension of matrix H is M×N ,
where M is the number of parity-CNs and N is the number
of VNs (i.e., the number of GF(q) symbols in a codeword). A
codeword is denoted by C = (x0, x1, . . . , xN−1), where xk,
k = 0, . . . , N − 1, is a GF(q) symbol represented by m =
log2(q) bits as xk = (xk,0 xk,1 . . . xk,m−1). The construction
of regular (dv, dc) NB-LDPC codes is expressed as a set of M
parity-check equations Cj , j = 0, 1, . . . ,M − 1, over GF(q),
where the jth parity check equation Cj is given as

Cj :

dc−1∑
i=0

hj,k(j,i)xk(j,i) = 0, (1)

where {k(j, i)}i=0,1,...,dc−1 is the set of the dc non-null
positions in the jth row of the matrix H and hj,k(j,i) its
associated GF values. Each variable is connected to exactly
dv non-null elements in a column.

B. Intrinsic messages

Let Y = (y0, y1, . . . , ym−1) be the LLR intrinsic vector
associated to a GF symbol x. Each value yp is defined as:

yp = log

(
P(xp = 0/rp)

P(xp = 1/rp)

)
=

2rp
σ2

, where rp = B(xp) + wp,

p = 0, . . . ,m− 1, is the received sample. In which, B(xp) =
(−1)xp is the Binary Phase-Shift Keying (BPSK) modulation
and wp is a realization of a Gaussian noise of variance σ2.
Considering the hypothesis that all the symbols in the GF(q)
alphabet have equal probability, the expression of the LLR
I+(x) of a symbol x knowing y is expressed as:

I+(x) =

m−1∑
p=0

|yp|∆(xp, x̄p), (2)

where ∆(xp, x̄p) = 0 if xp = x̄p and ∆(xp, x̄p) = 1
otherwise. Note that, by definition, I+(x̄) = 0 is the smallest
LLR value. It will be denoted as I[0] = (I+[0], I⊕[0]), with

the LLR I+[0] = I+(x̄) = 0 and the associated GF value
I⊕[0] = x̄. Let Π = {π(0), π(1), π(2)} be respectively the
index of the smallest, the second smallest and the third smallest
magnitude for |yp| values, p = 0, 1, . . . ,m − 1. The set Π is
retained in order to regenerate the nmin

intrinsic candidates
as proposed in [7].
In the hardware architecture, we will consider nmin

=
4. Thus, regenerating the 4 intrinsic candidates I =
(I⊕[0], I[1], I[2], I[3]) is performed as: 1) I⊕[0] is simply
the hard decision of the observed Y ; 2) I+[1] = |yπ(0)|
and I⊕[1] is equal to I⊕[0] except at position π(0) where
its associated bit is flipped; 3) I+[2] = |yπ(1)| and I⊕[2] is
equal to I⊕[0] except at position π(1) where its associated
bit is flipped and 4) I+[3] = min(|yπ(0)| + |yπ(1)|, |yπ(2)|)
and I⊕[3] is equal to I⊕[0] except at position π(0) and π(1)
if I+[3] = |yπ(0)| + |yπ(1)|, otherwise, if I+[3] = |yπ(2)|,
I⊕[3] is equal to I⊕[0] except at position π(3). The intrinsic
vector I associated to a given received symbol Y is thus
composed as: I = (I⊕[0], I[1], I[2], I[3]). Associated to
symbol Y , the pre-processed vector Ĩ is defined as: Ĩ =
(|y0|, |y1|, . . . , |y5|,Π, I⊕[0]), and allows to easily reconstruct
I with few hardware resources. It also allows to compute
I+[α] for any α ∈ GF(64).

C. CN and VN EMS-based updates

We consider the EMS algorithm [8] with the following char-
acteristics: VN degree dv = 2, CN input messages truncated to
a size nmin

� q and CN output messages to nmout
� q. This

leads to computation and storage reduction without necessarily
performance loss [9] [10]. In this paragraph, we focus only on
the CN and VN updates.

For the CN and VN descriptions, let:

• I = {I[0], . . . , I[nmin
− 1]} be the intrinsic LLR vector

(see previous section),
• {h0, . . . , hdc−1} the dc non-zero elements in H associ-

ated to a CN,
• {U0, . . . , Udc−1} the group of messages sent to a CN

from the dc connected VNs, and
• {V0, . . . , Vdc−1} the group of messages sent to dc VNs

from a CN.

Each Ui message can be written as Ui =
{Ui[0], . . . , Ui[nmin − 1]}. Each element Ui[j] corresponds
to a couple Ui[j] = (U+

i [j], U⊕i [j]) where U⊕i [j] is the
GF(q) symbol and U+

i [j] its corresponding LLR value,
i = 0, . . . , dc − 1 and j = 0, . . . , nmin

− 1. The elements
in these messages are sorted in ascending order of LLR values.

1) CN update: The CN update is processed as

V +
i (x) = min

{
dc−1∑

i′=0,i′ 6=i

U+
i′ [ji′]|

dc−1⊕
i′=0,i′ 6=i

U⊕i′ [ji′] = x

}
, (3)

where ji′ ∈ {0, 1, . . . , nmin − 1} for i′ = 0, 1, . . . , dc − 1,
i′ 6= i and ⊕ refers to GF addition (i.e., XOR gate).

The final stage is to partially sort in increasing order the
set of values of V +

i (x) indexed by x ∈ GF(q) to obtain an
ordered set V ⊕i = {x0, x1, . . . , xnmout−1} that verifies

∀(j, k), j < k < nmout
⇒ V +

i (xj) ≤ V +
i (xk),

and

∀x ∈ GF(q), x 6∈ V ⊕i ⇒ V +
i (xnmout−1) ≤ V +

i (x).

The ith output message is thus given as Vi =
{Vi[0], Vi[1], . . . , Vi[nmout−1]}, where Vi[j] = (V +

i [j] =
V +
i (xj), V

⊕
i [j] = xj), j = 0, 1, . . . nmout−1.

In the state of the art, the GF values outside Vi are associated
with a default LLR value Di, with Di = V +

i [nmout
− 1] +O,

i.e., the default value is equal to the highest LLR value of
message V added with O, a positive offset value (see [10] for
more details on the definition of the offset value). In section
III.A, we propose a new method to determine the default value
Di to facilitate the hardware implementation of the full parallel
CN architecture.

2) VN update: After processing CN a, the required inputs
of a VN are: the intrinsic vector I of size nmin

, the m values
of Y to be able to compute I+(x) for any x ∈ GF(q) using
(2), the received message V a of size nmout coming from CN
a, the default value Da associated to message V a and the
message Ua sent to the CN a. The two outputs of the VN are
the current message U b of size nmin

to be sent to CN b and
the VN decision x̂ obtained by combining V a and Ua.

The first step of the VN processing is the addition of the
intrinsic LLR values on the incoming V a message to generate
the message V̄ a defined as:

V̄ a,+[j] = V a,+[j] + I+(V a,⊕[j]), j = 0, 1, . . . nmout − 1.
(4)

Since V̄ a associates LLR values for only a subset of GF
values, a second message Ī is generated in parallel as:

Ī+[j] = I+[j] +Da,+, j = 0, 1, . . . nmin
− 1. (5)

Then, the nmin smallest values of set V̄ a∪ Ī in terms of LLR
value are extracted along with their associated GF symbols to
generate the vector messages Ū b. Note that by construction,
V̄ a,⊕ ∩ Ī⊕ may not be empty. In that case, the corresponding
LLR element in Ī is saturated so that Ū b contains the first
nmin

smallest LLR values with distinct GF values. The last
step to generate the final message is the normalization process
that keeps the first LLR of the message equal to zero, i.e.,

U b,+[j] = Ū b,+[j]− Ū b,+[0],

U b,⊕[j] = Ū b,⊕[j], j = 0, . . . , nmout
− 1. (6)

III. PIPELINED CN-VN UNIT

This section presents a pipelined architecture able to per-
form a CN of degree dc = 12 and its 12 associated VNs every
Clock Cycle (CC). Based on the Hybrid (H)-CN architecture
[11], an optimized version of the CN architecture for the 5/6-
rate codes (dv = 2) is described and merged to the VN to
form the innovative CN-VN unit.

A. Principle of the hybrid CN architecture

The H-CN presented in [11] consists in three main func-
tions: presorting, ECN processing and decorrelation using the
Valid Syndrome Vector (VSV).

1) Presorting: The preliminary step of CN processing is
the presorting block that leads to a significant reduction of the
CN computations. In [12] the authors proposed the sorting
of the CN input vectors based on the LLR value of the
second GF element. This sorting polarizes the reliability of
the input vectors and classifies them into two sets: high
reliability and low reliability. Designing the size of the two
sets is performed through a statistical study that determines
the percentage of using an input message. Then, after selecting
the most probable ones, the Monte Carlo (MC) simulation
ensures the robustness of the selected ones. In addition, some
messages can be pruned by hand after verifying that they do
not weaken the performance. Consequently, presorting helps
the CN to concentrate its processing effort on low-reliability
vector messages.

Fig. 1 shows the architecture of the proposed paral-
lel pipelined CN-VN. In this paragraph, we focus on the
Presorting, Permutation (Perm.) Ψ and Perm. Ψ−1 blocks.
Ua = {Ua0 , . . . , Ua11} is of size dc = 12, each Uai =
{Uai [0], . . . , Uai [3]} is of length nm,in = 4, i = 0, . . . , dc− 1.
The Presorting receives Ua+[1] = {Ua+0 [1], . . . , Ua+11 [1]} to
generate the Ψ = {ψ[0], . . . , ψ[11]} set. ψ[0] is the index of
the first minimum value in Ua+[1], ψ[1] is the index of the
second minimum value in Ua+[1], . . . , etc. The Perm. Ψ block
permutes Ua according to Ψ so the second LLR values of the
new vector U

′a are sorted. Consequently, the high reliability
messages are concentrated in one region so the CN concen-
trates its processing on them while the rest are suppressed.
Next paragraph shows how the number of processed input
symbols is reduced from dc×nm,in = 12×4 = 48 down to 27
after performing Perm. Ψ. After the CN and VN processing,
the Perm. Ψ−1 block reorders the outputs to their original
order. More details on the presorting technique are presented
in [13], [12] and [14].

Fig. 1. CN-VN architecture.

2) ECN: For the implementation of the CN processing,
equation (3) is implemented in a simplified way using the H-
CN architecture defined in [11]. The whole CN architecture is
characterized graphically in Fig. 2.a).

The number of elements of U ′i , i = 0, . . . , 11, that enter
the CN is indicated by the number of circles below it. For
example, only U ′0[0] = (U ′+0 [0], U ′⊕0 [0]) out of nmin = 4
elements of message U ′0 enters the CN and the first 3 el-
ements {U ′8[0], U ′8[1], U ′8[2]} of message U ′8 enter the CN.
This reduction of the number of messages, being fed to the
CN, is achieved thanks to the presorting process. The line
of multipliers on the top indicates that each GF value of
U ′k is multiplied by the GF coefficient h′k. The outputs of
the multipliers enter a datapath composed of a network of
ECNs. Each ECN performs the bubble check algorithm. Let
us give the key to understand the processing performed by
the generic ECN given in Fig. 2.b). An ECN receives two
input vectors A and B of size na and nb given by the number
of circles (or bubbles) respectively in the first column and in
the first row (na = 4 and nb = 3 in Fig. 2.b)). It generates
an output message C of size nc. Note that in Fig.2.a), the
output size is implicitly defined as the number of inputs (i.e.,
number of vertical bubbles) of the next ECN. A circle in
position (t0, t1), t0 = 0, . . . , na − 1 and t1 = 0, . . . , nb − 1,
means that Ua[t0] and Ub[t1] are added to generate a couple
(U+

a [t0] +U+
b [t1], U⊕a [t0]

⊕
U⊕b [t1]). The nc bubbles of min-

imum LLR sorted in increasing order constitute the output
vector of the ECN. The VSV is appended with a boolean
value that indicates whether Uc[t2], t2 = 0, . . . , nc − 1, has
been generated with Ub[0] or with Ub[t1], t1 > 0. Bubbles in
dark color append a false Boolean value to the corresponding
position in the VSV vector.

The three last ECNs (ECN11, ECN12 and ECN13) are
slightly simplified compared to the other ECNs because all
the bubbles are output without any sorting. In fact, one of the
main ideas in the architecture is to save hardware complexity
by postponing the sorting operation in the VN processing.
Since no sorting is performed, the default value D of the
check to variable message cannot be determined. Thus, we
propose to empirically set it to the LLR of a fixed bubble
position indicated by Dg , D10 and D11 in ECN11, ECN12 and
ECN13, respectively. Note that the size of the output message
S of ECN11 is nS = 20 while the size of the message of
ECN12 and ECN13 is nFB = 16.
Any element of S is given by the summation of all the
incoming messages. A decorrelation process is thus required
to satisfy the parity check definition (see equation (3)). It
suppresses the GF symbol U ′⊕i [0] from S⊕[t] if U ′⊕i [0] con-
tributes in computing S⊕[t] to generate the ith output thanks
to the GF adder (addition and subtraction are equivalent in
the GF domain), where i = 0, . . . , 11, t = 0, . . . , n − 1 and
n ∈ {nS , nFB}. Otherwise, if U ′⊕i [0] does not contribute in
computing S⊕[t], the Decorrelation Block (DB) associated to
U ′i saturates the LLR value S+[t]. This is done thanks to the
VSV vector that is being checked by the DB. Subtracting only
U ′⊕i [0] from S is justified by the fact that when subtracting
U ′⊕i [j] from S, j = 1, . . . , 3, leads to the same result if
the position of messages taken from the neighborhood input
vectors is the same. The final multiplication is applied on the
GF value to compute the output message V ′i . In more details,

Fig. 2. a) High level CN architecture and b) ECN in case of na = 4, nb = 3 and nc = 5.

V ′⊕i [t] = (S⊕[t] − U ′⊕i [0]).h′−1i and V ′+i [j] = S+[t]. These
operations are performed in 1 CC to have 3 CC latency in
total to perform the CN.

B. CN-VN Processing

Let us focus again in the CN-VN architecture shown
in Fig. 1. The inputs of CN-VN are the intrinsic
information Ĩ = {I, Ĩe} (I = {I0, . . . , I11} and
Ĩe = {{I0[0], . . . , I11[0]}, {|Y0|, . . . , |Y11|}, {Π0, . . . ,Π11}}),
the GF coefficients and their inverse (h, h−1) =
{(h0, h−10), . . . , (h11, h

−1
11)} and the extrinsic messages

Ua = {Ua0 , . . . , Ua11}. The first stage of the proposed
joint CN-VN unit starts in a similar way than the hybrid
architecture, except that all messages are received in
parallel: first, all the inputs are permuted using the indexes Ψ
obtained by the presorting block, then the H-CN is performed.

The presorting receives {U+
0 [1], . . . , U+

11[1]} to generate
the indexes Ψ = {ψ[0], . . . , ψ[11]} for dc = 12 based
on the presorting principle explained in section III.A,
thus U+

ψ[0][1] ≤ U+
ψ[1][1] ≤ · · · ≤ U+

ψ[11][1]. The architecture
of the parallel pipelined presorting block is inspired from [15].

Based on the Ψ values, the inputs of the CN-VN are
switched using the permutation (Perm. Ψ) block. After that,
the CN is performed. The specification of the CN was defined
in section III.A.

Fig. 3 illustrates the parallel architecture of the VN. The
eLLR block generates the intrinsic LLR value I+(V ′a⊕i),
thanks to |Y ′i | and I ′⊕i [0], then the value is added to V ′a+i to
generate V̄ ′a+i . The Regeneration of Intrinsic Candidates (RIC)
block regenerates the intrinsic candidates {I ′i[0], . . . , I ′i[3]}.
Then, the offset value Da ∈ {Dg, D10, D11} associated
to V ′i is added on {I ′i[0], . . . , I ′i[3]} to generate Ī+i . In

Fig. 3. VN architecture

section II.C, we showed that the output is generated by
detecting the most reliable not redundant GF symbols from
{V ′ai [0], . . . , V ′ai [n − 1], I ′i[0], . . . , I ′i[3]}. To reduce the
complexity, the sorting and the Redundant Elimination (RE)
operations are separated. First, the vector V ′si of nmin + nδ
couples having the lowest LLR values are detected from
{V ′ai [0], . . . , V ′ai [n− 1], I ′i[0], . . . , I ′i[3]}, then the outputs are
generated by detecting, from V ′si , the nmin

couples without
redundant GF symbols. In this work nδ = 1. Thus, the
n+4-to-5 Sorter block, n ∈ {nFB , ns} = {16, 20}, generates
V ′si that is having the 4+1 = 5 couples of lowest LLR values
among {V ′ai [0], . . . , V ′ai [n − 1], I ′i[0], . . . , I ′i[3]}. The RE
block generates U ′bi by detecting the 4 couples from V ′s that
are different in terms of GF values and having lowest LLR
values. Finally, the normalization of Ū b,+ (6) is performed.
Eight pipeline stages are inserted in the VN architecture.

The last operation in CN-VN is the inverse permutation
performed using Ψ−1 to reorder U ′b = {U ′b0 , . . . , U ′b11} and
X̂ ′ = {x̂′0, . . . , x̂′11} to their original order. This block is
having one pipeline stage and hence 16 CCs and 10 CCs are
the total latency to generate U b and X̂ respectively.

IV. SIMULATION RESULTS

We consider MC simulations under the AWGN channel, BPSK
modulation and 6 bits-LLR values quantization. In order to
compensate the performance degradation due to the elimi-
nation of some bubbles, the maximum number of iterations
in the proposed decoder is increased to 30 with sub-layered
decoding schedule, while the results of the serial H-CN and
T-EMS are obtained considering 10 iterations and full-layered
decoding schedule. Fig. 4 shows simulation results for the H-
CN EMS decoder [11] and the proposed CN-VN approach
with the following parameters: K = 120, N = 144 GF(64)
symbols and CR = 5/6.

3 3.5 4 4.5 5

E
b
/N

0
 (dB)

10 -8

10 -6

10 -4

10 -2

10 0

B
E

R

T-EMS (10 iterations)

Serial H-CN (10 iterations)

Proposed (30 iterations)

Fig. 4. FER performance for a (144, 120) NB-LDPC code over GF(64):
Proposed decoder vs FB CN-based decoder and (864, 720) B-LDPC code
over GF(2) SP decoder.

Compared to H-CN, the proposed decoder presents a per-
formance loss of only 0.1 dB. This amount of degradation
comes as a cost of the low computational operations achieved
by eliminating some bubbles. The same loss that appears
compared to T-EMS [16] when Eb/N0 ≤ 4.5 dB, it starts
to disappear when Eb/N0 > 4.5 dB. Although the proposed
decoder is implemented with a maximum number of iterations
equal to 30, it is the average number of iterations that will be
involved to determine the average decoding throughput. This
will be discussed in more details in the next section

V. IMPLEMENTATION RESULTS

This section discusses the throughput calculation and the
post-synthesis results on 28-nm FDSOI technologies. Since
the decoding throughput is highly dominated by the average
number of iterations nav,it, we only focused on Eb/N0 = 4.5
dB. At this point, Table I shows the number of processed

CNs per second TCN =
Fclk × 106

LCN × nav,it
(CNs/s) and the

hardware efficiency ECN = TCN/C (CNs/s/Mgate) of the
CN-VN block in this work and [11] (dc = 12), where LCN
is the latency of the CN-VN and Fclk the clock frequency
of the design expressed in MHz. Synthesis results give a
maximum clock frequency Fclk = 900 MHz with a latency
LCN = 1. For the serial hybrid architecture, a new synthesis
of the hybrid architecture performed by the authors increased
the maximum clock frequency up to 1000 MHz. The latency
of the serial hybrid architecture is equal to LCN = 41.
The parallel CN-VN block provides much higher TCN than
the serial CN-VN presented in [11]. Even though the area
consumption of this serial version is about 10 times lower
than the parallel one, the hardware efficiency of the latter is
higher as shown in Table I.

TABLE I
COMPARISON OF THE PARALLEL AND SERIAL CN-VN BLOCK

(ASICS).

Eb/N0 = 4.5 dB CN-VN this work CN-VN [11]
nav,it 1.5 1.26

C (NAND) 0.38 M 0.032 M
TCN × 106 (CNs/s) 600 19.4

ECN × 106 (CNs/s/Mgate) 1579 607

VI. CONCLUSION AND PERSPECTIVES

This work presented a parallel-pipelined version of the serial
H-CN. The EMS algorithm is rethought and implemented in
a novel manner enabling an important complexity reduction
along with an increase in the throughput rate. The H-CN
and the T-EMS algorithms with 10 iterations and layered
decoding schedule are considered as references to compare
performance. Knowing that the average number of iterations
will be finally impacting the throughout rate, the maximum
number of iterations used in the proposed decoder has been
increased from 10 to 30 to allow the reduction of the required
computation resources in the EMS algorithm and thus the
global decoder area. In more details, to achieve the goal
of reducing the area consumption, some computations are
suppressed by pruning some extra bubbles. This procedure
leads to performance loss, compensated by increasing the
maximum number of iterations. MC simulation showed a
low performance loss, and ASIC implementation showed that
this work more than doubles the hardware efficiency of the
serial H-CN. Even though the complexity and simulation
results evaluation is performed on the pre-mentioned code, the
proposed CN-VN can be used for any code of dc = 12 and
can be extended for codes that are having dc > 12 without the
need of modifying the first 12 ECNs. On the other hand, for
codes of dc < 12, some additional bubbles should be included
in the decoding process in order to maintain a good level of
performance. In this perspective, future work will be designing
a flexible parallel pipelined H-CN that can be adjusted for
different NB-LDPC codes.

REFERENCES

[1] M. C. Davey and D. J. C. MacKay, “Low density parity check codes
over GF(q),” IEEE Communications Letters, vol. 2, no. 6, pp. 159–166,
June 1998.

[2] S. Pfletschinger, A. Mourad, E. Lopez, D. Declercq, and G. Bacci, “Per-
formance evaluation of non-binary LDPC codes on wireless channels,”
in Proceedings of ICT Mobile Summit. Santander, Spain, June 2009.

[3] “Beidou navigation satellite system, signal in space, interface control
document, open service signals b1c (version 1.0),” China Satellite
Navigation Office, 2017.

[4] “Short block length ldpc codes for tc synchronization and channel
coding,” Consulative Committee for Space Data Systems (CCSDS),
2015.

[5] J. O. Lacruz, F. Garca-Herrero, M. J. Canet, and J. Valls, “Reduced-
complexity nonbinary ldpc decoder for high-order galois fields based
on trellis minmax algorithm,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 24, no. 8, pp. 2643–2653, Aug 2016.

[6] H. Pham Thi and H. Lee, “Basic-set trellis minmax decoder architecture
for nonbinary ldpc codes with high-order galois fields,” IEEE Transac-
tions on Very Large Scale Integration (VLSI) Systems, vol. 26, no. 3,
pp. 496–507, March 2018.

[7] H. Harb, A. C. Al Ghouwayel, and E. Boutillon, “Parallel generation
of most reliable LLRs of a non-binary symbol,” IEEE Communications
Letters, vol. 23, no. 10, pp. 1761–1764, Oct 2019.

[8] D. Declercq and M. Fossorier, “Decoding algorithms for nonbinary
LDPC codes over GF(q),” IEEE Transactions on Communications,
vol. 55, no. 4, pp. 633–643, April 2007.

[9] ——, “Decoding algorithms for nonbinary LDPC codes over GF(q),”
IEEE Trans. Comm., vol. 55, no. 4, pp. 633–643, April 2007.

[10] A. Voicila, D. Declercq, F. Verdier, M. Fossorier, and P. Urard, “Low
complexity, low memory EMS algorithm for non-binary LDPC codes,”
in IEEE Intern. Conf. on Commun., ICC’2007. Glasgow, England, June
2007.

[11] C. Marchand, E. Boutillon, H. Harb, L. Conde-Canencia, and A. Al
Ghouwayel, “Hybrid check node architectures for NB-LDPC decoders,”
IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 66,
no. 2, pp. 869–880, Feb 2019.

[12] H. Harb, C. Marchand, A. Ghouwayel, A. Conde-Canencia, L., and
E. Boutillon, “Pre-sorted forward-backward NB-LDPC check node
architecture,” in SIPS, 2016.

[13] C. Marchand and E. Boutillon, “NB-LDPC check node with pre-sorted
input,” in 2016 9th International Symposium on Turbo Codes and
Iterative Information Processing (ISTC), Sept 2016, pp. 196–200.

[14] C. Lin, S. Tu, C. Chen, H. Chang, and C. Lee, “An efficient decoder
architecture for nonbinary LDPC codes with extended min-sum algo-
rithm,” IEEE Transactions on Circuits and Systems II: Express Briefs,
vol. 63, no. 9, Sept 2016.

[15] M. J. S. Amin Farmahini-Farahani, Henry J. Duwe III and K. Compton,
“Modular design of high-throughput, low-latency sorting units,” IEEE
TRANSACTIONS ON COMPUTERS, vol. 62, no. 7, pp. 1389–1402, July
2013.

[16] E. Li, K. Gunnam, and D. Declercq, “Trellis based extended min-sum for
decoding nonbinary ldpc codes,” in 2011 8th International Symposium

on Wireless Communication Systems, 2011, pp. 46–50.

