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Abstract. Among the several categories of trust models, cognitive models have

important features. Initially these models were only informally defined, but for-

malizations were recently proposed. The concepts of the models are thus suffi-

ciently well defined to be implemented and evaluated. In this paper, the cogni-

tive trust model proposed by Castelfranchi and Falcone is integrated into a BDI

(belief, desire, intention) agent architecture and implemented with the Jason pro-

gramming language. The ART testbed scenario is then used to experiment and

evaluate both the model and the implementation.

1 Introduction

The concept of trust is important for recent application domains where agent technolo-

gies are relevant, such as information retrieval, e-commerce, and peer-to-peer systems.

It has been in the focus of many research projects during the last few years, and many

theoretical models and systems have been developed. One of the most prominent the-

oretical model is the cognitive model of trust proposed by [2], henceforth abbreviated

C&F. Their informal definition of trust is formulated as an individual belief about some

properties of the trustee.

In this paper we develop further this approach, with the aim of bridging the gap be-

tween C&F’s cognitive theory and computational models. A first formalisation of C&F

trust is proposed in [7], where the definition is refined step by step into more primitive

concepts, namely actions, agency, preference and choice (Section 2 briefly presents this

formalisation). We here evaluate this definition by means of the ART scenario, which

is commonly used as a testbed for trust models (Section 3). We first present an imple-

mentation of the C&F definition in a BDI (belief, desire, intention) agent programming

language (Section 4). The implementation of that conceptualisation of trust is suitable

for such languages since both rely on the same concepts such as beliefs and goals. Be-

sides showing that an agent equipped with the C&F concept of trust performs quite well

against other agents of the ART testbed, an important result is that all the trustee’s prop-

erties included in the C&F definition of trust is shown to be useful in the experiments

(Section 5).
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2 Trust Definition

According to C&F, trust has four ingredients: a truster i, a trustee j, an action α of j,

and a goal ϕ of i.3 C&F provide a definition of trust which is based on four primitive

concepts: capability, intention, power, and goal. In their definition, “i trusts j to do α in

order to achieve ϕ” if and only if:

1. i has the goal ϕ;

2. i believes j is capable to do α;

3. i believes j has the power to achieve ϕ by doing α;

4. i believes j intends to do α.

For example, when i trusts j to send product P in view of satisfying i’s goal of possess-

ing P then (1) i wants to possess P , (2) i believes that j is capable to send P , (3) that

j’s sending P will result in i possessing P , and (4) that j has the intention to send P .

C&F stress the importance of the goal component: it makes no sense to say that I trust

j to do α when α is completely irrelevant for my goals.

In [7] this concept was detailed in two types: occurrent trust and dispositional trust.

In the former case, the truster has a certain goal and believes that the trustee is going

to act here and now in such a way that its goal will be achieved. In the latter case, the

truster thinks to be possible that it will have a certain goal in the future and believes,

whenever it will have such a goal, the trustee will act in such a way that the goal will be

achieved. In this paper only the former type of trust is considered, and it is defined by:

OccTrust(i, j, α, ϕ) def= Goal(i, ϕ) ∧
Believes(i,OccCap(j, α)) ∧
Believes(i,OccPower(j, α, ϕ)) ∧
Believes(i,OccIntends(j, α))

(1)

2.1 The underlying BDI logic

The definition of occurrent trust presented in the previous section has been initially

formalised in [10], where a modal logic for reasoning about trust in multi-agent system

has been proposed. This logic enables us to specify the five predicates for belief, goal,

capability, intention and power on the right hand side of the definition of occurrent

trust (definition (1)), namely the predicates Goal , Believes , OccCap, OccPower and

OccIntends . The proposed logic (called L) is a multimodal logic which combines the

expressiveness of dynamic logic [6] with the expressiveness of a so-called BDI logic of

agents’ mental attitudes (see [4] for instance).

It is not the aim of this work to discuss the precise semantics of the modal operators

of the logic L. We just present them in an informal way in order to help the reader to

understand the relationship between the logical specification of our trust model and its

implementation in the Jason architecture.4

3 We use α to denote actions and ϕ to denote goals.
4 See [10] for an analysis of the semantics of these operators, their relationships, and their cor-

respondence with the structural conditions on the models of the logic L.



The syntactic primitives of the logic L are the following: countable sets of atomic

formulas ATM = {p, q, . . .}, agents AGT = {i, j, . . .} and actions ACT =
{a, b, . . .}. The language of L is the set of formulas defined by the following BNF:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | Afteri:α ϕ | Doesi:α ϕ | Beli ϕ | Prefi ϕ

where p ranges over ATM , α ranges over ACT and i ranges over AGT . Thus, the logic

L has four types of normal modal operators:5 Beli , Prefi , Doesi:α , and Afteri:α .

These operators have the following intuitive meaning. Beli ϕ: the agent i believes

that ϕ; Afteri:α ϕ: after agent i does α, it is the case that ϕ (Afteri:α ⊥ is read: agent

i cannot do action α); Doesi:α ϕ: agent i is going to do α and ϕ will be true afterward

(Doesi:α � is read: agent i is going to do α); Prefi ϕ: agent i prefers that ϕ holds.

Operators for actions of type Afteri:α and Doesi:α are normal modal operators

satisfying the axioms and rules of inference of system K [3]. Operators of type Beli ϕ
are just standard doxastic operators satisfying the axioms and rules of inference of sys-

tem KD45. Therefore, positive and negative introspection over beliefs is supposed, and

it is assumed that an agent cannot have inconsistent beliefs. Finally, operators of type

Prefi are used to express an agent’s binary preference. These are similar to Cohen &

Levesque’s operators [4]. It is supposed that every operator Prefi satisfies the axioms

and rules of inference of system KD, that is, it is assumed that an agent cannot have

conflicting preferences (i.e. an agent cannot prefer ϕ and ¬ϕ at the same time).

The most important relationships between the four types of operators are expressed

by the following logical axioms.

Active:
∨

i∈AGT ,α∈ACT Doesi:α �
IncAct,PAct: Doesi:α ϕ → ¬Afteri:α ¬ϕ
IntAct1: (¬Afteri:α ⊥ ∧ Prefi Doesi:α �) → Doesi:α �
IntAct2: Doesi:α � → Prefi Doesi:α �
Axiom Active ensures that the world is never static, i.e. at every moment there exists an

agent i and action α such that i performs α. This is the reason why the operator X for

next of LTL (linear temporal logic) can be defined as follows:

Xϕ
def=

∨
i∈AGT ,α∈ACT Doesi:α ϕ. According to IncAct,PAct, if i is going to do α

and ϕ will be true afterward, then it is not the case that ¬ϕ will be true after i does α.

Axioms IntAct1 and IntAct2 relate preferences with actions. Note that ¬Doesi:α ϕ →
Afteri:α ¬ϕ is not valid. According to IntAct1, if i has the preference to perform

action α and can do action α then, i is going to do α. According to IntAct2, an agent is

going to do action α only if it has the preference to perform action α: an agent’s doing
is by definition intentional. Similar axioms have been studied in [11] in which a logical

model of the relationships between intention and action performance is proposed.

2.2 The logical definition of trust

The five predicates on the right hand side of the definition of occurrent trust (defini-

tion (1)) can be specified in the logic L as follows:

5 We here typographically distinguish the informal predicates Goal , Believes , OccCap,

OccPower and OccIntends in the definition of occurrent trust from the modal operators

of the logic L written in typewriter font.



Believes(i, ϕ) def= Beli ϕ

Goal(i, ϕ) def= Prefi Xϕ

OccCap(i, α) def= ¬Afteri:α ⊥
OccPower(i, α, ϕ) def= Afteri:α ϕ

OccIntends(i, α) def= Prefi Doesi:α �
Thus, agent i has the goal that ϕ, if and only if i prefers ϕ to be true in the next state; i
has the capability to do α if and only if, i can do α (i.e. at the actual world there exists

a possible occurrence of α performed by i); i intends to do α if and only if, i prefers to

do α.

It is worth noting that, from Axioms IntAct1, IntAct2, and IncAct,PAct it follows

that the following logical equivalence is a theorem of the logic L: (¬Afteri:α ⊥ ∧
Prefi Doesi:α �) ↔ Doesi:α �. Therefore, i’s occurrent capability and i’s occurrent

intention to perform action α are together equivalent to the fact that i performs action

α, that is:

(OccCap(i, α) ∧ OccIntends(i, α)) ↔ Doesi:α � (2)

This is the reason why the definition of occurrent trust given in the previous section can

be simplified as follows:

OccTrust(i, j, α, ϕ) def= Goal(i, ϕ) ∧
Believes(i,OccAct(j, α)) ∧
Believes(i,OccPower(j, α, ϕ))

(3)

where OccAct is a predicate used to express action occurrence defined by:

OccAct(j, α) def= Doesj:α �.

This formalisation of occurrent trust expresses a fundamental aspect of the trust

concept, namely the fact that the truster has a goal that ϕ and believes that the trustee is

going to ensure ϕ by performing action α.

2.3 From binary trust to graded trust

In a recent extension of the previous logic of trust [9], the authors moved from bi-

nary trust (i.e. either i trusts j or does not) to graded trust (i.e. agent i trusts agent j
with a certain strength x). To this aim, the doxastic operators of the form Beli were

generalised to normal operators for graded beliefs of the form Belx
i where i ∈ AGT

and x ∈ [0, 1]. A formula Belx
i ϕ means: agent i believes ϕ at least with strength x.

Therefore Bel1
i ϕ = Beli ϕ.

At the semantic level, every operator Belx
i is interpreted according to a correspond-

ing accessibility relation Rx
i over possible worlds w, w′, .... It is supposed that, given

two possible worlds w and w′, if x > y then Ry
i ⊆ Rx

i . Thus, for every agent i, the

accessibility relations in {Rx
i |x ∈ [0, 1]} induce a so-called system of spheres [8]. This

constraint on the accessibility relations Rx
i corresponds to the following logical axiom:

IncBel Belx
i ϕ → Bely

i ϕ



That is, if x > y and i believes ϕ at least with strength x then i also believes ϕ at least

with strength y. More generally, the logic of graded beliefs validates:

(Belx1
i ϕ1 ∧ ... ∧ Belxm

i ϕm) → Bel
min(x1...,xm)
i (ϕ1 ∧ ... ∧ ϕm)

Such operators of graded belief can be used to represent truster’s beliefs with dif-

ferent strengths about different properties of the trustee. As we will show in Section 4,

this aspect is important when moving from the abstract model of trust reasoning to the

implementation in Jason. For example, one would like to say that i (the truster) believes

at least with strength x that j (the trustee) will perform action α, or that i believes at

least with strength y that j has the power to achieve ϕ by doing α. These two facts are

respectively represented by the formulas Belx
i Doesj:α � and Bely

i Afterj:α ϕ.

3 Occurrent trust applied to ART scenario

We apply the definition of trust presented in Section 2 to the ART testbed scenario

(http://art-testbed.net). This scenario is proposed by the trust community

as a common testbed for experimentation and evaluation of multi-agent trust models.

The ART scenario consists in a simulation of painting appraisals. Several agents are

in competition and each agent has a few paintings to evaluate. A painting belongs to a

given era and the agents have different level of expertise allowing them to be more or

less skilled in the evaluation of a painting’s rating according to its era. At each time-step,

an agent receives from simulated clients a set of paintings to evaluate. An agent cannot

evaluate all the paintings from its own clients and it has to rely on other agents to do it.

This is called the opinion protocol, where an agent asks other agents an appraisal (or an

opinion) for its paintings. In order to choose who to ask for opinions, an agent can use

its past direct experiences, and/or two interaction protocols: (i) the certainty protocol,

according to which, the agent directly asks other agents about their own expertise; (ii)

the reputation protocol, according to which, the agent asks other agents what is the

reputation of a third agent. Every agent has the possibility to lie when communicating in

these protocols. Agents are payed when appraising paintings and if they were accurate,

they receive more clients at the next step so that the accurate appraisers earn more

money.

An agent i may use the concept of trust presented in Section 2 to select a partner j
to whom to ask for an appraisal for a painting. To use that conceptualisation, we need

to identify the actions and goals in the context of ART. All agents share the same set

of possible actions: to appraise paintings of a specific era. The goal of each agent is to

give the best possible evaluation for its clients’ paintings. In order to achieve this, an

agent must select partners to ask for appraisals. Thus, the sentence ‘agent i trusts j to

appraise a painting p’ can be written as follows:

OccTrust(i, j, appraise(p), good eval(p), min(x, y))
def= Goal(i, good eval(p)) ∧

Believes(i,OccAct(j, appraise(p)), x) ∧
Believes(i,OccPower(j, appraise(p), evaluate(p)), y)



where x and y are the strengths of the two beliefs used in the formula; and

Believes(i, ϕ, x) = Belx
i ϕ.

Having identified the actions and goals for ART, the next and more complex step

is to develop some mechanisms which allow agent i to infer those beliefs about the

properties of j which are relevant for the achievement of its goal of giving the best pos-

sible evaluation for the paintings. Namely, these mechanisms should allow i to evaluate

whether the predicates OccPower(j, α, ϕ) and OccAct(j, α) hold in such a way that i
can assess the trustworthiness of j. The former predicate denotes j’s power to appraise

a painting that will help i’s goal to give the best possible evaluation for its paintings,

whereas the latter denotes that j is going to provide its opinion about the paintings.

A first mechanism is to obtain information about the power of j by means of the

certainty protocol available in ART. Of course, agents may lie about their expertise

possibly leading to incorrectness in i’s belief about the predicate OccPower . A second

mechanism, that can also be applied for OccAct , consists in using previous experiences

of interaction with j. For instance, if in previous collaborations (when j was asked to

respond), j has provided appraisals for i’s paintings, then it is concluded that now j has

the power to provide appraisals and is going to respond (given that i has asked him).

While the first mechanism concerns sincerity issues, the second mechanism concerns all

problems related with learning. A third mechanism is to ask other agents their opinions

about j’s properties, that is, to ask other agents whether the predicates OccPower(j, α)
and OccAct(j, α, ϕ) hold. In other words, this third mechanism consists in discovering

the reputation of j. However, issues related to reputation are not considered yet in the

current stage of our work.

To sum up, in the ART scenario an agent i can exploit various sources of information

in order to assess the trustworthiness of some target agent j: communication with j,

direct experiences with j, and the reputation of j.

4 From the abstract model to an agent implementation

This section describes how the definition of trust presented in the previous section can

be designed and implemented for an agent that participates in the ART scenario. Once

the concept of trust is defined on the basis of cognitive ingredients (beliefs, goals, etc.), a

suitable agent architecture and programming language should be chosen. For this work,

the BDI architecture and the Jason programming language were chosen [1]. The main

reason to select this language is that it is perfectly suitable for an implementation of

the formal definition of trust discussed in Section 2. Jason is selected since it is both

based on logic programming and on the BDI architecture. Other kinds of architecture

and language could be chosen. However, the goal here is to concretely show that the

concept can be implemented in at least one configuration.

Figure 1 illustrates the main components of the agent architecture. Briefly, there are

data structures for the agent’s beliefs, goals, plan library (set of possible plans to achieve

goals), and intentions (current plans in execution to achieve the goals of the agent).

The perceive process updates the belief base from the incoming messages and the act
process selects an action to be performed from the current set of intentions. The trust
inference has to decide whether to trust an agent or not. For that purpose a theoretical



reasoning may be enough, in the case where a conclusion can be draw from the current

beliefs (for instance, from past experiences). However, in some circumstances a kind

of practical reasoning may be necessary, i.e. some sequence of actions are required

to obtain the necessary information for the trust decision (as in the case where the

reputation of an agent has to be asked to others). In this latter case, a new intention is

created to perform those actions and obtain the required information.

Belief 
Base

Plan
Library

Intentions

perceive trust inference 
and decision

act

Goal
Base

Legend

data
structure

process

control flux

data flux

ART Simulator

Fig. 1. General agent architecture for trust

The first require-

ment for the develop-

ment of our agent is the

integration of the ART

testbed agent architec-

ture (where the agent

have to be coded in

Java) and a Jason agent

architecture that allows

the programming of the

agent using BDI prim-

itives. Jason provides a

suitable support to allow this kind of customisation. Roughly, this component provides

as perception all data that come from the ART simulator and translates the agent’s ac-

tions into suitable messages to the simulator. When some particular decision is required

for the agent, a new goal is introduced into the reasoning cycle of the agent. For in-

stance, when the simulator requires that the agent performs all the certainty requests, a

new goal !prepareCertaintyRequests is created. During the agent reasoning pro-

cess, a suitable plan will be selected to try to achieve this goal resulting in the execution

of actions that correspond to a reputation request.

The perception provided by the architecture is translated to first-order predicates and

included in the belief base with a special annotation that indicates that they correspond

to the agent’s perception. Older belief-perceptions are removed accordingly. Among

these beliefs, the following are given by the ART simulator and used in the sequel:

– painting(e, p, t): represent that the painting p of era e is allocated to the agent at

the current step t of the simulation. The agent’s paintings are perceived at the begin

of each simulation step.

– opinion(j, e, vg, vr, t): represents the appraisal produced by partner j for a painting

of era e; the real value of the painting as defined by the simulator is vr and the

opinion provided by agent j is vg . The quality of the opinion provided by j is

based on the difference between vg and vr. This sort of information is provided to

the agents at the end of each simulation step so that they can evaluate their selection

of partners.

All beliefs described above are considered as having strength 1.

In each simulation step for the ART scenario, our agent receives several paintings to

evaluate. For each painting it initially assigns n partners using exploitation and explo-

ration strategies (n is the maximum number of opinions an agent can ask for a painting).

The exploitation strategy tries to select the n most trustworthy agents in the correspond-



ing era of the painting. If there are not enough trustful agents, partners are randomly

selected among the sincere agents (exploration strategy).

The identification of trustful agents uses the definition of occurrent trust (defini-

tion 3), i.e. trust is inferred from the agent’s goals and beliefs (see the code of Fig-

ure 2).6 The first component of the trust definition is Goal(i, ϕ). In order to check

whether this predicate holds, we simply consult all the intentions of the agent. The

second component, the belief about OccAct(j, α), is inferred using the following im-

plication (α = appraise(p)):

Believes(i,OccAct(j, α), x) ← Believes(i, opinions count(j, a, g), 1) ∧
a > 0 ∧ x = g

a ∧ x > ε
(4)

where opinions count(j, a, g) is the fact that there were a opinions that were asked to

j, and g opinions provided by j. Thus, agent i believes that j is going to collaborate

if i has previously interacted with j (a > 0) and the percentage of answers provided

by j is greater than ε (ε = 0.9 in our experiments). The strength x of the belief about

OccAct is x = g
a . Although we use only direct experiences to infer OccAct(j, α),

the very particular mechanism used for that could be more complex and efficient. The

goal in this paper however is not to optimise the mechanism, but rather to illustrate the

implementation of the concept and to compare its influence in the agent performance

differentiating agents that consider the predicate OccAct(j, α) in their trust reasoning

from those that do not consider it.

The third component of the trust definition, the belief about the property

OccPower(j, α, ϕ), is inferred by the following implication when the goal is to have a

good evaluation for a painting p (ϕ = good eval(p)) and the action is to appraise the

painting (α = appraise(p)):

Believes(i,OccPower(j, α, ϕ), y) ← Believes(i, sincere(j), 1) ∧
Believes(i, painting(e, p), 1) ∧
y = imaget(j, e) ∧ y > δ

(5)

where sincere(j) holds when j is believed to be sincere (based on previous interactions

with j); painting(e, p) is given as perception by the simulator and is used here to re-

trieve the era e of painting p; and imaget(α, e) is a function (imaget : AGT×ERA →
[0, 1]) that maps each agent and era of the simulation step t to the corresponding agent’s

image. The strength of j power is the same value as its (y = imaget(j, e)). Thus, agent

i believes that j has power to give a good evaluation on some era if j is sincere and

currently has an image greater than δ (δ = 0.5 in our experiments).

The definition of the image function is inspired by reinforcement learning tech-

niques and the Q-Learning algorithm [15]. The reward of asking opinions to j in a

simulation step t is given by the mean of all errors in j’s opinions:

rt(j, e) =
1

#Oj,e
t

∑

(vg,vr)∈Oj,e
t

1 − |vg − vr|
vr

6 The purpose of adding this excerpt of code is twofold: to provide some details of the function-

ing of the agent and to show how our proposal is implemented in a BDI approach. We do not

have the space here to introduce the language; however, we added comments in the code to

explain the meaning of the main parts.



// trust inference rule, e.g. Act=appraise(p1), Goal=good_eval(p1)
trust(J,Act,Goal)[strength(C)] :-

.intend(Goal) & // I have the goal
occ_act(J,Act)[strength(X)] & // J is capable and intend
occ_power(J,Act,Goal)[strength(Y)] & // J has the power
C = math.min(X,Y). // computes the strength of the trust
// the strength of beliefs are represented by annotations, enclosed by [ and ]

// when a painting is allocated to me, to evaluate it is a goal
+painting(Era,P) <- !good_eval(P).

// capability and intention are based on the percentage of responses to requests
occ_act(J,appraise(P))[strength(X)] :-

opinions_count(J,Asked,Provided) & Asked > 0 & X = Provided/Asked & X > 0.9.

// power is based on image and sincerity
occ_power(J, appraise(P), _)[strength(Y)] :-

sincere(J) & painting(Era,P) & image(J, Era, Y) & Y > 0.5.
// the image function is implemented as a belief where the third term is
// the value of the image of agent J

// whenever I receive an opinion from J
+opinion(J, Era, GivenValue, RealValue)

<- Error = math.abs(RealValue - GivenValue) / RealValue;
if (Error > 10) { // huge errors means insincerity

+˜sincere(J) // add a belief that J is not sincere
};
N = .count(opinion(J,Era,_,_)); // number of opinions
R = (1-Error)/N; // reward for the opinion
?image(J, Era, Img); // consult current image
NewImg = 0.5*Img + 0.5*R; // compute new image
-+image(J, Era, NewImg). // update image belief

Fig. 2. Excerpt of the implementation of the trustfulness evaluation in Jason

where Oj,e
t is the set of all opinions provided by agent j to our agent in paintings of

era e and simulation step t; #Oj,e
t is the cardinality of this set; and each element of the

set is a pair (vg, vr) where vg is the value provided by j and vr the real value of the

painting.

Considering t as the current simulation step, the current image of j is calculated

from the reward of asking opinions to j and the previous image of j:

imaget(j, e) =

⎧⎨
⎩

0.5 if t = 0
imaget-1(j, e) if Oj,e

t = ∅
γ rt(j, e) + (1-γ)imaget-1(j, e) otherwise

The first case of the function, when t = 0, represents the initial image of j, i.e. 0.5. The

second case is selected when no opinion was provided by j in step t, the image of the

previous step is then used. The third case uses the reward of asking opinions to j and

the previous image. The value of γ (0 ≤ γ ≤ 1) represents a discount for past images.

We use γ = 0.5 meaning that the current experiences have the same importance than

past experiences.

The above implementation is then used by our agent in each simulation step as

follows. (1) For each painting that the agent has to evaluate, assign n partner agents.

(2) Participate in reputation protocol. In this implementation, our agent does not ask for

any reputation information. It simply answers to reputation requests using the internally



build image of others. (3) Participate in certainty protocol. Besides providing answers to

requests, where our agent is always sincere, the certainty of the partners are requested.

(4) Participate in opinion protocol. In this phase, our agent asks partners for opinions

and accepts to provide opinions for every request. The accuracy of the opinion provided

by our agent depends on the sincerity of the requester (more sincere agents receive more

accurate opinions). (5) Update some beliefs based on the information available in the

end of the simulation step: check whether the partners have provided or not an opinion

for my paintings and update the opinions count belief accordingly; update the image
of the partners based on the quality of the opinion they have produced; and update the

sincerity property of the agents.

5 Experiments

Two experiments were done with our agent in the ART testbed. In both cases we used

the configuration of the 2008 contest and, to produce the graphs, the mean of 10 execu-

tions is considered.
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Fig. 3. Simulation results for our agent against some partici-

pants of the ART 2008 contest.

In the first exper-

iment the four better

placed agents of the

2008 AAMAS ART

Contest were included

(Uno, Connected,

ForPrefect, and Next).

We also added one

cheating agent (that

does not collaborate)

and one honest agent

(that always does the

best for the partners).

The result is shown

in Figure 3. Our

agent, identified by

‘ForTrust’, is in the

group of agents placed

second. Although it

shows that our agent

works quite well, the final performance of the agent is strongly dependent on the

particular mechanism used to infer OccAct and OccPower and some parameters like

ε, δ, and γ. As said before, we are not looking for the optimisation of those parameters

here.

In the second set of experiments we intend to identify how the OccAct and the

OccPower components of the trust definition interfere in the agent performance. For

such an evaluation, four configurations of our agent were created:

Type1: this agent uses the complete definition of trust as presented in Sec 3.
Type2: the trust inference is based on OccPower .



Type3: the trust inference is based on OccAct .

Type4: this agent trusts in everybody.
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Fig. 4. Comparison of agents that use different ingredients of

trust.

Against these four

agents, we put four

honest agents, one

cheating agent, and

two lazy agents. Lazy

agents are those that

promise to provide an

opinion (in ART we

simulate this by the

lazy agents asserting

that they are experts),

but that do not pro-

vide an opinion when

someone ask them to

do that. Briefly, lazy

agents have the power

to provide opinions

but do not have the

intention. The compar-

ative performance of

the four types of agents is shown in Figure 4. We can see that Type1, that uses the

all the ingredients of the concept of trust performs better. To explain the result, we

have to take a closer look at the partners this type of agent. Figure 5 shows how many

requests of opinions were done at each simulation step by the agents of Type1 and

Type2 respectively —the graph represents thus with whom the agent is interacting.

After the exploration phase (around the step 8), the agents start to exploit their trust

on other agents. While the agent Type1 rarely interacts with lazy agents since it also

considers OccAct , the agent of Type2 continues to interact with lazy agent as often as

with honest agents.

6 Discussion and related works

The ART scenario brings out some advantages for our experiments since it is well

known by the community. It provides useful tools for the analysis of the experiments

and other agents (from previous contests) to be included in the simulation and that we

can then compare against our proposal. Nevertheless, some constraints might be cited.

First, an important feature of the C&F definition of trust is to allow the truster to deal

with different goals and actions, in ART however there is only one relevant type of

action and it is the same for all agents. Second, the BDI architecture and the Jason lan-

guage are suitable for environments where the agents have to be pro-active, while the

ART simulator forces the agents to be just reactive to the protocols of each simulation

step.
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Fig. 5. Partners of the agent Type1 (top) and agent Type2

(bottom).

Although several

trust models exist

in the literature (a

survey is presented

in [14]), few of them

are based on cognitive

concepts. Not only few

cognitive models of

trust exist, but their

integration into an

agent architecture is

rare. A first work in

this direction is [12].

In that work, Pinyol

and Sabater propose

the integration of the

concept of image from

Repage reputation

model with a BDI

agent architecture.

Their proposal consists

of identifying how the

reputation of other

agents can influence

the beliefs, desires,

and intentions of the

agent. Although we do

not consider reputation

in our proposal, our

contribution is to use a

general concept of trust

(where the reputation

can be integrated),

propose an implementation, and evaluate the proposal in the ART scenario.

An important feature of our proposal is that the integration considers two directions:

from trust to BDI and vice-versa. For example, when the agent intends to ask an opinion,

the trust model is used; conversely, the trust reasoning may trigger new intentions to

support the trust decision.

7 Conclusions

We conclude that the cognitive concept of trust as proposed by Castelfranchi and Fal-

cone and formalised in Section 2 can be implemented and used by a concrete agent

architecture. That concept is particularly suitable to be implemented in a BDI based

language as provided by Jason. Although we do not take into account other BDI lan-



guages, the same conclusion may likely be drawn for similar languages like 2APL [5]

and Jadex [13].

Our agent performed well against those of the 2008 ART Competition (2nd rank).

The experiments in the ART testbed showed that, with certain types of agents (as the

lazy agents used in the experiment), an agent that uses a concept of trust that considers

all the ingredients proposed by C&F (goal, capability, power and intention), performs

better than an agent that uses only a subset of these ingredients. Some features of our

proposal are however not well explored and evaluated due to the limitations of the ART

scenario. Future works will include the evaluation of our proposal in more complex

scenarios. We also plan to include reputation as an important source of information to

decide whether the trustee is going to act for the truster’s goal and has to power to do

that.
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