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Introduction

Particle-laden flows are of interest for the comprehension of a variety of applications. These range from the marine dispersion of plastic microparticles (Barboza and Gimenez [START_REF] Barboza | Microplastics in the marine environment: Current trends and future perspectives[END_REF]), cloud formation (Devenish et al. [START_REF] Devenish | Droplet growth in warm turbulent clouds[END_REF]) as well as industrial applications such as papermaking (Lundell et al. [START_REF] Lundell | Fluid mechanics of papermaking[END_REF]). One of the main challenges in predicting the behavior of such flows is linked to the particle shape, whose complex dynamics results from their coupled translational and rotational motion. Elongated or fiber shaped particles can be modelled by prolate spheroids, and provide a better understanding of the two-phase flow characteristics than a spherical model, as described by Voth and Soldati [START_REF] Voth | Anisotropic particles in turbulence[END_REF].

Dynamics of spheroids was theoretically studied by Jeffery [START_REF] Jeffery | The motion of ellipsoidal particles immersed in a viscous fluid[END_REF] and Happel and Brenner [START_REF] Happel | Low Reynolds Number Hydrodynamics[END_REF] who provided formulas for the computation of the hydrodynamic actions (force and torque) exerted by the flow, applicable for small particle Reynolds numbers (creeping flow regime). Experimentally, Krushkal and Gallily [START_REF] Krushkal | On the orientation distribution function of nonspherical aerosol particles in a general shear flow. I: The laminar case[END_REF] showed that brownian fibers orient preferentially if the shear magnitude of the flow is greater than the particle brownian diffusivity. In a duct, Bernstein and Shapiro [START_REF] Bernstein | Direct determination of the orientation distribution function of cylindrical particles immersed in laminar and turbulent shear flows[END_REF] found that fibers orient along the mean fluid velocity if the flow is laminar, while no preferential orientation occurs if the flow is turbulent.

Analoguous experiments conducted by Newsom and Bruce [START_REF] Newsom | Orientational properties of fibrous aerosols in atmospheric turbulence[END_REF], Parsheh et al. [START_REF] Parsheh | On the orientation of stiff fibres suspended in turbulent flow in a planar contraction[END_REF] showed that the turbulent intensity of the flow has a randomizing effect on the particle orientation. Also, particle rotation rate depends on their orientation relative to the fluid vorticity, and angular velocity statistics are strongly affected by particle length as shown by Parsa et al. [START_REF] Parsa | Rotation rate of rods in turbulent fluid flow[END_REF], Sabban et al. [START_REF] Sabban | Temporally resolved measurements of heavy, rigid fibre translation and rotation in nearly homogeneous isotropic turbulence[END_REF].

In addition to experimental and theoretical studies, direct numerical simulation (DNS) has become a convenient way to study turbulent flows and was pioneered by the work of Riley and Patterson [START_REF] Riley | Diffusion experiments with numerically integrated isotropic turbulence[END_REF] on isotropic turbulence. The first DNS of a particle-laden channel flow coupled with the Lagrangian tracking of parti-cles (LPT) was used to investigage the dispersion of small spherical particles by

McLaughlin [START_REF] Mclaughlin | Aerosol particle deposition in numerically simulated channel flow[END_REF]. In this simulation, the fluid velocity and pressure fields are known from the DNS and are used to model the forces necessary to track the motion of particles approximated as material points. The first study of this kind for elongated particles is reported by Zhang et al. [START_REF] Zhang | Ellipsoidal particles transport and deposition in turbulent channel flows[END_REF] who modelled fibers as prolate ellipsoids and avoided Euler's angles orientation singularity (the gimbal lock) using unit quaternions to track particle orientation. Numerical studies of Mortensen et al. [START_REF] Mortensen | Dynamics of prolate ellipsoidal particles in a turbulent channel flow[END_REF], Marchioli et al. [START_REF] Marchioli | Orientation, distribution, and deposition of elongated, inertial fibers in turbulent channel flow[END_REF] compared orientation and velocity statistics of prolate spheroids of different aspect ratios and relaxation times.

They concluded that particle preferential orientation was especially strong in the viscous sublayer, where the mean shear is strong compared to the turbulent fluctuations. Also, preferential orientation was decreased with increasing particle inertia. More recently Challabotla et al. [START_REF] Challabotla | Gravity effects on fiber dynamics in wall turbulence[END_REF] reported that gravity is responsible for increased fluxes of oblate and prolate particle towards walls in upward flow while the contrary occured in downward flow. Also, Arcen et al. [START_REF] Arcen | Prolate spheroidal particles' behavior in a vertical wall-bounded turbulent flow[END_REF] showed that gravity increases the preferential orientation of inertial particles in the channel core. Recently, Voronoi diagrams were used by Yuan et al. [START_REF] Yuan | On wall-normal motions of inertial spheroids in vertical turbulent channel flows[END_REF] to study the clustering of prolate spheroids, and the transition between the ordered particle orientation near the wall and the nearly isotropic orientation in the bulk flow were described by Zhao et al. [START_REF] Zhao | Mapping spheroid rotation modes in turbulent channel flow: effects of shear, turbulence and particle inertia[END_REF] using Laplace triangle.

A difficulty encountered in the study of particle-laden flows is that particles drift toward the walls at a slow pace. The statistics presented are thus generally computed while the particle spatial distribution is not steady. A direct consequence is that these statistics can depend on the time window chosen to collect data and their uniqueness is not guaranteed. The long-time evolution of the distribution of spherical particles in a turbulent channel was studied by Sardina et al. [START_REF] Sardina | Wall accumulation and spatial localization in particle-laden wall flows[END_REF], Bernardini [START_REF] Bernardini | Reynolds number scaling of inertial particle statistics in turbulent channel flows[END_REF], but no such study exists for prolate spheroids at the time being. The issue with this void is that the accuracy of the statistics given in the aforementioned studies [e.g. [START_REF] Zhang | Ellipsoidal particles transport and deposition in turbulent channel flows[END_REF][START_REF] Mortensen | Dynamics of prolate ellipsoidal particles in a turbulent channel flow[END_REF][START_REF] Marchioli | Orientation, distribution, and deposition of elongated, inertial fibers in turbulent channel flow[END_REF][START_REF] Zhao | Slip velocity of rigid fibers in turbulent channel flow[END_REF][START_REF] Arcen | Prolate spheroidal particles' behavior in a vertical wall-bounded turbulent flow[END_REF]] cannot be assessed, thus restraining their employability to develop macroscopic model for instance. We choose to address this problem by performing long-time numerical simulations of a spheroid-laden channel flow at Re τ = 180. In the same manner as Sardina et al. [START_REF] Sardina | Wall accumulation and spatial localization in particle-laden wall flows[END_REF] did for spheres, the temporal evolution of the particle distribution is first investigated to obtain the time a which the steady state is reached. Following this investigation, particle statistics are computed in and out of the steady state, using time intervals of different length to examine the effect of these two conditions.

Governing equations

Fluid phase

The turbulent flow is described by the following continuity and momentum conservation equations for a Newtonian, incompressible and isothermal fluid :

∂u i ∂x i = 0, (1) 
∂u i ∂t + u j ∂u i ∂x j = - 1 ρ f ∂p ∂x i + ν ∂ 2 u i ∂x j ∂x j , (2) 
where u i is the component of the velocity field in the direction x i , p the pressure, ρ f the fluid density and ν the fluid kinematic viscosity.

Lagrangian particle tracking

Studied geometry

Particles are modelled as prolate spheroids that are described by their aspect ratio λ = a/b > 1, a and b are the lengths of the semi-major and semi-minor axes (see figure 1). In addition, particles are treated as material points, therefore, the coupling between the fluid and particle phases is not directly solved, it is modelled. The particle location and translational velocity are solved in the Eulerian frame (x, y, z) while the equations describing the particle orientation are resolved in the frame (x , y , z ). This latter frame is attached to the particle and its axes are aligned with the particle principal axes. Finally, the frame (x , y , z ) allows the orientation of a particle in the Eulerian frame to be known.

In the case of a turbulent flow, point particle approximation remains valid if the particle size is smaller than Kolmogorov length scale : η k = (ν 3 / ) (1/4) , where is the turbulent kinetic energy dissipation rate. This scale characterizes the smallest length scale of the turbulent flow. Thus, at the particle scale, the flow is approximately uniform, and allows using theoretical formulas or empirical correlations for the computation of the forces exerted by the fluid.

Translational motion

The velocity and position of the particle are obtained by solving the following set of equations :

dx p dt = u p , (3) 
m p du p dt = F, (4) 
where x p and u p are the particle position and velocity, m p = ρ p (4/3)πab 2 its mass, ρ p denotes the particle density, and F the external forces applying on it.

The particle Reynolds number is defined as :

Re p = d eq ||u r || ν . (5) 
It is based on the diameter of the volume equivalent sphere d eq = 2b 3 √ λ, and the magnitude of the relative velocity between the particle and the fluid u r = u p -u, where u = u(x p , t) is the fluid velocity at the particle position.

The forces acting on the particle are obtained from the work of Happel and Brenner [START_REF] Happel | Low Reynolds Number Hydrodynamics[END_REF] and include drag and lift. This model is valid for low particle Reynolds number only (Stokes flow regime) but has been widely used to study the dynamics of prolate spheroids [START_REF] Zhang | Ellipsoidal particles transport and deposition in turbulent channel flows[END_REF][START_REF] Mortensen | Dynamics of prolate ellipsoidal particles in a turbulent channel flow[END_REF][START_REF] Marchioli | Rotation statistics of fibers in wall shear turbulence[END_REF][START_REF] Zhao | Slip velocity of rigid fibers in turbulent channel flow[END_REF][START_REF] Challabotla | On fiber behavior in turbulent vertical channel flow[END_REF][START_REF] Yuan | On wall-normal motions of inertial spheroids in vertical turbulent channel flows[END_REF]. A posteriori analysis of the results showed that the average Re p is about 0.2. The Stokes flow assumption is therefore appropriate. The lift force arising as a consequence of particle rotation or flow shear is neglected to reproduce the setup of these studies.

From Happel and Brenner [START_REF] Happel | Low Reynolds Number Hydrodynamics[END_REF], an ellipsoid under creeping flow conditions undergoes a force :

F = -νρ f (A -1 KA)u r , (6) 
where A is the direction cosine matrix which is used to relate the components of a tensor with respect to the frames (x , y , z ) and (x , y , z ). This matrix is computed knowing the particle orientation, as described in Zhang et al. [START_REF] Zhang | Ellipsoidal particles transport and deposition in turbulent channel flows[END_REF].

K is the translational resistance tensor, it describes the influence of the particle shape on its translational motion, and is diagonal in the frame (x , y , z ). For a prolate spheroid the components are computed from the following formulas:

K x x = 8bπ(λ 2 -1) ln λ + √ λ 2 -1 2λ 2 -1 √ λ 2 -1 -λ , (7) 
K y y = 16bπ(λ 2 -1) ln λ + √ λ 2 -1 2λ 2 -3 √ λ 2 -1 + λ , (8) 
K z z = K y y . (9) 
Due to the anisotropy of K, when the particle major axis is not aligned nor normal to u r , this force is not aligned with the relative velocity.

Thus, F can be split into a component directed along the relative velocity, namely the drag force F D and one component normal to the relative velocity, the lift force F L . For an unidirectional flow directed along the x axis, and an ellipsoid whose axis z coincides with z, these forces are:

F D = νρ f U K x x + (K z z -K x x ) sin 2 (φ) • e x , (10) 
F L = -νρ f U [(K z z -K x x ) sin(φ) cos(φ)] • e y . ( 11 
)
Where U is the flow velocity, φ the angle between the particle major axis and the relative velocity and e i the unit vector along the i-th

Eulerian axis.

In addition, the particle relaxation time, the characteristic time required for a particle to adjust to a change in the flow characteristics can be obtained. A major difference with a spherical particle is that the definition of the relaxation time is not straightforward for an ellipsoid. Several different definitions can be deduced from K [START_REF] Siewert | Orientation statis-tics and settling velocity of ellipsoids in decaying turbulence[END_REF], we choose the definition from Shapiro and Goldenberg [START_REF] Shapiro | Deposition of glass fiber particles from turbulent air flow in a pipe[END_REF]:

τ p = 2ρ p b 2 9ρ f ν ln(λ + √ λ 2 -1) √ λ 2 -1 . ( 12 
)
τ p is the typical time scale of the particle translational motion. When expressed in wall units (using u τ and ν) it becomes the particle Stokes number : the ratio of the particle relaxation time to the viscous time scale of the flow (ν/u 2 τ ).

Rotational motion

The instantaneous orientation and angular velocity of a particle are obtained by solving the rotational motion equations in the frame (x , y , z , see Fig. 1).

I I dω p dt + ω p × (I I ω p ) = T , (13) 
dq p dt = 1 2 q p ω p . (14) 
Here, q p is the unit quaternion describing the orientation of the particle, as used by Zhang et al. [START_REF] Zhang | Ellipsoidal particles transport and deposition in turbulent channel flows[END_REF]. Unit quaternions are four dimensional vectors and avoid the singularity induced by Euler's angles (gimbal lock). I I is the particle inertia tensor, ω p the particle rotation vector, and T is the torque acting on the particle. The components of these quantities are expressed in the frame linked to the particle axes (x , y , z ). The torque is modelled using the formula from Jeffery [START_REF] Jeffery | The motion of ellipsoidal particles immersed in a viscous fluid[END_REF] :

T = 16πµab 2 3         1 2β 0 2b 2 (Ω zy -ω px ) 1 β 0 + λ 2 α 0 (1 -λ 2 )S xz + (1 + λ 2 )(Ω xz -ω py ) 1 λ 2 α 0 + β 0 (λ 2 -1)S yx + (λ 2 + 1)(Ω yx -ω pz )         , (15) 
with µ the fluid dynamic viscosity, ω px , ω py , and ω pz are the components of the particle angular velocity. The term

S ij = 1 2 ∂u i ∂x j + ∂u j ∂x i
is fluid rate-of-strain 110 tensor and

Ω ij = 1 2 ∂u i ∂x j - ∂u j ∂x i
the rate-of-rotation tensor at the particle location, the components of both tensors are given with respect to the particle frame (x , y , z ). The coefficients α 0 and β 0 are provided by Oberbeck [START_REF] Oberbeck | Uber stationare flussigkeitsbewegungen mit beracksichtigung der inneren reibung[END_REF] as integrals and their explicit expressions are given by Gallily and Cohen [START_REF] Gallily | On the orderly nature of the motion of nonspherical aerosol particles. II. inertial collision between a spherical large droplet and an axially symmetrical elongated particle[END_REF].
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Simulation setup

The turbulent flow in a channel of dimension 4πδ × 2δ × 1.3πδ in the streamwise, wall-normal, and spanwise directions, where δ is the channel half-width, is computed by a finite differences DNS solver, based on that of Orlandi [START_REF] Orlandi | Fluid flow phenomena. A numerical toolkit[END_REF].

Periodic boundary conditions are applied in the x and z directions (statistically homogeneous directions) and a no-slip/no-penetration condition is enforced at

y ± δ.
The computational grid is staggered and stretched in the wall-normal direction to capture the strong velocity gradients in the near-wall region. Similarly to the finite-difference code used in Vreman and Kuerten [START_REF] Vreman | Comparison of direct numerical simulation databases of turbulent channel flow at Reτ = 180[END_REF], the spatial derivatives appearing in Eqs. 1 and 2 are approximated using fourth-order schemes in the streamwise and spanwise directions, while second-order schemes are used in the wall-normal direction. The time advancement is performed by a fully explicit third-order low-storage Runge-Kutta scheme [START_REF] Lee | An improvement of fractional step methods for the incompressible Navier-Stokes equations[END_REF]. At each Runge-Kutta stage, the pressure-velocity coupling problem is solved using the pressure-correction method proposed by Timmermans et al. [START_REF] Timmermans | An approximate projection scheme for incompressible flow using spectral elements[END_REF]. The Poisson equation involved in this latter method is discretized similarly to the continuity and Navier-Stokes equations. A fourth-order accurate scheme is used to estimate the spatial derivatives in the homogeneous directions, the approximation is second-order accurate in the wall-normal direction. The solution of the discrete Poisson equation is obtained using a direct method based on Fourier transforms in the streamwise and spanwise directions. The discrete Fourier transforms are computed with the library FFTW [START_REF] Frigo | The design and implementation of FFTW3[END_REF].

The mean flow is directed along x, and the flow rate is kept constant. In our with an average relative error of less than 1.3% on the velocity and vorticity mean and rms.

Particles are modelled as prolate spheroids. Three aspect ratios λ = 1, 3 and 10 are investigated as well as two relaxation times, in wall units τ + p = 5 and 30. Particle geometry was chosen so that the volume equivalent sphere diameter remains constant and the particle major axis a + remains of the same order of magnitude as Kolmogorov's length scale. The particle parameters are provided in Table 1. Particle-fluid coupling is one way : the effect of the particle on the fluid is supposed negligible as well as the interparticle interactions. Periodic boundaries are applied in the streamwise and spanwise directions. Wall-particle collisions are treated as elastic when the distance between the particle center of mass and the wall is smaller than d eq /2. As all particles have the same equivalent diameter, no bias is introduced in the statistics by the wall collisions.

The equations governing the ellipsoidal translational and rotational motion are solved with the same three-stage low-storage Runge-Kutta scheme as used in the fluid solver. The fluid velocity and velocity gradient necessary to compute the hydrodynamic actions on each particle are interpolated at the particle position using a tricubic Hermite interpolation and a trilinear interpolation, respectively. 300 000 prolate spheroids are seeded uniformly in the turbulent flow field. This sample size is commonly employed in DNS studies of particle-laden flows. To ensure convergence of the statistics, long runs (Rf interval in table 2) were carried out with 1 000 000 particles and did not reveal an effect of this parameter on the statistics. The particle translational and rotational velocities are initially equal to that of the fluid at their position, while their orientation is randomized. These particles are tracked for 55 000 viscous time units and the instantaneous metrics of the particles are collected every 200 iterations (≈ 22 viscous time units) to produce statistics. This is in our the influence of this parameter. These results are also compared to statistics collected while the particle distribution is still unsteady in order to investigate the effect of the particle distribution state.

Results and discussion

Particle steady state

To examine the effect of the particle distribution equilibrium on the statistics, we start by examining the temporal evolution of the distribution. If it is known that the gradual accumulation of particle near the walls depends on their inertia, there is in our knowledge no formula to estimate the time the particle distribution requires to reach an equilibrium. From the entropy definition of Shannon [START_REF] Shannon | A mathematical theory of communication[END_REF], a parameter S was defined by Picano et al. [START_REF] Picano | Spatial development of particleladen turbulent pipe flow[END_REF] to describe the global particle distribution at a given time t + ,

S(t + ) = - M i=1 p i (t + ) ln [p i (t + )] ln(N t )
, where p i (t

+ ) = N i (t + ) N t , (16) 
M is the number of wall-parallel slabs used to split the domain, N t the total number of particles tracked and N i (t + ) is the number of particles in the i -th slab at a given t + . In this study, the channel is divided into M = 75 slabs of even width. The value of the parameter S is 1 if the particles are uniformly distributed and 0 if they are all in the same subvolume.

The temporal evolution of this parameter for spheroids is presented in Figure 2. A result that was described by Sardina et al. [START_REF] Sardina | Wall accumulation and spatial localization in particle-laden wall flows[END_REF], Bernardini [START_REF] Bernardini | Reynolds number scaling of inertial particle statistics in turbulent channel flows[END_REF] is that the steady spatial distribution reached by spherical particles depends on their inertia. The present study shows that this result applies to prolate spheroids as well. The concentration of τ + p = 30 particles is more uneven than that of their less inertial counterpart, as attested by the lower value of S. The time at which the sphere distribution becomes steady ranges between 10 000 for τ + p = 5 to 15 000 for τ + p = 30. Compared to Marchioli et al. [START_REF] Marchioli | Statistics of particle dispersion in direct numerical simulations of wall-bounded turbulence: Results of an international collaborative benchmark test[END_REF], we note a different effect of sphere inertia. In our study, τ + p = 5 particles reach the steady state before τ + p = 30, while they noted that particles of lower inertia require more time to reach steady state. We believe that this difference is due to the choice of the particle diameter. To support that statement, it has to be noted that Bernardini [START_REF] Bernardini | Reynolds number scaling of inertial particle statistics in turbulent channel flows[END_REF] obtained a time to reach the steady state for τ + p = 25 spheres around t + = 20 000. This value is three times larger than that obtained by Marchioli et al. [START_REF] Marchioli | Statistics of particle dispersion in direct numerical simulations of wall-bounded turbulence: Results of an international collaborative benchmark test[END_REF] (t + = 7000). The main difference between these two studies is that the particle diameter in Marchioli et al. [START_REF] Marchioli | Statistics of particle dispersion in direct numerical simulations of wall-bounded turbulence: Results of an international collaborative benchmark test[END_REF] is d + = 0.765 while Bernardini [START_REF] Bernardini | Reynolds number scaling of inertial particle statistics in turbulent channel flows[END_REF] used d + = 0.41.

The time required to reach steady state does not appear to be affected by the aspect ratio for τ + p = 30 particles. On the contrary, τ + p = 5 and λ = 3 spheroids require about 2.5 times more time than spheres to reach steady state. Once this state is attained, we observe that λ = 3 have a lower entropy than λ = 10 or spheres, and that this effect is more pronounced for τ + p = 5 than for τ + p = 30. We think that this is linked to the wall-normal component of the lift force that appears as a consequence of the particle orientation (Eq. 6). The plot of the wall-normal lift force averaged over t + ∈ [24000, 48000] is presented in figure 3. For τ + p = 5, we notice in figure 3 (a) that the lift for λ = 3 has negative values for y + < 20. As a consequence, particles of λ = 3 are more strongly segregated in the sublayer compared to λ = 10, and the entropy is lower. For τ + p = 30, the effect of λ is less pronounced for y + < 20. However, particles of λ = 10 have strong positive lift in the buffer layer and channel core. These particles ejected out of the sublayer will then be less likely to return, and the particle distribution will be more uniform than that of λ = 3. It is clear from figure 2 that the particle concentration in the channel requires a long time to reach steady state and that the particle distribution can be strongly non uniform. From these observations, a legitimate question is asked : is there an effect of the time interval chosen to collect particle statistics ?

To answer this question, we define different time intervals to compute 

E rr = 1 N y Ny 1 |s Rf i -s i |, (17) 
where the s i are the data of the probed serie (that is the data from intervals Mo, Zh, S1 or S2) and s Rf i is the reference data adopted for the error calculation.

N y represents the number of Eulerian mesh points in the wall-normal direction y. In the following subsection, the error made with the different intervals are presented for the ellipsoids velocities and orientation statistics.

Mean particle velocities, orientations and concentration

Table 3 presents the absolute error of λ = 1 particles average streamwise velocity (u px ), spanwise spin (ω pz ), streamwise and wall-normal relative velocities (u ri = u pi -u i ), and orientation. The particle orientation is described by the absolute direction cosines (| cos(θ i )|). θ i are the angles between the particle major axis (x ) and the i-th axis of the Eulerian frame. In addition, to assess how far the particle distribution is from the steady state distribution, the error made on the particle number density (concentration)

C pi = (N i /V i )
is computed, with N i the number of particles in the i-th wall-parallel slab and V i the volume of the slab. It is normalized using the channel average concentration C 0 = (N t /V t ) that is the ratio of the total number of particles N t to the channel volume V t . The wall-parallel slabs are given by the Eulerian mesh.

For both inertias, it is seen that the error on the sphere translational velocity decreases with the interval averaging length. For τ + p = 5 particles, statistics are more accurate if they are computed when the particle distribution has reached equilibrium, and this effect is more pronounced for τ + p = 30. Also, if inertia is higher, a longer averaging duration also reduces the error. The orientation statistics error do not vary much with the interval chosen and the explanation is found in the lack of preferential orientation of spherical particles. The concentration and streamwise relative velocity are the statistics most affected by the collection interval, and the error is significantly higher for Mo than for the others, and this observation is more pronounced for particles of τ + p = 30 than for those of τ + p = 5. From figure 2, it was noticed that in this interval, the Interval wall-normal particle fluxes are not at equilibrium, and the particle spatial distribution is not steady. For τ + p = 5 and 30 spheres, we conclude that the time at which particle statistics are started has an important effect on the statistics accuracy. This is most visible for the streamwise relative velocity and the particle number density. As these statistics are strongly tied to the particle wall-normal displacement, they require being computed when the distribution is steady to be accurate. In addition, for both inertias, statistics averaged over a longer time have a lower error. To illustrate the effect of the time interval on the statistics, the relative velocities of spheres are given in figure 4 for both inertias. In figure 4 (a) and (c), statistics of τ + p = 5 particles coincide with the reference and only results from interval Mo show a slight divergence from Rf. For particles of aspect ratio λ = 3, Table 4 shows that the error magnitude of the average velocity is higher than that for spheres, especially for intervals Mo and Zh. A similar observation is made for the angular and relative velocity components. For particles of both inertias, statistics accuracy is improved by starting the averaging when the particle concentration is in the steady state.

u px ω pz u rx u ry | cos(θ x )| | cos(θ y )| | cos(θ z )| C p τ + p = 5 Mo 5.2 • 10 -2
〈 u ry + 〉 y + Mo Zh S1 S2 Rf (c) τ + p = 5 (d) τ + p = 30
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This is noted for both inertias with interval Mo, as well as with interval Zh for τ + p = 30. At equilibrium, for τ + p = 5, a longer averaging duration improves the accuracy of all statistics while for τ + p = 30, only the error made on orientation and concentration statistics is decreased. The data plotted in figure 5 with the reference and confirm the importance of the particle steady state. Also, for τ + p = 30, statistics computed in the steady state (S1 and S2) are close to Rf but even with 6 000 time units (S2) the agreement is not perfect and suggest the need for a longer data collection.

〈 u ry + 〉 y + Mo Zh S1 S2 Rf (c) τ + p = 5 (d) τ + p = 30
Table 5 shows statistics errors of particles of aspect ratio λ = 10. For τ + p = 5 particles, the error magnitude is similar to that of particles of aspect ratio λ = 3.

Interval u px ω pz u rx u ry | cos(θ x )| | cos(θ y )| | cos(θ z )| C p τ + p = 5 Mo 13 • 10 -2
〈 | cos (θ z ) | 〉 y + Mo Zh S1 S2 Rf (a) τ + p = 5 (b) τ + p = 30
Translation statistics accuracy is improved by starting statistics collection in the steady state. Also, error made on the relative velocity and concentration is higher for intervals Mo and Zh than for S1 and S2. The same observation applies to τ + p = 30, and the particle distribution equilibrium has an important effect on the statistics accuracy. When compared with the τ + p = 30 particles of aspect ratio λ = 3, the error magnitude of the particle velocities is lower for λ = 10. Finally, we remark that for both inertias, increasing the averaging duration also diminishes the error. Concerning the mean relative velocity, the error is maximum for λ = 3 and τ + p = 30. Challabotla et al. [START_REF] Challabotla | Gravity effects on fiber dynamics in wall turbulence[END_REF] showed that these particles have the highest average wallnormal velocity during the transient state. It is believed that this important wall-normal motion induces relative velocities larger than during the steady-state since the fluide velocity along a particle trajectory changes more quickly. The error made on the angular velocity and cos(θ i ) is however higher for more elongated particles. In figure 6, the mean absolute spanwise direction cosine is plotted for λ = 10. Subfigure 6 (a) shows that for all intervals with the exception of Mo, the spanwise cosine of particles of relaxation time τ + p = 5 is in good agreement with Rf. For τ + p = 30 particles however, figure 6 (b) reveals that the spanwise orientation is not properly estimated for interval Mo for y + ∈ [0, 30]. For intervals Zh, S1 and S2 spanwise orientation agrees well with the reference data. Similar observations are made for the other orientation components, and the results are not presented for brevity reasons. For this aspect ratio, we conclude that the statistics accuracy is linked to the state reached by the particle distribution and this is more pronounced for τ + p = 30 particles. Overall, the particle steady state is the key parameter to ensure the statistics are accurate. Its effect is more important for particles of τ + p = 30 than for those of τ + p = 5. When statistics are computed in the steady state, accuracy is increased by averaging over a longer interval, and this is more visible for τ + p = 30. In order to complete this study the errors made on the translational and angular velocity fluctuations are presented in the following subsection.

u px ω pz u rx u ry | cos(θ x )| | cos(θ y )| | cos(θ z )| C p τ + p = 5 Mo 7.3 • 10 -2 12 • 10 -4 13 • 10 -3 9.4 • 10 -4 27 • 10 -4 13 • 10 -4 39 • 10 -4 • 10 -2 Zh 3.1 • 10 -2 3.8 • 10 -4 3.7 • 10 -3 5.0 • 10 -4 8.5 • 10 -4 12 • 10 -4 13 • 10 -4 • 10 -2 S1 2.5 • 10 -2 13 • 10 -4 1.7 • 10 -3 5.0 • 10 -4 25 • 10 -4 28 • 10 -4 16 • 10 -4 • 10 -2 S2 1.4 • 10 -2 6.7 • 10 -4 1.6 • 10 -3 4.8 • 10 -4 13 • 10 -4 17 • 10 -4 11 • 10 -4 • 10 -2 τ + p = 30 Mo 16 • 10 -2 34 • 10 -4 110 • 10 -3 74 • 10 -4 17 • 10 -4 67 • 10 -4 110 • 10 -4 • 10 -2 Zh 5.1 • 10 -2 9.3 • 10 -4 24 • 10 -3 22 • 10 -4 8.7 • 10 -4 28 • 10 -4 37 • 10 -4 • 10 -2 S1 4.1 • 10 -2 5.6 • 10 -4 24 • 10 -3 21 • 10 -4 10 • 10 -4 16 • 10 -4 25 • 10 -4 • 10 -2 S2 2.4 • 10 -2 4.3 • 10 -4 13 • 10 -3 12 • 10 -4 8.4 • 10 -4 12 • 10 -4 17 • 10 -4 6 • 10 -2
Table 5: Mean absolute error of the average velocity (wall units), orientation and concentration for λ = 10 particles.

Particle velocities rms

We present hereafter the errors made on rms of the components of the particle velocity u + pi and angular velocity ω + pi . Results for spherical particles are 290 presented in the Table 6. The overall behavior of the error is that it decreases when statistics are computed in the steady state. While the error made using Mo has the same magnitude for both particle inertias, it is noted that for other intervals, the error on the velocities is higher for particles of higher inertia. Figure 7 presents the streamwise and wall-normal components of the velocity rms.
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For particles of τ + p = 5, panels (a) and (c) show that, with the exception of Mo, where a small discrepancy is noticed in the channel core, agreement with Rf is good for all intervals. For τ + p = 30 particles however, the streamwise velocity rms is overestimated for y + ∈ [0, 15] and it is most visible for intervals Mo and Zh in figure 7 (b). The relative error reaches a maximum of 27% with interval Mo at y + = 1.5. It is about 7.3% at the same y + when using Zh. From Liljegren [START_REF] Liljegren | The effect of a mean fluid velocity gradient on the streamwise velocity variance of a particle suspended in a turbulent flow[END_REF], the fluctuations of the streamwise velocity are tied on the wall-normal motion of the particles, thus computed statistics can reach an equilibrium only if the spatial distribution of particles is in a statistically steady state. For particles of aspect ratio λ = 3 and τ + p = 5, Table 7 shows that the streamwise 305 velocity error are similar when using intervals Mo and Zh, and suggests that the statistics are influenced by the particle distribution equilibrium, rather than by the averaging duration. For the other metrics, the error magnitude shows that there is a strong effect of the averaging starting time. Also, a longer averaging duration reduces the error made on all statistics. For the relaxation time Finally results for particles of aspect ratio λ = 10 are shown in Table 8. Here, the effect of the starting time is highly noticeable, for both relaxation times.

For spheroids of τ + p = 5, the magnitude of the angular velocity error is reduced by extending the statistics collection duration both in and out of the particle distribution steady state. For particles of higher relaxation time however, this is less pronounced, and statistics collected over intervals S1 and S2 have similar accuracy. Error magnitude of the streamwise velocity rms is higher for more inertial particles, while it does not show a dependence to this parameter for the wall-normal and spanwise components. Plots of the angular velocity rms of gest an effect of the particle distribution state and averaging duration.

Error with interval Zh is a consequence of the particle distribution, while using interval S1, error is induced by a convergence issue. For these particles, angular velocity undergoes large variations, and the error maximum appears where the rms peaks. As a small number of particles is encountered in this region during the steady state, a perfect statistical convergence requires a long collection time.

In this part, it was shown that the averaging starting time influence the velocity fluctuations statistics of spheroids. For all aspect ratios, rms(u + px ) of inertial particles are more accurate if the statistics computation is performed when the particle distribution has reached steady state. The effect of the starting time is more pronounced for particles of higher inertia and for λ = 3. In addition, the angular velocity rms of λ = 10 ellipsoids is sensitive to the particle distribution state, and this is most visible for more inertial particles. Once particle distribution equilibrium is reached, an effect of the averaging duration on the translational statistics is mainly noticed for λ = 3 but remains moderate. This effect is more pronounced for the angular velocity statistics of λ = 10 and τ + p = 30 ellipsoids which exhibit a strong variability.

Nevertheless, this effect is less important than that of the particle distribution steady state.

Conclusion

Coupled DNS-LPT simulations are commonly used to statistically describe the dynamics of inertial spheroids in turbulent, wall-bounded flows. Nonetheless, there is no consensus on the methodology to adopt for the statistics computation. In order to address this issue, we conducted long-time simulations of a particle-laden channel flow to investigate the effect of two parameters : the particle distribution equilibrium and the averaging duration. First, the evolution of the distribution of a population of 300 000 particles was studied by the mean of a global parameter proposed by Picano et al. [START_REF] Picano | Spatial development of particleladen turbulent pipe flow[END_REF]. It was found that after a transient period whose duration can vary with the particle aspect ratio and inertia, the particle distribution reaches a steady state. This equilibrium is further from an uniform distribution as particle inertia increases, with a non-trivial effect of the aspect ratio. Particle statistics were then computed tities that have high variability, such as the angular velocity rms of λ = 10 and τ + p = 30 particles. We emphasise on the fact that the differences with the reference are most visible in the range 0 < y + < 20, where the particle concentration is the highest. In all cases, the convergence of statistics computed when the distribution equilibrium is reached, can be further improved by increasing the averaging duration. This improvement applies on all the statistics, and is more important for higher inertia. This paper intends to offer informations on the accuracy of particle statistics produced by DNS-LPT simulations. Our recommandations to produce particle statistics of good quality are to start the data collection when the distribution is steady. Also, to reduce statistical biases, the averaging duration should be carefully chosen especially for particles of high inertia and aspect ratio.

Similar analysis, performed for additional particle inertias and aspect ratios would be an interesting extension to this work.
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Figure 1 :

 1 Figure 1: A prolate spheroid and the different frames.

  simulations, the bulk Reynolds number Re b = U b δ/ν based on the mean velocity U b is thus directly specified. In the present study, we set Re b = 2820 in order to reach a Reynolds number based on the wall shear velocity, Re τ , which is approximately equal to 180. The domain is split in 288 × 128 × 160 cells in the streamwise, wall-normal, and spanwise directions, respectively. In wall units the grid spacings are ∆x + = 7.85, ∆y + = 2.81 (on average) and ∆z + = 4.59. The time step is variable and obtained by setting a CFL number of 0.5, its mean value is ∆t + ≈ 0.114. The value of Re τ computed a posteriori is 179, it agrees well with the expected 180. A preliminary study of the flow has shown a good agreement between the flow statistics and that of Vreman and Kuerten [32],

Figure 2 :

 2 Figure 2: Temporal evolution of the entropy parameter S. Particles of relaxation time τ + p = 5 continuous lines, τ + p = 30 dashed lines.

Figure 3 :

 3 Figure 3: Wall-normal component of the lift force per particle unit mass (f + Ly = F + Ly /mp) for τ + p = 5 (a) and τ + p = 30 (b) spheroids.

Figures 4 (

 4 Figures 4 (b) and (d) reveal that for τ + p = 30 spheres however, the accuracy is good only if statistics are collected in the steady state. Differences are mainly visible around the curves extrema, and even statistics computed over interval S2 are different from Rf. Thus in addition to the particle steady state, a long averaging time is required to ensure statistics convergence.

Figure 4 :

 4 Figure 4: Particle streamwise (a, b) and wall-normal (c, d) average relative velocity of λ = 1 particles. τ + p = 5 (left) and τ + p = 30 (right).

  present the streamwise and wall-normal relative velocity of λ = 3 ellipsoids. Subfigure 5 (a) shows that the streamwise relative velocity of τ + p = 5 particles fits very well

Figure 5 :

 5 Figure 5: Particle streamwise (a, b) and wall-normal (c, d) average relative velocity of λ = 3 particles. τ + p = 5 (left) and τ + p = 30 (right).

Figure 6 :

 6 Figure 6: Average absolute spanwise direction cosine of λ = 10 particles. τ + p = 5 (left) and τ + p = 30 (right).

Figure 7 :

 7 Figure 7: Rms of the streamwise (a, b) and wall-normal (c, d) components of the velocity of λ = 1 particles. τ + p = 5 (left) and τ + p = 30 (right).
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 3052543945042643032418411417 rms(u + px ) are significantly higher than Rf when intervals Mo and Zh are used. Statistics computed over S2 have a lower error than those averaged over S1, and the reduction is greater for particles of τ + p = 5. The velocity rms for λ = 3 are shown in figure 8. For τ + p = 5, subfigures (a) Interval rms(u + px ) rms(u + py ) rms(u + pz ) rms(ω + px ) rms(ω + py ) rms(ω + pz ) τ + p = 10 -3 6.3 • 10 -3 5.8 • 10 -3 3.3 • 10 -4 2.0 • 10 -4 2.7 • 10 -10 -3 2.1 • 10 -3 5.0 • 10 -3 2.4 • 10 -4 2.2 • 10 -4 2.3 • 10 -• 10 -3 1.6 • 10 -3 2.0 • 10 -3 0.9 • 10 -4 1.9 • 10 -4 2.2 • 10 -10 -3 0.9 • 10 -3 1.6 • 10 -3 0.6 • 10 -4 0.9 • 10 -4 1.1 • 10 -10 -3 4.1 • 10 -3 8.1 • 10 -3 4.6 • 10 -4 3.3 • 10 -4 6.8 • 10 -10 -3 3.3 • 10 -3 2.8 • 10 -3 2.1 • 10 -4 1.4 • 10 -4 2.2 • 10 -10 -3 1.0 • 10 -3 3.3 • 10 -3 2.1 • 10 -4 1.9 • 10 -4 2.2 • 10 -10 -3 1.1 • 10 -3 2.2 • 10 -3 1.4 • 10 -4 1.9 • 10 -4 1.1 • 10 -4

  and (c) show that the results obtained with S1 and S2 offer a good agreement with the reference case. Observations are similar to those made for λ = 1, with the difference that curves Mo and Zh are now distinguishable from that of Rf.For particles of τ + p = 30 however, figure8(b) shows that statistics collected during the transient state (Mo and Zh) are overestimated compared to that of Rf for y + < 20. With these intervals, the relative error peaks at y + = 1.5, and reaches respectively 54% and 20%. Statistics of elongated particles are thus more sensitive to the choice of the interval than their spherical counterpart.

Figure 8 : 5 Mo 18 • 4 Zh 18 • 4 S1 8 . 2 • 4 S2 4 . 2 • 4 τ + p = 30 Mo 45 • 10 -3 6 . 6 • 4 Zh 24 • 4 S1 7 . 2 • 4 S2 5 . 7 •

 85184184824424301066424472457 Figure 8: Rms of the streamwise (a, b) and wall-normal (c, d) components of the velocity of λ = 3 particles. τ + p = 5 (left) and τ + p = 30 (right).
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Table 1 :

 1 Characteristics of prolate spheroids. The volume equivalent sphere diameter is constant and equal to d + eq = 1.

				ρ p /ρ f
	λ	a +	b +	τ + p = 5 τ + p = 30
	1 0.50 0.50	90	540
	3 1.04 0.35	100	601
	10 2.32 0.23	139	833

knowledge the longest simulation performed for spheroids up to now. We start the study by investigating the temporal evolution of the spatial distribution of particles during the whole simulation length. Using this information the time required for the particle distribution to reach steady state is found and in this 180 state, particle statistics are computed over different time intervals to illustrate

Table 2 :

 2 Time intervals used for particle statistics computation, in wall units.Furthermore, two intervals S1 and S2, of the same length but starting when the particle distribution is steady (S1 and S2, starting at time t + = 24 000) are defined. Finally, a long time interval, Rf is used as a reference to investigate the influence of the averaging time. For each interval, computed statistics are compared with that obtained with Rf. Error is quantified by computing the L1 norm of the absolute error which is obtained by :

	Alias	Interval	Notes
	Mo	[3000, 6000]	Used in Mortensen et al. [16]
	Zh	[6000, 12000]	Used in Zhao et al. [24]
	S1	[24000, 27000]	
	S2	[24000, 30000]	
	Rf	[24000, 48000] Reference for error calculation

statistics, presented in table 2. Two intervals, Mo and Zh, similar to that used in the earlier studies of Mortensen et al.

[START_REF] Mortensen | Dynamics of prolate ellipsoidal particles in a turbulent channel flow[END_REF]

, Zhao et al.

[START_REF] Zhao | Slip velocity of rigid fibers in turbulent channel flow[END_REF] 

are chosen.

  15 • 10 -4 4.3 • 10 -3 11 • 10 -4

							4.4 • 10 -4	4.7 • 10 -4	4.5 • 10 -4	23 • 10 -2
		Zh	1.6 • 10 -2 7.5 • 10 -4 1.4 • 10 -3 6.3 • 10 -4	3.5 • 10 -4	3.5 • 10 -4	4.0 • 10 -4	2.2 • 10 -2
		S1	2.1 • 10 -2 4.7 • 10 -4 1.4 • 10 -3 5.2 • 10 -4	3.6 • 10 -4	4.0 • 10 -4	3.6 • 10 -4	3.2 • 10 -2
		S2	1.0 • 10 -2 2.3 • 10 -4 0.8 • 10 -3 2.7 • 10 -4	2.5 • 10 -4	3.0 • 10 -4	2.8 • 10 -4	1.9 • 10 -2
		Mo	11 • 10 -2	19 • 10 -4	74 • 10 -3	69 • 10 -4	7.4 • 10 -4	6.7 • 10 -4	8.3 • 10 -4	76 • 10 -2
	τ + p = 30	Zh S1	2.8 • 10 -2 9.1 • 10 -4 33 • 10 -3 4.4 • 10 -2 1.3 • 10 -4 12 • 10 -3	33 • 10 -4 20 • 10 -4	6.6 • 10 -4 9.0 • 10 -4	6.7 • 10 -4 9.1 • 10 -4	7.2 • 10 -4 8.5 • 10 -4	18 • 10 -2 2.6 • 10 -2
		S2	2.2 • 10 -2 5.1 • 10 -4 18 • 10 -3	13 • 10 -4	5.5 • 10 -4	5.8 • 10 -4	6.0 • 10 -4	1.2 • 10 -2

Table 3 :

 3 

Mean absolute error of average velocities (wall units), orientation and concentration for λ = 1 particles.

Table 4 :

 4 Mean absolute error of the average velocity (wall units), orientation and concentration for λ = 3 particles.
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Table 6 :

 6 Mean absolute error of the velocity and angular velocity rms for λ = 1 particles.

Table 7 :

 7 Mean absolute error of the velocity and angular velocity rms for λ = 3 particles.

Table 8 :

 8 Mean absolute error of the velocity and angular velocity rms for λ = 10 particles.

rms (ω over different time intervals (both during the transient and steady state) and compared with reference data obtained during the particle steady state with a long averaging time.

For particle of τ + p = 5, the mean relative velocity components and the concentration are influenced by the steady state of the particle dis- Once the steady state is reached, a long averaging time improves accuracy of all the statistics. The effect of the averaging time is more pronounced in the lower particle concentration regions and for quan-