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A numerical model based on the kinetic theory of granular media has been tested to

simulate the unsteady two-phase flow in solid–liquid fluidized beds. We focus here on

the local unsteady flow features as predicted by the model and comparison with exper-

imental data of Zenit and Hunt (2000) are discussed. In most of the cases, a series of

two-dimensional rotational structures develops along the bed height, which controls

the instantaneous solid fraction field as well as the level of fluctuating kinetic energy

of the particles. Interestingly, with high inertia particles and at high solid concentra-

tion, these structures disappear to the benefit of a one-dimensional oscillating flow.

The shape of these concentration waves is very similar to those previously observed by

Nicolas et al. (1999) and Duru et al. (2002). The solid fraction density spectrum and

variance have been analyzed and compared with the experimental data of Zenit and

Hunt. VVC 2010 American Institute of Chemical Engineers AIChE J, 56: 2781–2794, 2010
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Introduction

Despite its minor importance as an industrial process com-

pared with gas fluidization, liquid fluidization applications

cover a wide range of mass or heat transfer operations, crys-

tallization, or catalytic reactions, and liquid fluidized beds

are commonly used as growth biochemical reactors in waste-

water treatment.1 The scaling and control of such bioreactors

require the detailed knowledge of particle–fluid and particle–

particle interactions at a fine scale, to correctly predict as an

example bio-film growth and detachment rates.2

On the other hand, liquid fluidization is an academic test

case of interest in view of evaluating two-phase flow model-

ing. Even if it does not engender intense chaotic flows such

as bubbling phenomenon in gas–particle fluidization, solid–

liquid fluidized bed cannot be considered as homogeneous

dispersed flow over a wide range of length scales.3 In partic-

ular, large scale, low-frequency concentration fluctuations

have been experimentally observed in liquid fluidized beds.

The characteristics (length and time scales) of these fluctua-

tions and the transition between the different regimes

detected (wavy, turbulent, or ‘‘bubbly’’) are strongly related

to the ratio between the fluidization velocity to the minimum

fluidization velocity for a given particle–fluid system.4 A

number of studies has been devoted to the understanding and

the characterization of concentration waves in liquid fluid-

ized beds,5 with the idea in mind that the bubbling regime in

gas–particle beds originates from the same kind of instabil-

ity.6–8 The prediction of the liquid fluidized bed microstruc-

tures and macrostructures, therefore, implies an unsteady
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formulation of the two-phase motion governing equations.

The two-phase modeling of solid–liquid fluidized beds has

focused the interest of researchers for four decades till date

with the pioneer works of Jackson,9 Murray,10 and Anderson

and Jackson.11 In the frame of eulerian averaged models, the

literature exhibit two distinct model families, the classical

two-fluid models (volume or phase averaged models) and

statistical models derived from kinetic theory of granular

media, both of these approaches leading to similar expres-

sions for the mass and momentum equations. The main dif-

ference between these two approaches lies in the treatment

of the particle phase, which stress tensor reads12,13

X

p;ij
¼ Pp " kpr:Up

" #

I" lp rUp þ
t rUp " 2=3r:UpI

" #

(1)

where Pp, kp, and lp are the dispersed phase (granular)

pressure, volume, and shear viscosities, respectively. Up is the

particle phase velocity vector averaged over the small scale

fluctuating motion. Note that unlike single phase incompres-

sible flows, because of mass conservation, the velocity

divergence !.Up, cannot be disregarded in Eq. 1.

In the first kind of model, closure laws need to be estab-

lished for the stress tensor of the dispersed phase, which is

generally done on the basis of semiempirical approaches,14,15

or experimental data.8 Following this model, only first order

closure laws can be accounted for with concentrated media

and they are restricted to the particular case of fluidization.

Indeed, for a given fluid–particle system, the only scaling

parameter in a fluidized bed is the global solid fraction up

and all the macroscopic quantities such as the slip velocity,

the particle velocity fluctuations (granular temperature), the

dispersed phase (granular) pressure, or viscosities are explicit

functions of up.

In the second kind of model, the expression of the dispersed

phase stress tensor naturally derives from the integration of

Maxwell–Boltzmann equation of the particle velocity pdf.12,16

The rate of change of particle momentum resulting from this

integration includes both interactions with the surrounding

fluid (Newton’s equation) and particle–particle interactions

through binary collisions. Analytical forms of the collision

operator are obtained using kinetic theory of nonuniform

gases17 extended to the case of concentrated media.16 More-

over, with this approach, the granular pressure and viscosities

are explicitly related to the particle random motion, whose

transport equations are derived from integration of second

order moment weighted velocity pdf equations. Note, how-

ever, that such a modeling supposes that particle–particle

interactions only result from collisions and neglects local

hydrodynamic interactions, which a priori limits its applica-

tion to the description of fluid–particle flow with large density

ratio such as gas–particle flows at high concentration.13,18–21

Then, using a formalism based on a joint fluid–particle veloc-

ity pdf kinetic equation, such an approach was extended to

dispersed turbulent two-phase flows for particles with diame-

ter that are very small compared with the energetic eddy

length scales of the carrier flow turbulence.22–25 In a former

work, a statistical two-phase model based on the kinetic

theory of granular media has been applied to solid–liquid flu-

idization.26,27 Despite the fundamental difference between

collisions and hydrodynamic interactions, its extension to the

modeling of solid–liquid fluidization can find some a priori

justification based on the following arguments: first, it must

be pointed out that the form of the constitutive laws describ-

ing the particle phase rheology (Eq. 1) with both kinds of

models (volume averaged and kinetic theory of granular

media) are very similar, except that there is no physically

unknown coefficient in the statistical model. Second, the

model used in that study accounts for the interstitial fluid

influence on the particle motion via the drag force in the mo-

mentum equation as well as in the fluctuating kinetic energy

of the particles, q2p. In particular, the time scales of the dis-

persed phase kinetic viscosity and of the dissipation rate of q2p
result from the competition between the characteristic relaxa-

tion time of the particles and the time between two successive

collisions. This model has been tested against the experimen-

tal data of Zenit et al.28 for three types of particle fluidized by

water with contrasted inertia (characterized by the particle

Stokes number) and in a wide range of global solid fraction,

up. The evaluation of the model was discussed on the basis of

the comparison between the experimental values of the granu-

lar pressure (measured with the help of a piezo-electric probe

at the wall) and the predicted values. The results showed a

good level of agreement, the best prediction level being

observed with the most inertial particles.26 In this work, we

focus on the unsteady features of the fluidized bed as calcu-

lated by the model for the same experimental conditions (par-

ticles and phase fraction) as those studied by Zenit and

Hunt.29 The discussion also addresses other experimental find-

ings related to concentration wave propagation analysis.7,8

Transport of Particle Fluctuations

We recall in the following the outlines of the statistical

model used in this work. Continuity and momentum equa-

tions in both phases take the classical form as that derived

in unsteady two-fluid models, with an interfacial momentum

transfer term accounting for the drag force only (inertia

forces such as added mass have little effect in this applica-

tion). The contribution of proper turbulence of the continu-

ous phase modeled in the frame of the joint fluid particle

pdf approach assuming very small particle diameter with

respect to the energetic turbulent eddy length scale is found

negligible. This results from the fact that, according to the

modeling approach, in a solid–liquid fluidized bed (for a

global solid phase fraction up [ 0.1), the turbulence pro-

duced by the macroscopic velocity gradients of the continu-

ous phase is damped by the fluid–particle interaction. How-

ever, we must notice that the model neglect the influence of

the velocity fluctuations (pseudoturbulence) locally produced

by the fluid–particle interaction, which are assumed to be at

small scales with respect to the particle diameter and locally

dissipated by fluid viscous effect.25 Development of the par-

ticle stress tensor constitutive laws in Eq. 1 lead to the fol-

lowing expression for the granular pressure12,13:

Pp ¼
2

3
apqpq

2
p½1þ 2apg0ð1þ ecÞ( (2)

where ap and qp are the local solid phase fraction and density,

respectively, and ec is the normal coefficient of restitution. The

RHS second term of Eq. 2 is the collisional contribution



accounting for finite volume effect of particles at high

concentration through the hindering function g0 (Enskog

correction). This function is a growing function of the solid

fraction ap, which tends toward infinity at the maximum

packing concentration ap,m. In this model, this function takes

the form proposed by Lun and Savage30:

g0 ¼ 1"
ap

ap;m

$ %"2:5ap;m

(3)

The granular shear viscosity lp includes a kinetic and a

collisional contribution given by21:

mkinp ¼
2

3rc
scpq

2
pð1þ apg0/cÞ 1þ

2scp

rcT
F
fp

 !"1

(4)

mcolp ¼
4

5
apg0ð1þ ecÞ mkinp þ d

ffiffiffiffiffiffiffiffi

2

3

q2p

p

s0

@

1

A (5)

lp ¼ apqp mkinp þ mcolp

. /

(6)

where uc and rc are analytical functions of ec. s
c
p and TFfp are

the time between two successive collisions and the mean

particle relaxation time due to the drag. Therefore, Eq. 4 shows

that the kinetic viscosity time scale is controlled by the

smallest time scale between scp and TFfp. TFfp is modeled

following Wen and Yu’s drag law31:

1

TF
fp

¼
ð3qfCDÞ

4qpd
ð1" apÞ

"1:7jurj (7)

where CD is the particle drag coefficient deduced from the law

of Schiller and Nauman (in Clift et al.32), and ur is the local

slip velocity:

CD ¼
24

Re
ð1þ 0:15Re0:687Þwith Re ¼

ð1" apÞjurjd

mf
(8)

The time between two successive collisions is given by13:

scp ¼

ffiffiffiffiffiffi

3p

2

r

d

24apg0

ffiffiffiffiffi

q2p

q (9)

In the limit of very dilute systems, the collision time scale scp
may become very large. In that case, the time scale governing the

kinetic viscosity in Eq. 4 is TFfp. The competition between these

two time scales in the formulation of the kinetic viscosity repre-

sents one important difference with ‘‘dry’’ granular models.

From Eq. 5, it can also be deduced that at high phase frac-

tion the granular viscosity will be dominated by its colli-

sional part, mcolp . Finally, the expression of the volume viscos-

ity kp reads
13:

kp ¼
4

3
a2pqpdg0ð1þ ecÞ

ffiffiffiffiffiffiffi

2q2p

3p

s

(10)

At high phase fraction, the volume viscosity will be as

important as the collisional viscosity. All these constitutive

laws (Eqs. 2–9) arise from the development of the collisional

operator in the averaged Maxwell–Boltzmann velocity distri-

bution. One basic assumption is that the velocity pdf of the

agitated medium is not far from a Maxwellian distribution,

so the anisotropy of the fluctuations is weak.13,16 The rheol-

ogy of the dispersed phase is then fully described and is

related to the local fluctuating kinetic energy of the particles,

q2p (or granular temperature). It must be pointed out that

because of this dependence between the solid phase viscos-

ities and the fluctuating motion, the solid phase cannot be

considered as a Newtonian fluid. Indeed, the granular tem-

perature is related to the mean stress tensor in the transport

equation of q2p, given by:

apqp
Dq2p

Dt
¼

@

@xi
a2q2ðK

kin
p þ Kcol

p Þ
@q2p
@xi

 !

"
X

p;ij

@Up;j

@xi
þ 2a2pqpð1" e2cÞg0q

2
p

@Up;i

@xi

" apqp
2

TF
fp

q2p " apqp
ð1" e2cÞ

3scp
q2p ð11Þ

The first term of Eq. 11 RHS is the diffusive term which

happened to have negligible weight in all simulations per-

formed with the experimental test cases of Zenit et al. The

second term is a source of production that includes compres-

sibility effects (velocity divergence) via the granular pressure

and the volume viscosity, and shear induced effects (velocity

gradient) via the granular viscosity. These two distinct con-

tributions arise from the development of the particle stress

tensor (Eq. 1 in Eq. 11). The third term is a dissipative

(hence, always negative in average) term associated to the

compressibility of the solid phase. Finally, the fourth and

fifth terms are the dissipation rates by the viscous drag and

by the collisions, respectively.

Together with the continuity and momentum transport

equations of both phases, Eqs. 1–11 build a closed set of

equations that have been numerically solved in a two-dimen-

sional (2D) domain. Details of the numerical method are

given elsewhere.26

The domain and mesh size and the numerical values

of the parameters used in the simulations are reported in

Table 1.

The selected test cases of solid–liquid fluidization have

been taken from the experimental flow parameters of Zenit

et al.28,29 and are reported in Table 2.

The particles have contrasted inertia but the same Richard-

son–Zaki exponent n ¼ 2.4 (inertial regime):

U0 ¼ Utð1" upÞ
n

(12)

For a given fluidization velocity, the level of average fluc-

tuating kinetic energy in the bed (hence of granular pressure)

therefore varies considerably from the lightest particles to

the heaviest, as shown in Gevrin et al.26

The main results of that study are summarized below.

A good agreement was observed between the measured

and predicted granular pressure in the whole range of up

with the most inertial particles tested (steel beads, Figure 1),

whereas with the nylon beads (lowest Stokes number), the



present model overpredicts the experimental data, in particu-

lar at high solid phase fraction (above 0.3). Close to the

maximum packing concentration, the abrupt decrease of the

averaged granular pressure is reproduced only with the steel

beads (Figure 1). It was also shown that such a quantity is

weakly sensitive to the form of some constitutive laws used

in the model equations (such as g0 or mkinp ) and to the coeffi-

cient of restitution ec, resulting from nonlinear interactions

which tend to counterbalance any variation in these laws.

Overall, the results can be judged satisfactory, considering

the absence of real parameters in the model and the uncer-

tainty associated with the measurements of the granular pres-

sure, in particular at low Stokes number.28 The correspond-

ing evolution of q2p as a function of up is illustrated in Fig-

ure 2 in the case of steel beads. The curve passes through a

maximum around up ¼ 0.2, a value which corresponds to

that predicted by the semiempirical model of Batchelor.14 As

the solid fraction is increased, the production of q2p is

enhanced through collective effects (concentration and veloc-

ity gradients). The presence of this maximum originates

from the decrease of the slip velocity and the increase of the

interparticle collision rate which both tend to reduce the

level of particle fluctuations. The simulated data can be

modeled in all cases using a semiempirical scaling law (Fig-

ure 2):

q2p

D E

/ U2
t CD0upð1" upÞ

"4:7
h i2=3

ð1" up=up;mÞ
2nup;m (13)

where CD0 is the Schiller and Nauman drag coefficient of a

single particle based on the slip velocity U0. Although quite

simple under this form, the average level of q2p in the bed

results from different contributions in the production–dissipa-

tion budget. Indeed, the analysis of the time and space

averaged transport equation of q2p (Eq. 11) showed that in the

general case,26 the production of q2p is mainly monitored by

the mean velocity gradient of the dispersed phase and the

dissipation by the viscous drag (fourth term of Eq. 11 RHS).

At high Stokes number (steel beads) and high concentration,

however, compressibility effects via the granular pressure are

responsible of the production mechanism and in this case, the

major dissipation source is provided by the interparticle

collisions (fifth term of Eq. 11 RHS).

Instantaneous Structure of Particle
Hydrodynamic Field

Examination of the instantaneous structure of the particle

flow and concentration fields is necessary to go further in

the analysis and understanding of the model behavior. To

illustrate it, the instantaneous large scale structures of the

solid fraction ap (left graph), the solid phase fluctuating ki-

netic energy q2p (middle graph), and velocity fields of Up

(right graph) are displayed in Figures 3–5 for the three types

of beads investigated at a low (Figures 3a, 4a, and 5a) and a

high (Figures 3b, 4b, and 5b) global concentration (or,

respectively, at a high and low fluidization velocity). To

ease the reading of these graphs, the horizontal axis has

been expanded.

As a first observation, the instantaneous distribution of the

hydrodynamic variables is far from being uniform. At the

lowest concentration studied, the existence of relative high

gradients of solid fraction within the bed is noticeable with

local values spanning one order of magnitude. In this case,

the development of an axial gradient of particle concentra-

tion clearly appears, the lower part of the bed corresponding

to a zone of lower concentration than the upper part. For the

highest concentration, this vertical gradient is damped but

still exists. The nonuniform structure of the particle concen-

tration is characterized by either a succession of nearly hori-

zontal stripes of high and low particle concentration or a

Table 1. Numerical Simulation Parameters

Bed height (m) 2.04
Bed width (m) 5.1 + 10"2

Horizontal node number 11
Vertical node number 502
Horizontal mesh size (m) 5.1 + 10"3 (constant)
Vertical mesh size (m) 4 + 10"3 (constant)
Numerical time step (s) 1.5 + 10"3 (constant)
Elasticity coefficient ec 0.9
Pair correlation function g0 Lun and Savage (1986)
Liquid density (kg m"3) 1 + 103

Liquid viscosity (Pa s) 1 + 10"3

Maximum packing concentration ap,m 0.64

Table 2. Particle Properties (from Zenit et al.28)

Beads Diameter d (10"3 m) D/d qp/qf Ut (m s"1) Ret St n

Nylon 6.35 8 1.14 0.136 785 7 2.4
Glass 3.00 17 2.54 0.318 2583 15 2.4
Steel 4.5 11.3 7.78 0.896 3665 47 2.4

Liquid phase is water at 20,C—Bed diameter D ¼ 5.1 + 10"2 m.

Figure 1. Granular pressure averaged in the bed as a

function of averaged solid fraction for steel

beads.



succession of concentric zones within which the solid frac-

tion is decreasing from the periphery to the centre of these

zones. At high concentration and with the nylon and glass

beads (low and moderate inertia particles, respectively), the

concentric zones tend to ‘‘coalesce,’’ leading to a zigzag-like

structure (Figures 3b and 4b).

These instantaneous organized structures of the particle

concentration are consistent with the particle velocity and

fluctuating energy fields. The concentric structure of the

solid fraction field is associated to a succession of contra-

rotating circulation loops of the velocity field along the bed

height, which characteristic size compares with the column

diameter. The instantaneous distribution of particles can then

be explained as resulting from centrifugal effects within

these loops. The correspondence with the instantaneous field

of fluctuating energy is also remarkable, which often appears

as the ‘‘negative’’ of the instantaneous picture of the concen-

tration field. In fact, the location of q2p maxima in the bed

does correspond to the boundary between the circulating

loops or equivalently to the location of the highest velocity

gradients. This result confirms the former analysis of the

production source terms in Eq. 11 with low inertia particles,

which is controlled in this case by the mean velocity gradi-

ent.26 In the case of highest inertia particles (steel beads) at

high phase fraction ([40%), a train of planar concentration

waves takes place along the bed height. This train consists

of horizontal stripes of high solid fraction (close to the maxi-

mum packing fraction) followed by a layer of less concen-

trated particles (Figure 5b). Such a regime is associated with

the predominance of compressibility effect (granular pres-

sure) induced production terms in the fluctuating kinetic

energy budget, as shown by Gevrin et al.26

Analysis of Solid Fraction Fluctuations

Time signal

Following the experimental study of Zenit and Hunt,29 the

time signal of the fluctuation of the solid fraction averaged

over the bed cross section ap
6 7

S
" ap
6 7

S
(time average of this

signal is zero) has been plotted at different heights along the

fluidized bed. The axial evolution of this time signal at high

concentration (close to 0.6) is reported in Figures 6–8 with

the nylon, glass, and steel beads, respectively. Each of these

signals is plotted over a 10-s period, which is larger than the

largest characteristic time scale of the solid phase fraction

fluctuations. In each test section of the bed, these signals

are, therefore, the representatives of the whole time signal.

As a first observation, the solid phase fraction fluctuation

signal varies along the bed axis. For each type of bead, the

development of low-frequency fluctuations from the bottom

to the top of the bed can be observed. This evolution is

more pronounced with the most inertial particles (steel

beads). In this case, a concentration wave develops in

Figure 2. Fluctuating kinetic energy of the solid phase

averaged in the bed as a function of aver-

aged solid fraction for steel beads.

Continuous line corresponds to Eq. 13.

Figure 3. Instant fields of solid phase fraction, fluctuating kinetic energy, and velocity in the fluidized bed for Nylon

beads (a) dilute regime (b) concentrated regime (Nylon beads).



frequency and amplitude and tends to saturate in the upper

part of the bed. This remarkable structure is very similar to

the planar concentration cnoidal waves experimentally first

analyzed by Nicolas et al.6 and then by Duru et al.8 In

Figure 8, it can be also observed that the planar wave results

from the transverse growth of ‘‘void fraction’’ instabilities

that appears in the lower part of the bed. When their size

reaches the column diameter (by growth or coalescence with

others), they form ‘‘rectangular’’ bands that rise along the

bed with a rectilinear motion, as shown on the corresponding

velocity field (Figure 5b).

What is remarkable is that such a periodical one-dimen-

sional (1D) structure is a peculiar solution of the 2D

unsteady statistical model of this study. In some way, it is

the opposite approach to that of Nicolas et al.6 and Duru

et al.8 who developed constitutive closure laws of the solid

phase rheology on the basis of the analytic form of the ex-

perimental solid phase fraction time signal. Their method

can be summarized as follows: the analytic form of the satu-

rated wave resulting from a forced wavy regime around the

most energetic natural mode is implemented in a 1D two-

fluid model (of same kind as that proposed by Anderson and

Jackson11), which allowed them to identify the granular pres-

sure (or the elasticity, its derivative with respect to the solid

fraction) and the granular viscosity (shear viscosity). The

scaling laws they obtain read:

Figure 4. Instant fields of solid phase fraction, fluctuating kinetic energy, and velocity in the fluidized bed for glass

beads (a) dilute regime (b) concentrated regime.

Figure 5. Instant fields of solid phase fraction, fluctuating kinetic energy, and velocity in the fluidized bed for steel

beads (a) dilute regime (b) concentrated regime.



l-p ¼
lp

qpdUt

¼
0:18

urlp " up

(14)

for the granular viscosity, where urlp in an empirical maximum

random packing fraction slightly smaller than up,m. For the

elasticity they find:

dP-
p

dup

¼
1

qpU
2
t

dPp

dup

 !

¼ 0:2 (15)

Note, however, that for the determination of the granular

pressure, the results of Duru et al.8 are rather sensitive to the

available accuracy on the wave shape, in particular to the

level of wave saturation. Comparison between the above scal-

ing laws and the values predicted by the present model have

been reported in Figure 9 for the granular viscosity and in Fig-

ure 10 for the normalized elasticity (using steel beads numeri-

cal data). In Figure 9, it can be seen that the reduced viscosity

(inverse of a ‘‘granular’’ Reynolds number) is a decreasing

function of (up,m " up). The evolution of this normalized vis-

cosity calculated by the model underestimates the law identi-

fied by Duru et al. by an order of magnitude and its slope is

larger. Because of the important weight of the collisional vis-

cosity at high phase fraction in the model,26 such a discrep-

ancy might be due to the formulation of the time between two

collisions, scp which is a ‘‘dry granular’’ expression disregard-

ing the effect of the interstitial fluid (Eq. 9).

The level of the reduced elasticity as a function of up pre-

dicted by the model is approximately twice smaller than the

value deduced from the experimental results of Duru et al.8

It is thought that this difference comes from the fact that Eq.

15 results from an equilibrium between inertia and granular

elasticity. In their 1D model, Duru et al. accounts for the

added mass contribution in the inertia as it was ignored in

the present simulation. At high concentration, the ratio

between inertia terms with and without this added mass term

is close to 2, explaining to a certain extent the difference.

Moreover, Eq. 15 does not account for the stiff decrease of

granular pressure experimentally observed in the neighbor-

hood of urlp and approximately represented in Figure 10 by

the dashed line. It is worth to note that the model reproduces

such behavior. Overall, considering the large magnitude of

the experimental error bars (not reproduced here) around this

variable, the agreement can be judged satisfactory.

Spectral analysis

The power spectrum of the particle concentration fluctua-

tions has been calculated from the simulations at different

sections along the bed height and compared with the experi-

mental data of Zenit and Hunt.28 Results are displayed in

Figures 11–14 for the nylon beads and in Figures 15–18 for

the steel beads. With both types of beads, dilute and concen-

trated cases have been represented and a sample of the cor-

responding time signal of the concentration fluctuation has

been also reported. The sampling frequency of the numerical

Figure 6. Axial evolution of the solid fraction fluctuation instant signal ap

6 7

S
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S
in the bed cross section for

Nylon beads and up 5 0.56.

Horizontal axis: time in seconds.



Figure 7. Axial evolution of the solid fraction fluctuation instant signal ap
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S
in the bed cross section for

glass beads and up 5 0.56.

Horizontal axis: time in seconds.

Figure 8. Axial evolution of the solid fraction fluctuation instant signal ap
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results is 28 Hz and the record length varies between 5000

and 2500 values depending on the global solid fraction.

Spectrums are calculated by blocks of 256 values (each of

them represents 9.2 s). Such an averaging process allows

smoothing the spectrum in the range (0.1–14 Hz). The fre-

quency spectrum and the amplitude of the solid fraction sig-

nal are varying along the bed height. For each case pre-

sented, the results correspond to the fluctuating signal of the

cross-section averaged solid fraction in the upper part of the

bed.

The case of the nylon beads at a low concentration (up ¼
0.11) is shown in Figure 11. The simulated time signal (Fig-

ure 11b) exhibits positive peaks of amplitude at a character-

istic frequency close to 1 Hz. This frequency corresponds to

the passage of aggregate-like structures in the dilute regime

(see also Figure 3a). For larger frequency, the calculated

power density (Figure 12b) monotonously decays as a ("3)

power law. Such a value of the slope suggests some

Figure 9. Reduced granular viscosity as a function of

up,m 2 up.
Figure 10. Reduced elasticity as a function of up.

Straight lines represents the data of Duru et al. (2002);
circles represent numerical simulations.

Figure 11. Solid fraction fluctuations up ¼ 0.11 (nylon beads).

(a) Experiments (b) Numerical.

Figure 12. Solid fraction power spectrum up 5 0.11 (nylon beads).

(a) Experiments (b) Numerical.



similarity with the coupling of a turbulent spectrum with an

external forcing.33 In this case, the variation of power den-

sity is monitored by a single characteristic time scale over

the whole frequency range. Conservation of energy, there-

fore, naturally implies a ("3) power decay as a function of

frequency. Such a spectrum could be interpreted as the sig-

nature of the convolution of a quasi periodical signal (aggre-

gate frequency) with the random motion of the dispersed

Figure 13. Solid fraction fluctuations up 5 0.56 (nylon beads).

(a) Experiments (b) Numerical.

Figure 14. Solid fraction power spectrum up 5 0.56 (nylon beads).

(a) Experiments (b) Numerical.

Figure 15. Solid fraction fluctuations up 5 0.11 (steel beads).

(a) Experiments (b) Numerical.

Figure 16. Solid fraction power spectrum up 5 0.11 (steel beads).

(a) Experiments (b) Numerical.



phase. The experimental time signal (Figure 11a) presents

similar positive peaks and despite the high noise level on the

experimental spectrum (Figure 12a), its amplitude and shape

resemble the numerical spectrum.

In the case of the nylon beads at high concentration, the

numerical time signal is significantly changed, which is char-

acterized by the presence of negative low-frequency fluctua-

tions (Figure 13b). There is no real dominant frequency of

these fluctuations that seem to be more continuously distrib-

uted over several low-frequency modes. The corresponding

power density is reported in Figure 14b and its variation at

higher frequency is close to a ("5/3) power decay (random

‘‘turbulent’’ motion of the particles). When compared with

the experimental signal (Figure 13a), the numerical signal

amplitude is weaker. The experimental signal (Figure 13a)

also possesses these low frequency ‘‘void fraction’’ peaks

(negative fluctuations) but in this case, the existence of a

high energy dominant mode (around 0.5 Hz) is observed. As

a result, the experimental spectrum energy at low frequency

is much higher than that of numerically observed (nearly 2

orders of magnitude) and exhibits a ("3) power decay

behavior prior to the "5/3 at high frequency (Figure 14a).

The case of the most inertial particles (steel beads) at low

concentration is reported in Figure 15. The amplitude of the

time signal is smaller than with the nylon beads and its fluc-

tuations have larger frequencies. Experimental (Figure 15a)

and numerical (Figure 15b) signals possess similar trends.

The corresponding spectrums in Figures 16a, b (experimental

and numerical) exhibit a ("3) slope, suggesting the existence

of a dominant frequency. It seems that this frequency is

ranging between 2 and 3 Hz in the numerical signal but is

difficult to identify in the experimental signal (because of

the high noise level).

At high concentration and in the case of the steel beads, a

low-frequency quasi periodical signal of high negative

amplitude develops along the bed, which characterizes

the occurrence of the aforementioned ‘‘planar concentration

waves’’ (Figure 17). The dominant mode of the numerical

signal is located around 1.8 Hz, as shown in Figure 17b. The

similarity with the experimental signal is remarkable (Figure

17a) but the experimental frequency is approximately twice

less as that predicted by the model (0.9 Hz).

Such results confirm the relevance of the present approach

to describe the dynamics of liquid fluidization but also the

differences between the granular viscosity and elasticity as

predicted by the model and the experimental findings of

Duru et al.
8 Because of the strong nonlinear coupling

between the momentum and the fluctuating kinetic transport,

it is still difficult to identify and predict the specific effect of

the granular pressure and viscosity on the intensity and dis-

tribution of the solid fraction power spectrum.

Solid fraction rms

To complete this study, the experimental and numerical

values of the solid phase fraction rms
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have been

compared (which is also equal to the power density integral

over the whole frequency domain). The experimental data

show that, at a given concentration, the mean level of this

value is approximately of same order of magnitude for all

beads except for the steal beads at high concentration. The

Figure 17. Solid fraction fluctuations up 5 0.47 for steel beads.

(a) Experiments (b) Numerical.

Figure 18. Solid fraction power spectrum up 5 0.47 for steel beads.

(a) Experiments (b) Numerical.



evolution of the solid fraction rms has been plotted as a

function of the mean solid fraction in Figure 19 for the three

types of beads. In dilute regime, the experimental rms

(crosses) is an increasing function of the concentration and a

stiff decreasing function at highest concentration (in the

neighborhood of up,m). Such an evolution is consistent with

the granular pressure or temperature variation with the solid

fraction and can be predicted on the basis of simple considera-

tions. The fluidization velocity is related to the global concen-

tration by the Richardson–Zaki equation (Eq. 12). Expressed

in terms of average continuous phase velocity Uf, it reads:

Uf ¼ Utð1" upÞ
n"1

(16)

Assuming this macroscopic relation to be valid at a local

scale, the liquid phase velocity fluctuation u0f can thus be

related to the solid fraction fluctuation a0p as follows:

u0f /
dUf

dup

a0p ¼ "Utðn" 1Þð1" upÞ
n"2

a0p (17)

In the range of Stokes number considered and for solid

phase fraction larger than 0.1, one may also admit that the

continuous phase and particle velocity fluctuations are

strongly correlated, leading to the following relation between

the fluctuating kinetic energy of the solids and the rms of

the solid phase fraction:
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(18)

Substituting Eq. 13 in the above relation provides a scal-

ing relation of the solid phase fraction rms and the mean

concentration:
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(19)

At high particle Reynolds number, the drag coefficient of

a single particle CD0 is close to 0.43 and is a slight function

of Rep. The term C
1=3
D0 can thus be considered as a constant

in Eq. 19 (except at low fluidization velocity or equivalently

in the neighborhood of the maximum packing solid fraction).

As a result, at a given concentration up, the rms of the solid

phase fraction of each type of beads mainly depends of the

scaling factor in the fluctuating kinetic energy correlation

(Eq. 13), equal to 0.025, 0.028, and 0.06 for the nylon, glass,

and steel beads, respectively. This approximation of the scal-

ing of
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explains the low dependence of
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on

the beads inertia. The solid fraction rms as predicted by Eq.

19 has been plotted in Figure 19 for the three types of beads

(open circles) and shows a reasonable agreement with exper-

imental results in a wide range of solid phase fraction.

Because of the approximation of Eq. 17, Eq. 19 is, however,

limited to the case of a homogeneous flow configuration,

despite the fact that the expression of the averaged fluctuat-

ing kinetic energy used in that model partly accounts for

large scale motion.

The ‘‘bump’’ observed in these graphs for the three types

of beads at high concentration is due to the occurrence

of low frequency ‘‘void fraction’’ single mode waves

Figure 19. RMS of solid fraction as a function of up. (a)

nylon beads (b) glass beads (c) steel beads.

Symbols: crosses, experimental data of Zenit et al.; trian-
gles, numerical data at different sections along the bed;
circles, Eq. 19.



developing along the bed height. Hence, this ‘‘bump’’ is

more pronounced with high inertia particles (Figure 19c,

steel beads) than with low and moderate inertia particles

(Figures 19a, b, nylon and glass beads, respectively). How-

ever, it must be noted that this bump is more pronounced in

the case of the nylon beads than with the glass beads, sug-

gesting an attenuation of the concentration wave in the case

of the glass beads. Such an effect might be due to a too

large value of the ratio D/d between the column diameter (5

cm) and the glass particle diameter (3 mm). The numerical

predictions have been also plotted in these graphs at differ-

ent sections along the bed (triangles). In all cases, these are

in fairly good agreement with the experimental values except

for the reproduction of the bump in the range 0.4 \ up \

0.5, as expected from the former spectral analysis. In the

case of the steel beads, the agreement is still quite accepta-

ble and in this case, the numerical values ‘‘measured’’ at the

top of the bed (Figure 19c, z ¼ 0.72 m) tend to better repro-

duce the experimental trend, except in the range 0.3\ up \

0.4 where they still underestimate the experimental values.

Note that in this case, the simplified model cannot well rep-

resent the measured evolution at high phase fraction due to

approximation of Eq. 17.

Conclusions

A statistical model based on kinetic theory of granular

flows has been applied to the description of solid–liquid flu-

idization.26 In this work, we have focused our analysis on

the unsteady structures as predicted by this model and com-

pared them with the experimental data of Zenit and Hunt29

and Duru et al.8 Three kinds of contrasted inertia beads flu-

idized by water in a 5.1 cm diameter column have been

selected for the 2D simulation test cases. For every type of

bead, calculations were performed in a wide range of global

solid phase fraction (from dilute to highly concentrated

beds). In most of the cases, the large scale instantaneous

structures calculated by the model result from the establish-

ment of a series of contra-rotating circulation loops within

which particles distribute in concentric zones. The center of

these zones corresponds to a deficit in particles and the pe-

riphery to an excess of particles (with respect to the mean

solid fraction). These rotational structures are responsible of

the production of the fluctuating (small scale) kinetic energy

of the dispersed phase. In the particular case of heavy par-

ticles (steel beads) at high concentration, the model predicts

the development of single mode concentration planar waves.

Their amplitude grows and frequency decreases from the

bottom to the top of the bed and these waves tend to saturate

at a given height. These well-organized structures developing

on the whole width of the bed do well when compared with

previous observations in the literature. In this case, the rota-

tional structures disappear to the benefit of a 1D compressi-

ble flow, and the production terms of the small scale fluctua-

tions are controlled by the granular pressure and the volume

viscosity. The comparison of the granular shear viscosity

and elasticity predicted by the model with the experimental

data of Duru et al. reveal similar trends but these two varia-

bles seem to be underestimated by the present model. Spec-

tral analysis of solid fraction large scale fluctuations have

shown the existence of amplitude maxima at low frequency

(of the order of 1 Hz) in dilute regimes (aggregate struc-

tures) as in concentrated regimes (‘‘void fraction waves’’).

The occurrence of a low-frequency natural forcing in the sig-

nal is also supported by the presence of ("3) slope at higher

frequency. At high concentration, the development of ‘‘void

fraction’’ waves is more attenuated with the model than with

the experiments. The analysis of solid fraction rms has con-

firmed the trends observed in the spectrum. Overall, the level

of prediction of the present model can be judged quite satis-

factory and calls for further developments. Thanks to the

progress of the computing resources and the numerical tech-

niques, direct numerical simulations offer promising perspec-

tives for dispersed flow predictions but are still limited in

domain size and particle concentration.34 In return, DNS can

be used to establish and validate the dispersed phase rheol-

ogy as described in the statistical model (granular pressure

and viscosity, collision frequency, etc.). Such a work is cur-

rently under progress.
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Notation

CD ¼ drag coefficient
CD0 ¼ single particle drag coefficient

d ¼ particle diameter (m)
D ¼ fluidized bed diameter (m)
ec ¼ normal coefficient of restitution of collisions
g0 ¼ pair distribution function
I ¼ unit tensor

Kkin
p ¼ kinetic diffusivity (m2 s"1)

Kcol
p ¼ collisional diffusivity (m2 s"1)
n ¼ exponent in Richardson–Zaki law

pdf ¼ probability density function
Pp ¼ granular pressure (Pa)
P-
p ¼ reduced granular pressure

q2p ¼ fluctuating kinetic energy of the solid phase (m2 s"2)
Re ¼ particle Reynolds number in the fluidized bed
Ret ¼ particle Reynolds number at terminal velocity
rms ¼ root mean square

t ¼ time (s)
TFfp ¼ drag induced particle relaxation time (s)
U0 ¼ axial fluidization velocity (m s"1)
Up ¼ local velocity vector of the solid phase (m s"1)
Ut ¼ particle terminal velocity (m s"1)
ur ¼ local slip velocity (m s"1)
Uf ¼ axial component of fluid velocity (m s"1)
u0f ¼ local fluid velocity fluctuation (m s"1)
xi ¼ spatial coordinate in the ith direction (m)

Greek letters

ap ¼ local solid phase fraction
a0p ¼ local solid phase fraction fluctuation

up ¼

ffiffiffiffiffiffiffiffiffiffiffiffi

a
02
p

D E

r$ %

global solid phase fraction

/c, rc ¼ scalar function of ec
kp ¼ volume viscosity (Pa s)
lp ¼ granular shear viscosity (Pa s)

l*S ¼ dimensionless granular shear viscosity
mf ¼ fluid viscosity (m2 s"1)

mkinp ¼ kinetic viscosity (m2 s"1)
mcolp ¼ collisional viscosity (m2 s"1)
qf ¼ fluid density (kg m"3)



qp ¼ particle density (kg m"3)
Rp ¼ stress tensor of the solid phase (Pa)
scp ¼ time between two successive collisions (s)

Subscripts

i,j ¼ coordinate indices
p ¼ particle (solid) phase

p,m ¼ maximum packing
f ¼ (fluid phase)

rlp ¼ random loose packing

Symbols

hwi ¼ volume average in the bed
hwiS ¼ section average in the bed

w ¼ time average (over all time scales)
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