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Abstract

The main motivation of this work is to develop a numerical strategy for
the shape optimization of a rolling elastic structure under contact with
respect to a uniform rolling criterion. A first objective is to highlight the
influence on the treatment of the contact terms. To do so, we present a
numerical comparison between a penalty-based approach and the use of
Nitsche’s method which is known to have good consistency properties. A
second task concerns the construction of an objective functional to force
the uniform rolling criterion. Here, we present and compare two different
strategies that will lead to quite similar results. All the numerical exper-
iments proposed in this paper were performed using a fictitious domain
approach coupled with a level set representation of the shape and the
use of a cut finite element method to approximate the elastic equation.

Keywords: unilateral contact, Nitsche’s method, fictitious domains method,
finite element method, shape optimization, level set representation.
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1 Introduction

The motivation of this work is the optimization of an elastic load-bearing
rolling structure under criteria of compliance and uniformity of the contact
stress in a multi-loading context.

Shape optimization has become popular in recent decades for the optimal
design of structures, and applications can be intricate according to the mechan-
ical context. Difficulties might appear while differentiability of optimization
criteria, which can be non-linear, can be hard to obtain in mathematical mod-
els. In this work, the elastic rolling structure is in contact with a flat ground.
This generates some non-linearity and non-differentiability issues according to
the contact approximation. The latter can be consistent or not, and lead to
numerical imprecisions. The elastic rolling structure is optimized under me-
chanical criteria such as deformation and stability criteria while the structure
rolls. Thereby, a multi-loading strategy simulates the rotation of the structure
and leads to uniformity criteria on all the loading computations. We derive the
corresponding shape gradient and a descent strategy classically based on the
early ideas of J. Hadamard [24] and on later developments, such as the formu-
lation in terms of a Lagrangian due to J. Céa [11] and the adjoint method [37]
introduced by J.-L. Lions.

Our purpose is to compare two methods for the approximation of the con-
tact condition in the shape optimization framework: the penalty approach and
Nitsche’s method. We also introduce two strategies to deal with the unifor-
mity criteria while the structure is rolling. We propose numerical experiments,
representing the geometry thanks to the level set method to ease its evolution
as exposed by G. Allaire, F. Jouve and A.-M. Toader in [3]. We also use the
finite element method to compute the mechanical problem and especially we
develop the fictitious domains method [10, 31] based on cut finite elements to
deal with complex geometries.

The difficulty coming from the contact boundary conditions, also called
Signorini’s conditions, is that they are more intricate conditions than Dirichlet
and Neumann conditions. They lead to a highly non-linear problem classically
set in terms of a variational inequality (at least for the frictionless case). The
contact term implies a projection operator, which is, for the shape optimiza-
tion, not differentiable in the usual sense. A so-called conical derivative was
introduced in [39] with a derivation of the optimality conditions using a weak
notion of differentiability. The shape sensitivity analysis of contact problems is
analyzed in the work of J. Sokolowski and J.-P. Zolesio [52, 53]. We also refer
to the work of J. Haslinger et al. [7, 25–30] where in particular existence of an
optimum is proved under assumptions of Lipschitz regularity of the boundary,
from the discrete formulation to its continuous limit. A regularized approach
is used in [6] and [5] and more recently [38] for different friction laws. See also
the recent work [12] for the penalized approach and [13] for the augmented
Lagrangian one.

We consider a rolling linearly elastic structure occupying in its reference
configuration a domain Ω ⊂ Rd, d = 2 or 3 whose shape is to be optimized,
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an example being depicted in Figure 1. The boundary ∂Ω of the domain is
split into three non-overlapping parts, ΓN , ΓC and ΓD. A Neumann condition
is considered on ΓN where a force density gN is prescribed. A contact with
friction might occur with a flat and horizontal rigid obstacle on ΓC , and a
homogeneous Dirichlet condition is prescribed on ΓD.

Figure 1: Schematic representation of Ω and the rigid obstacle.

The displacement uΩ : Ω → Rd of the body according to its reference
configuration is solution to the following linearized elasticity problem: - div σ(uΩ) = f in Ω where σ(uΩ) = A ε(uΩ),

σ(uΩ) n = gN on ΓN ,
uΩ = 0 on ΓD,

(1)

where A is the fourth order symmetric tensor of elasticity, ε(u) is the small
deformations tensor, and n is the outward unit vector to Ω. The contact con-
dition on ΓC will be developed in the next section. Assuming the isotropy of
the material, the tensor A finally reads

σ(u) = A ε(u) = 2µε(u) + λtr(ε(u))Id,

where µ and λ are the Lamé material parameters.
For the purpose of our study, we consider that the contact and Dirich-

let boundaries ΓC and ΓD are not some optimizable parts. However, the
generalization to optimizable contact and Dirichlet boundaries is rather
straightforward. Indeed, in case of optimizable contact boundaries, the work
proposed in [38] should be adapted to Nitsche’s method.

The structure is supposed to roll upon a ground (the obstacle) along its
outer radius. We take this into account by considering Nl load positions, ob-
tained as Nl rotations Ωi of the domain Ω (see Figure 2), for i from 1 to Nl,
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with regularly spaced rotations of angles i2π/Nl. The displacement for the
rotated domain Ωi will be denoted uiΩ.

Figure 2: Rolling structure representation. Two configurations of Ω at differ-
ent rotations for i = 1, 2.

Classically, the basic optimization criterion we consider corresponds to the
strain energy, which we sum here on each load position:

Nl∑
i=1

Je(Ωi, u
i
Ω) where Je(Ωi, u

i
Ω) =

∫
Ωi

1

2
Aε(uiΩ) : ε(u

i
Ω) dx. (2)

It aims at minimizing the energy associated to the elastic deformation
corresponding to each domain Ωi.

In order to obtain a structure that rolls as uniformly as possible, we in-
troduce a second criterion. To this aim, we introduce the mean contact stress
on the contact boundary ΓC , where the average is obtained over the different
load positions:

pmean =
1

Nl

Nl∑
i=1

σ(uiΩ)n.

A first idea leads to minimize on each load position

Jp(Ω, uΩ, pmean) =

∫
ΓC

L

2E
(σ(uΩ)n− pmean)

2ds(x), (3)

where L is a characteristic length and E is Young’s modulus.
However, expression (3) is not completely satisfactory since the contact

stress σ(u)n may not be square integrable in some context and even if it is,
continuity of (3) with respect to the problem data cannot be ensured. We
develop in section 3.3 two more consistent variants of this criterion.
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Finally, we consider the following global objective function

J(Ω) =

Nl∑
i=1

Jg(Ωi, u
i
Ω, pmean), (4)

where
Jg(Ωi, u

i
Ω, pmean) = Je(Ωi, u

i
Ω) + αJp(Ωi, u

i
Ω, pmean), (5)

and we study the influence of the parameter α on the optimal shape Ω.
The main contribution of this work is twofold: first of all, we propose a

comparison of the penalty and Nitsche’s method in the framework of shape
optimization. The second contribution of this work is to propose and test an
efficient criterion for the uniformization of the contact stress according to the
different load positions.

In section 2, we introduce the problem with a frictional contact condition,
its approximation with a penalty approach and a consistent formulation based
on Nitsche’s method. In section 3, the geometric shape optimization frame-
work is presented. In section 4, we introduce the discretization used and the
optimization strategy. Finally, in section 5, we present some numerical results
which highlight the interest of Nitsche’s method and the efficiency of the ge-
ometric shape optimization to obtain optimal domains Ω that minimize the
criteria previously introduced.

2 Weak formulation of the contact problem

In this section, we describe the unilateral contact condition with friction on
the boundary ΓC and provide the weak formulation of the elastic problem for
both a penalized contact condition and Nitsche’s method.

2.1 Classical weak inequality formulations

The displacement uΩ : Ω → Rd of the body according to its reference configu-
ration satisfies the equations of system (1). To derive a weak formulation, let us
also introduce the Hilbert space V = {v ∈ H1(Ω; Rd) : v = 0 on ΓD} and the
two applications a : V × V → R and ℓ : V → R, defined for all (u, v) ∈ V × V
by

a(u, v) =

∫
Ω

Aε(u) : ε(v) dx,

ℓ(v) =

∫
Ω

f(x) · v dx+

∫
ΓN

gN · v ds(x).

Then, using Green’s formula and under regularity assumptions, one shows
that the displacement field uΩ ∈ V satisfies

a(u, v)−
∫
ΓC

σ(u)n · v ds(x) = ℓ(v), ∀v ∈ V. (6)
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The obstacle is supposed to be rigid and flat. We consider ny, the inward
unit vector to the rigid obstacle and g the initial gap between the elastic body
and the obstacle (see Figure 3). On the contact boundary ΓC , the displacement
u : Ω → Rd, is decomposed into its normal component un = u · ny and its
tangent one ut = (I − ny ⊗ ny)u such that

u = unny + ut.

Figure 3: Contact surface representation for the vertical load configuration.

The initial gap between the body and the obstacle is defined on x ∈ ΓC by

g = ny · (y − x),

where y is the orthogonal projection of x upon the rigid obstacle. We note also
the decomposition of the contact stress on ΓC into normal and tangent parts:

σn(u) = (σ(u) n) · ny, σt(u) = (I − ny ⊗ ny)(σ(u) n).

The unilateral contact condition on ΓC can be expressed by the following
complementary condition:

(un − g) ≤ 0,

σn(u) ≤ 0,

(un − g) σn(u) = 0.

In case of frictionless contact, the displacement uΩ is the minimizer of the
energy 1

2a(u, u)− ℓ(u) on the convex K of admissible displacements satisfying
the non-interpenetration condition on the boundary ΓC defined as

K := {v ∈ V : vn − g ∈ K0}, K0 := {v ∈ L2(ΓC) : v ≤ 0}.

The corresponding optimality system reads (see [21]){
Find u ∈ K such that

a(u, v − u) ≥ ℓ(v − u), ∀v ∈ K.
(8)
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Under standard assumptions, the existence and uniqueness of the solution to
problem (8) is a direct consequence of Stampacchia’s theorem.

The classical Coulomb law of friction can be written on ΓC as{
|σt(u)| ≤ −Fσn(u) if u̇t = 0,

σt(u) = Fσn(u) u̇t

|u̇t| otherwise,

where F ≥ 0 is the friction coefficient, depending on the couple of materials in
contact and u̇t is the sliding velocity. The Coulomb law of friction is usually
approximated by replacing the sliding velocity by the finite difference

ut − u0t
∆t

,

where u0t stands for the tangent displacement at an initial time step and ∆t
the time step. For the sake of simplicity, taking u0t = 0 leads to the so called
static Coulomb’s law of friction:

(9)

In case of contact with friction, the displacement uΩ is solution to the
following weak inequality formulation (see [21]):{

Find u ∈ K such that

a(u, v − u) + j(v)− j(u) ≥ ℓ(v − u), ∀v ∈ K,
(10)

where j(v) = −
∫
ΓC

Fσn(v)|vt|ds(x). The existence of solutions to Problem

(10) is addressed for instance in [22, 35] and is not generally ensured for arbi-
trary large friction coefficients. Condition of uniqueness of the solution to this
problem still remains an open question, partially addressed in [33, 34, 47].

2.2 Weak formulation with a penalty method

The penalty method (see [36] for instance) is a simple way to treat contact
problems. It involves an additional weak term in the weak formulation stand-
ing for a stiffness at the boundaries limiting inter-penetration between the
body and the obstacle. It is non-consistent in the sense that it represents a
supplementary approximation of the contact condition. For γ > 0 the penalty
parameter, the frictional contact conditions (7) - (9) are approximated by

σn(u) = −γ[g − un]−,

σt(u) = PB(ny,ρ(u))(γu),
(11)

where ρ(u) = Fγ[g − un]− is the friction threshold, the negative part being
defined by [x]− = 1

2 (|x| − x),∀x ∈ R and the projection of an element x ∈ Rd
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on the ball B(ny, ρ(u)) of radius ρ(u) on the tangent plane with respect to ny
(see also [46]) is defined by

PB(ny,ρ)(q) =

{
(Id − ny ⊗ ny)q if |(Id − ny ⊗ ny)q| ≤ ρ,

ρ
(Id−ny⊗ny)q
|(Id−ny⊗ny)q| otherwise.

Recall that using (6) the displacement field uΩ ∈ V satisfies

a(u, v)−
∫
ΓC

(σn(u)vn + σt(u) · vt)ds(x) = ℓ(v), ∀v ∈ V. (12)

Finally, a weak formation for the penalty method can be easily deduced by
incorporating equalities (11) in (12) which conduces to introduce the solution
uPΩ ∈ V of

a(u, v) + IP (u, v, ny) = ℓ(v), ∀v ∈ V, (13)

where the penalty contact term IP (u, v, ny) is

IP (u, v, ny) =

∫
ΓC

(γ[g − un]− vn − PB(ny,ρ(u))(γu) · vt)ds(x). (14)

We refer to [20, 21] for the existence of a solution to problem (13).

2.3 Weak formulation using Nitsche’s method

Nitsche’s method, presented by J. Nitsche in [42], aimed first at treating
Dirichlet conditions. The Nitsche method we used to account for the contact
condition with friction was originally introduced in [16, 18] for frictionless con-
tact, then generalized to Tresca’s friction in [14] and Coulomb’s friction in [17]
(see also the overview [15]). The Nitsche method introduces a contact term
which weakly prescribed the frictional contact conditions (7)-(9) in a consistent
manner (see for instance [48] for the numerical efficiency of Nitsche’s method
compared to other classical methods). It is based on the equivalent reformu-
lation of the contact conditions which has been originally derived from the
augmented Lagrangian approach [2] and reads as

σn(u) = −[σn(u)− γ(un − g)]−,

σt(u) = PB(ny,ρ(u))(σ(u)n− γu),
(15)

where ρ is now defined by ρ(u) = F [σn(u) − γ(un − g)]−. More precisely,
incorporating

vn = − 1

γ
(θσn(v)− γvn) +

θ

γ
σn(v), vt = − 1

γ
(θσt(v)− γvt) +

θ

γ
σt(v),

for a fixed θ ∈ R in the weak formulation (6), we see that ∀v ∈ V ,
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a(u, v)−
∫
ΓC

θ

γ
σn(u)σn(v) ds(x) +

∫
ΓC

1

γ
σn(u)(θσn(v)− γvn)ds(x)

−
∫
ΓC

θ

γ
σt(u) · σt(v)ds(x) +

∫
ΓC

1

γ
σt(u) · (θσt(v)− γvt)ds(x) = ℓ(v),

(16)

which becomes

a(u, v)−
∫
ΓC

θ

γ
σn(u)σn(v)ds(x)−

∫
ΓC

θ

γ
σt(u) · σt(v)ds(x)

−
∫
ΓC

1

γ
[σn(u)− γ(un − g)]− (θ σn(v)− γvn)ds(x)

+

∫
ΓC

1

γ
PB(ny,ρ(u))(σ(u)n− γu) · (θ σt(v)− γvt)ds(x)

= ℓ(v), ∀ v ∈ V,

by using additionally (15). Finally, the Nitsche approach conduces to define
the solution uNΩ to

a(u, v) + IN (u, v, n) = ℓ(v), ∀v ∈ V, (17)

where the contact term IN (u, v, n) reads

IN (u, v, n) = −
∫
ΓC

θ

γ
σn(u)σn(v)ds(x)−

∫
ΓC

θ

γ
σt(u) · σt(v)ds(x)

−
∫
ΓC

1

γ
[σn(u)− γ(un − g)]− (θ σn(v)− γvn)ds(x)

+

∫
ΓC

1

γ
PB(ny,ρ(u))(σ(u)n− γu) · (θ σt(v)− γvt)ds(x).

(18)

Remark 1 The introduction of the parameter θ leads to different variants acting
on the symmetry, skew-symmetry or non-symmetry of the contact term (see [18]).
In particular, in the frictionless case, when θ = 1, the formulation is symmetric
and admits a potential energy. When θ = 0, a non-symmetric method is set whose
formulation is closer to the penalty approach described in 2.2. Finally, when θ = −1,
the contact term is skew-symmetric and leads to interesting properties independent
of the Nitsche parameter γ.



10 Shape optimization of a linearly elastic rolling structure

2.4 Analysis of a Nitsche-based finite element method

Let V h ⊂ V be a family of finite dimensional vector spaces indexed by h
coming from a family T h of triangulations of the domain Ω supposed to be
polygonal for the sake of simplicity (h = maxT∈T hhT where hT is the diameter
of T ). The family of triangulations is supposed regular (i.e., there exists σ > 0
such that ∀T ∈ T h, hT /ρT ≤ σ where ρT denotes the radius of the inscribed
ball in T ) and conformal to the subdivision of the boundary into ΓD, ΓN and
ΓC (i.e. a face of an element T ∈ T h is not allowed to have simultaneous non-
empty intersection with more than one part of the subdivision). For instance,
a standard Lagrange finite element method of degree k reads

V h := {vh ∈ C 0(Ω̄)d : vh|T∈ (Pk(T ))
d,∀T ∈ T h, vh = 0 on ΓD}.

Let γ be a piecewise constant function on the contact interface ΓC defined for
any x ∈ ΓC lying on the relative interior of ΓC ∩ T for a (closed) element T
having a non-empty intersection of dimension d− 1 with ΓC by

γ(x) =
γ0
hT

,

where γ0 is a positive given constant. The generalized Nitsche-based approxi-
mation then reads:{

Find uh ∈ V h such that

a(uh, vh) + IN (uh, vh, n) = ℓ(vh), ∀vh ∈ V h.

The advantage of Nitsche’s method over the penalty approach is its consis-
tency which can be established in the following sense.

Lemma 1 Suppose that the solution u of (1), (7) and (9) is in (H
3
2+ν(Ω))d where

d = 2, 3 and ν > 0. Then u is also solution, ∀vh ∈ V h, of

a(u, vh) + IN (u, vh, n) = ℓ(vh).

Proof Let u be the solution to (1), (7) and (9). Let vh be in V h
0 . Since u ∈

(H
3
2+ν(Ω))d and ν > 0, σn(u) and σt(u) ∈ Hν(ΓC) ⊂ L2(ΓC). As a result,

a(u, vh)−
∫
ΓC

θ

γ
σn(u) σn(v

h) ds(x)−
∫
ΓC

θ

γ
σt(u) · σt(vh) ds(x),

makes sense, and σn(u) − γ(un − g) and σt(u) − γut ∈ L2(ΓC). Using the
reformulation of σn(u) and σt(u) in (15) and formulation (16), it holds:
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A = a(u, vh)−
∫
ΓC

θ

γ
σn(u)σn(v

h) ds(x)−
∫
ΓC

θ

γ
σt(u) · σt(vh) ds(x)

−
∫
ΓC

1

γ
[σn(u)− γ(un − g)]− (θσn(v

h)− γvhn) ds(x)

+

∫
ΓC

1

γ
PB(ny,ρ(u))(σ(u)n− γu) · (θσt(v

h)− γvht ) ds(x)

= a(u, vh)−
∫
ΓC

θ

γ
σn(u)σn(v

h) ds(x)−
∫
ΓC

θ

γ
σt(u) · σt(vh) ds(x)

−
∫
ΓC

1

γ
σn(u) (θσn(v

h)− γvhn) ds(x)

+

∫
ΓC

1

γ
σt(u) · (θσt(v

h)− γvht ) ds(x)

= a(u, vh)−
∫
ΓC

σn(u)v
h
n ds(x)−

∫
ΓC

σt(u) · vht ds(x).

In the same time, using an integration by parts, it holds:

a(u, vh)−
∫
ΓC

σn(u)v
h
n ds(x)−

∫
ΓC

σt(u) · vht ds(x) = ℓ(vh),

which ends the proof, as the equality is strictly respected, whatever θ is. □

The well-posedness and the consistency are analyzed in [16] and [18] for the
frictionless formulation. When θ = −1, the well-posedness does not depend on
γ0 anymore, which implies that the value of θ = −1 is a convenient choice for
the rest of the computation if robustness is required. Concerning the Nitsche-
based formulation with the Coulomb law of friction, the existence of solution
is studied in [17].

3 Geometric shape optimization

The geometric shape optimization aims at minimizing a criterion J(Ω) to find
the optimal shape of a structure by forcing the domain frontiers to evolve. The
energy of the structure can be expressed as a target criterion. If several criteria
must be minimized, that energy can be a combination of these criteria and
lead to a multi-criterion optimization. The generic formulation for the energy
or the target criterion might be expressed as

J(Ω) =

∫
Ω

M(uΩ, x) dx+

∫
∂Ω

N (uΩ, x) ds(x), (19)

where uΩ is defined as the solution of

a(uΩ, v) + I(uΩ, v, n) = ℓ(v), ∀v ∈ V.

Here the contact term I is written as I(u, v, n) = IP (u, v, n) or I(u, v, n) =
IN (u, v, n) according to the contact approximation used. Here, M and N are
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two functions assumed to be sufficiently smooth so that the shape derivative
of J is well defined.

Remark 2 As specified for instance in [38], it is often assumed, in order to ensure
that the criteria and the adjoint state are well defined, that

|M(u, x)| ≤ C(1 + |u|2), |N (u, x)| ≤ C(1 + |u|2),
|⟨Du M(u, x), v⟩| ≤ C|u · v|, |⟨Du N (u, x), v⟩| ≤ C|u|,

(20)

for some constants C > 0 which includes the case of the compliance energy when it
is expressed as

J(Ω) =

∫
Ω
fuΩ dx+

∫
ΓN

gN · uΩ ds(x).

Yet using additional frictional contact terms, it is not clear whether this expression
takes properly into account the elastic strain energy or not and we prefer to use the
following formulation

J(Ω) =

∫
Ω

1

2
Aε(uΩ) : ε(uΩ)dx,

which unfortunately does not meet the above conditions. However, as we will see later,
these conditions are not necessary to obtain the existence of the shape derivatives of
the criteria we use.

Let D ⊂ Rd be a fixed bounded and smooth domain whose boundary is
split into ΓC and ΓD supposed in our case to be some fixed non-optimizable
boundaries. Let Ωad be the admissible set composed of all smooth open do-
mains Ω having ΓC and ΓD as parts of its boundary and having an additional
optimizable boundary ΓN (see Figure 1)

Ωad := {Ω ⊂ D|Ω open and of class C 1,ΓC ⊂ Ω,ΓD ⊂ Ω}.

Then, the shape optimization consists in finding some domains Ω ∈ Ωad

minimizing the target criterion J(Ω) with a volume constraint.
Note that, in the rest of the paper, we use the following notation of the

directional derivative of an element A with respect to x in the direction y:

⟨DxA(x), y⟩ = lim
ϵ→0

A(x+ ϵy)−A(x)

ϵ
.

3.1 Shape derivative

The differentiation with respect to the domain aims at modifying the reference
state of the domain Ω ∈ Ωad using the boundary method first described by J.
Hadamard in [24] and then developed for instance in [32], [41], [45], [51] and
[53]. Let Θ ∈W 1,∞(Rd; Rd)∩C 1(Rd) be a vector field displacing the reference
domain Ω towards different admissible shapes Ωt ∈ Ωad. The domain variation
in the direction tΘ reads for t small:

Ωt = (Id+ tΘ)(Ω).
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The shape derivative ⟨D J(Ω),Θ⟩ of J(Ω) with respect to the reference domain
Ω in the direction Θ is defined as the derivative on t = 0 of the application
t 7→ J(Ωt) when it exists and gives

J(Ωt) = J(Ω) + t ⟨D J(Ω),Θ⟩+ o(t).

Recall that the shape gradient for general functional in a context of lin-
ear elasticity with penalized contact is derived in [38]. We develop the case
where Nitsche’s method is used to deal with the contact although the contact
boundary ΓC is not optimized.

Theorem 2 Let Ω ∈ C 2 and assume that f ∈ H1(Ω; Rd), g ∈ H2(Ω; Rd) and that
(13) or (17) admits a unique solution uΩt

∈ H1(Ωt; Rd) for t small enough and

Θ ∈ W 1,∞(Rd; Rd). If we denote ⟨D J(Ω),Θ⟩ the Gâteaux derivative of J(Ω) with
respect to Ω in the direction Θ ∈ W 1,∞(Rd; Rd) and pΩ ∈ V defined as the solution
of

a(q, p) + ⟨Du I(uΩ, p, n), q⟩ = ℓuΩ(q), ∀q ∈ V, (21)

where

ℓuΩ(q) = −
∫
Ω
⟨Du M(uΩ, x), q⟩dx−

∫
∂Ω

⟨Du N (uΩ, x), q⟩ds(x),

we have when this derivative exists and for uΩ, pΩ ∈ H2(Ω,Rd):

⟨D J(Ω),Θ⟩ =

∫
Γm

(Θ · n) (M(uΩ, x) +Aε(uΩ) : ε(pΩ)− f(x) · pΩ) ds(x)

+

∫
Γm

(Θ · n) (κm N (uΩ, x) +∇N (uΩ, x) · n) ds(x)

−
∫
Γm∩ΓN

(Θ · n) (κm pΩ · gN + (∇(pΩ · gN )) · n) ds(x).

(22)

where Γm is a moving boundary of Ω, assuming Γm ∩ΓC = Γm ∩ΓD = ∅, κm is the
mean curvature of ∂Ω.

Remark 3 As explained previously, the existence of adjoint state problem requires
that the applications q 7→ ⟨Du M(uΩ, x), q⟩ and q 7→ ⟨Du N (uΩ, x), q⟩ must be
continuous in V , which is clearly the case under assumptions (20). However, these
conditions are sufficient but not necessary to verify these continuity properties.

We develop now the Lagrangian method introduced by J. Céa [11] which
aims at describing a constrained optimization problem. To this end, we first
present two useful results: let Ω be a bounded open and regular set from Rd.

� Let f ∈ H1(Ω) and let the application J : Ωad 7→ R defined by

J(Ω) =

∫
Ω

f(x) dx.
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Then J is differentiable with respect to Ω in the direction Θ ∈ C 1(Rd,Rd)
and

⟨D J(Ω),Θ⟩ =
∫
∂Ω

Θ · n f(x) ds(x).

� Let g ∈ H1(Ω) and let the application J : Ωad 7→ R defined by

J(Ω) =

∫
∂Ω

g(x) ds(x).

Then J is differentiable in Ω and for all Θ ∈ C 1(Rd Rd) and

⟨D J(Ω),Θ⟩ =
∫
∂Ω

Θ · n (∇g(x) · n+ κmg(x)) ds(x).

Proof of theorem (2):
We intend to minimize the criterion J(Ω) given by (19) under the constraint that the
weak formulation (13) or (17) is satisfied. Let L : V 7→ R, the Lagrangian application
defined by

L(u, v, n,Ω) = J(Ω, u) + (a(u, v) + I(u, v, n)− ℓ(v)).

where J(Ω, u) =

∫
Ω
M(u, x) dx +

∫
∂Ω

N (u, x) ds(x). The key is to remark that

J(Ω) = J(Ω, uΩ) and then to identify J(Ω) as

J(Ω) = L(uΩ, v, n,Ω).

If L is differentiated with respect to the domain Ω in the direction Θ, it gives

⟨D J(Ω),Θ⟩ = ⟨D [L(uΩ, v, n,Ω)] ,Θ⟩
= ⟨DΩ L(uΩ, v, n,Ω),Θ · n⟩+ ⟨Dn L(uΩ, v, n,Ω), ⟨DΩ n,Θ⟩⟩
+ ⟨Du L(uΩ, v, n,Ω), ⟨DΩ uΩ,Θ⟩⟩.

(23)

In order to vanish the last term of equation (23) and obtain an explicit formu-
lation of the shape derivative of J , the idea is to follow the method of the adjoint
state introduced by J.-L. Lions in [37]. More precisely, let pΩ ∈ V be defined as the
solution of

⟨Du L(uΩ, pΩ, n,Ω), q⟩ = 0, ∀q ∈ V. (24)

Then, evaluating the equation (23) at v = pΩ shows that

⟨DΩ L(uΩ, pΩ, n,Ω),Θ⟩ = ⟨DΩ L(uΩ, pΩ, n,Ω),Θ · n⟩
+ ⟨Dn L(uΩ, pΩ, n,Ω), ⟨DΩ n,Θ⟩⟩,

as ⟨DΩ u,Θ⟩ ∈ V . Moreover, the term ⟨Du L(u, p, n,Ω), q⟩ can be identified as

⟨Du L(u, p, n,Ω), q⟩ = a(q, p) + ⟨Du I(u, p, n), q⟩

+

∫
Ω
⟨Du M(u, x), q⟩ dx+

∫
∂Ω

⟨Du N (u, x), q⟩ ds(x).
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This leads to the following explicit expression of the shape gradient in linear elasticity:

⟨D J(Ω),Θ⟩ =

∫
Γm

(Θ · n) (M(uΩ, x) +Aε(uΩ) : ε(pΩ)− f(x) · pΩ) ds(x)

+

∫
Γm

(Θ · n) (κm N (uΩ, x) +∇N (uΩ, x) · n) ds(x)

−
∫
Γm∩ΓN

(Θ · n) (κm pΩ · gN + (∇(pΩ · gN )) · n) ds(x),

as Γm ∩ ΓC = ∅ and I(u, p, n) is an integral term defined on ΓC .
□

3.2 Contact term

In this section, we give an explicit formulation of the contact term and its
directional derivative in the adjoint equation.

3.2.1 Case of the penalty method

In this case, we have I(u, v, n) = IP (u, v, n) defined by (14). The derivative
term ⟨Du IP(u, p, n), q⟩ from (21) can then be developed as

⟨Du IP (u, p, n), q⟩ =

−
∫
ΓC

(
γ H(−(g − un))qn pn +Du PB(ny,ρ(u))(γu) γqt · pt

)
ds(x),

where H is the Heaviside function defined by H(x) = 1 for x ≥ 0 and
H(x) = 0 otherwise. Moreover, the computation of Du PB(n,ρ(u))((γu)) is ob-
tained thanks to the the partial derivatives of the projection ball PB(n,τ)(q)
according to q and τ . Indeed, it reads (see [46])

∂qPB(n,τ)(q) =


0 for τ ≤ 0,

Tn if |qt| ≤ τ,
τ

|qt| (Tn − qt
|qt| ⊗

qt
|qt| ) otherwise,

and

∂τPB(n,τ)(q) =

{
0 for τ ≤ 0 or |qt| ≤ τ,

qt
|qt| otherwise,

Where Tn is defined by Tn = Id − n ⊗ n, qt = Tnq. We refer to [12] for the
differentiability of the penalty approach.

3.2.2 Case of Nitsche’s approach

Concerning Nitsche’s method, we now have I(u, v, n) = IN (u, v, n) defined by
(18).



16 Shape optimization of a linearly elastic rolling structure

The directional derivative ⟨Du IN (u, p, n), q⟩ from (21) has the following
form

⟨Du IN (u, p, n), q⟩ =
∫
ΓC

(− θ
γ
σn(q)σn(p) − θ

γ
σt(q) · σt(p)

+
1

γ
H(−(σn(u)− γ(un − g)))(σn(q)− γqn) (θ σn(p)− γpn)

+
1

γ
Du PB(ny,ρ(u))(σ(u)n− γu)(σt(q)− γqt) · (θ σt(p)− γpt)) ds(x).

Remark 4 Note that the term ⟨Du IN (u, p, n), q⟩ is not clearly defined in the contin-
uous framework because of the possible lack of regularity of uΩ and pΩ. In this work,
we focus only on the discrete case which does not pose any existence problem. The
analysis of the convergence of the solutions of the discrete problem will be addressed
in a further work.

3.3 Criterion minimization

The main energy that is to be minimized, namely the elastic strain energy and
defined by (2) can then be expressed in the general form (19) by considering

M(uiΩ, x) =
1

2
Aε(uiΩ) : ε(u

i
Ω) and N (uiΩ, x) = 0.

Consequently, the associated term in the adjoint equation of the strain energy
criterion (2) reads

⟨Du Je(Ω, uΩ), q⟩ =
∫
Ω

Aε(q) : ε(uΩ) dx.

Note that a sufficient condition for the adjoint equation to make sense is that
q 7→ ⟨Du Je(Ω, uΩ), q⟩ is continuous in V which is satisfied here even though
the term do not meet the conditions (20).

An additional criterion developed in this work consists of uniformizing the
contact stress on the contact boundary of the rolling structure according to
the load positions. As mentioned in the introduction, a first natural idea would
be to minimize the objective function (3). However, this expression is possibly
difficult to define according to the regularity of uiΩ whose basic guaranteed
regularity is to be in H1(Ω,Rd). Assuming additionally a square integrable
right hand side, the trace σ(uΩ)n on ΓC belongs only to H−1/2(ΓC ,Rd) (see
[36]) and not necessarily to L2(ΓC ,R) meaning in particular that there is no
continuous dependence of the objective function (3) with respect to the data
of the problem.

Two variants of the criterion will be developed to recover this continuity.
A first idea is to thicken the contact boundary of a size ϵ , which leads to the
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first criterion

Jp,1(Ω, uΩ, pmean) =

∫
Γϵ
C

L

2Eϵ
(σ(uΩ)n− pmean)

2dx, (25)

where ϵ > 0 is a fixed small length, Γϵ
C is an annulus delimited by ΓC on

the exterior and of thickness ϵ and n is an extension in the domain Γϵ
C of the

unit outward normal vector on ΓC . A second idea is to consider a criterion
depending on the H−1/2(ΓC ,Rd)−norm by considering the energy

Jp,2(Ω, uΩ, pmean) =
1

2
∥σ(uΩ)n− pmean∥2H−1/2(ΓC ,Rd). (26)

In order to simplify the minimization of Jp,1 and Jp,2, we treat the compu-
tation of pmean by freezing it to the value at the previous optimization step.
The advantage of that is to uncouple the computation of the adjoint problem
on each load position.

3.3.1 Uniformity of the contact stress on the thickened
boundary

As explained previously, a first strategy consists in thickening the contact
boundary with a size ϵ which leads to the criterion (25). It can be expressed
in the general form (19) with

M(uΩ, x) =
L

2Eϵ
(σ(uΩ)n− pmean)

2 χΓϵ
C
(x), and N (uΩ, x) = 0,

where χΓϵ
C
(x) =

{
1 if x ∈ Γϵ

C ,

0 otherwise
. In that case, the associated term in the

adjoint equation of the contact stress criterion from equation (25), assuming
pmean known in advance, reads as

⟨Du Jp,1(Ω, uΩ, pmean), q⟩ =
∫
Γϵ
C

L

Eϵ
(σ(uΩ)n− pmean) · σ(q)n dx.

Note that in this case, q 7→ ⟨Du Jp,1(Ω, uΩ, pmean), q⟩ is continuous on V .

3.3.2 Uniformity of contact stress using a
H−1/2(ΓC ,Rd)−norm

The second strategy consists in minimizing the functional (26). It can be ex-
pressed constructively using a Neumann to Dirichlet operator (see for instance
[47] and [1]). Indeed, let B be a fixed domain whose boundary is decomposed
as the union of ΓC and ΓD. We first introduce the norm ∥·∥

H
1/2
00 (ΓC ,Rd)

defined

by
∥w∥

H
1/2
00 (ΓC ,Rd)

= inf
z∈V0,z=w on ΓC

∥z∥V0 ,
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where V0 = {v ∈ H1(B; Rd), v = 0 on ΓD} and

∥z∥2V0
=

∫
B
A ε(z) : ε(z) dx.

The norm ∥ · ∥H−1/2(ΓC ,Rd) is then defined as the dual of ∥ · ∥
H

1/2
00 (ΓC ,R) by

∥g∥H−1/2(ΓC ,Rd) = sup
z∈H

1/2
00 (ΓC ,R),z ̸=0

⟨g, z⟩
∥z∥

H
1/2
00 (ΓC ,R)

= sup
z∈V0

⟨g, z⟩
∥z∥V0

.

In particular, we can show that

∥g∥H−1/2(ΓC ,Rd) = ∥w[g]∥V0
,

where w[g] ∈ V0 is defined as the solution of - div σ(w) = 0 in B where σ(w) = A ε(w),
σ(w)n = g on ΓC ,
w = 0 on ΓD.

(27)

The weak formulation of (27) reads as∫
B
A ε(w[g]) : ε(z) dx = ⟨g, z⟩,∀z ∈ V0,

which shows also by using z = ω[g] that ω[g] satisfies

1

2

∫
B
Aε(ω[g]) : ε(ω[g]) dx = ⟨g, ω[g]⟩ =

∫
ΓC

g · ω[g]ds(x).

Using these equalities, the criterion for the uniformization of the contact stress
finally reads

Jp,2(Ω, uΩ, pmean) =
1

2
∥σ(uΩ)n− pmean∥2H−1/2(ΓC ,Rd) =

1

2
∥wΩ∥2V0

=
1

2

∫
B
σ(wΩ) : ε(wΩ) dx =

1

2

∫
ΓC

g · wΩ ds(x)

=
1

2

∫
ΓC

(σ(uΩ)n− pmean) · wΩ ds(x).

where wΩ = ω[σ(uΩ)n−pmean] is the solution to (27) for g = σ(uΩ)n−pmean.
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Still assuming pmean known in advance, the associated term in the adjoint
equation of the H−1/2(ΓC ,Rd)−norm criterion reads

⟨Du Jp,2(Ω, uΩ, pmean), q⟩ =
1

2

∫
Ω

⟨DuAε(wΩ)
2, q⟩ dx

=

∫
Ω

Aε(wΩ) : ε(w[σ(q)n])) dx

=

∫
ΓC

σ(q)n · wΩ ds(x),

where w[σ(q)n] is defined as the solution to (27) for g = σ(q)n. As pre-
viously, the existence of the adjoint would expect the continuity of q 7→
⟨Du Jp,2(Ω, uΩ, pmean), q⟩ in V which is not satisfied but is the case in a sub-
space Hσ = {v ∈ V : div(σ(v)) ∈ L2(Ω)} containing the solutions of the
contact problem.

Remark 5 The Dirichlet to Neumann operator can also be defined by an intermediary
Poisson problem instead of the elasticity problem (27). The preference given here to
the elasticity problem is guided by mechanical considerations.

4 Numerical discretization and optimization
strategy

The aim of this section is to introduce the optimization strategy to minimize
the objective function given by (4) and (5). Since the optimization is to be
performed on the whole structure, it would be necessary to make computations
for all the load positions. In order to save some computational time, we assume
a certain periodicity of the structure, using its axi-symmetry, and we perform
computations only for the load positions corresponding to a single sector of
the structure. The structure is divided into Ns = 16 sectors (see Figure 4)
and we perform the computations on Nd load positions corresponding to only
one sector, regularly spaced in rotations of angles i2π/(Nd × Ns) for i from
1 to Nd. Then the computations for the load positions corresponding to the
other sectors are deduced by a simple rotation, so that we obtain at the end
the computations for Nl = Nd × Ns load positions. In practice, the load is
imposed using Dirichlet boundary conditions on the entire ΓD boundary in the
direction ny, i.e. u = αDny, where the constant αD is determined to obtain an
overall load of 300 kg. A more precise description is the subject of section 4.3.
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Figure 4: Periodicity of the domain Ω. On the left: the domain drilled by 16
circular holes and on the right: focus on the sector corresponding to the load
positions for which computations are performed.

We consider a minimizing sequence Ωk of J starting from an initial domain
Ω0 and taking volume and symmetry constraints into account. From a domain
Ωk, we intend to reach a domain Ωk+1 by performing the following steps:

� For each load position on the first sector, for i from 1 to Nd, we compute
uiΩk the solution to the direct non-linear problem (13) or (17) approximated
by a finite element method. The solutions uiΩk for i from Nd +1 to Nd ×Ns

are deduced by rotations of solutions on the first sector.
� The mean contact stress pkmean is computed on ΓC :

pkmean =
1

Nd

Nd∑
i

(σ(uiΩk)n).

� For each load position on the first sector, for i from 1 to Nd, we compute piΩk

the solution to the adjoint problem (24) approximated by a finite element
method. The solutions piΩk for i from Nd + 1 to Nd ×Ns are also deduced
by rotations of solutions on the first sector.

� For each load position, we compute the shape gradient of Jg(Ω
k, uiΩk) which

we extend harmonically into the holes by solving a Poisson equation.
� We sum each term to obtain the shape gradient Gk = ∇J(Ωk) of J(Ωk) on
all the load positions.

� We prescribe the volume to remain constant thanks to a penalization on the
gradient as G̃k = Gk − λk where λk = 8 ∗ (max(Gk)−min(Gk)) ∗ (r0v − rkv )
is the Lagrange multiplier with rkv the volume ratio at iteration k.

� We compute the new shape Ωk+1 by approximating the equation Ωk+1 =
(Id − δkG̃

k)(Ωk), δk being the descent step of the shape optimization.

As an illustration, Figure 5 successively depicts the treatments led on the
shape gradients: The computation of the shape gradient on a load position,
the harmonic extension of that shape gradient, and the summed gradients,
periodically repeated on the different sectors and the additional correction for
volume constraint.
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Figure 5: Successive shape gradient treatments. Left to right: the shape gra-
dient computed on the cut elements from the solutions uΩk and pΩk , the
harmonic extension of the shape gradient on the complete mesh and the sym-
metry and volume correction of the shape gradient.

4.1 Domain representation and level set function

The level set method has been introduced by S. J. Osher and J. A. Sethian
in [43] to describe a geometry and its evolutions. The first applications of
the level set method were about geodesics, lithography, generation of minimal
surfaces, propagation of flame fronts and fluid interfaces. This method was first
introduced for shape optimization applications by S. J. Osher and F. Santosa
in [44] and then by G. Allaire et al. in [4] and [3]. Let D ⊂ Rd still being a
fixed bounded domain in which the domain Ω is included. The representation
of the domain Ω in D is expressed by a function ψ defined in D as:

ψ(x) = 0 if x ∈ ∂Ω,

ψ(x) < 0 if x ∈ Ω,

ψ(x) > 0 otherwise.

Figure 6: Representation of the domain Ω. Left to right: a schematic repre-
sentation of the domain, a regular polar grid to approximate the level set and
the level set representation of the domain.

The interface between holes and matter is represented by the zero value of
the level set function. One way to represent the level set function ψ is to define
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the latter as a signed distance function according to the domain boundaries:

ψ(x) =

{
−d(x, ∂Ω) if x ∈ Ω,

d(x, ∂Ω) otherwise,

where d(x, ∂Ω) is the distance between x and ∂Ω.
The particular situation we use for our application, i.e. the representation

of a load-bearing rolling structure is depicted in Figure 6. The domain D is a
ring of minor radius Ri and of major radius Re. In our main numerical tests,
we consider sixteen holes in the initial domain Ω0. The optimization process
only takes place at the interface of the different holes.

4.2 Transport and redistancing

For each step, the domain Ωk is represented by the function ψk. A crucial
step consists of transporting the level set function ψk by the perturbed shape
gradient Gk by solving the transport equation{

∂tφ(t, x) = −G̃k |∇φ(t, x)|,
φ(0, x) = ψk(x),

and taking ψk+1(x) = φ(δk, x), where δk is the descent step in the shape
gradient algorithm.

For reason of efficiency and simplicity, the numerical approximation of this
transport step is performed using Sethian’s finite difference schemes (see [50])
with a slight adaptation for the polar grid.

As it is well known, successive transport steps applied to the level-set func-
tion can degrade its properties and in particular move it away from a signed
distance. To remedy this, we classically apply some reinitialization steps (see
for instance [54]), also based on Sethian’s schemes.

Additionally, to avoid irregularities brought by the level set transport, some
smoothing steps are also added consisting in finding the minimum of

E(ψ) =

∫
Ω

1

2
(ψ(x)− ψk+1(x))2dx+

∫
Ω

τ

2
|∇ψ(x)|2dx,

as developed for instance in [19]. The smoothing parameter τ must be wisely
set to smooth the solution without disrupting it.

4.3 Load condition on a rigid rim

Aiming at a model closer to a load-bearing rolling structure, the Dirichlet
condition on ΓD is replaced by a rigid boundary condition (rim) that is only
allowed to have a vertical rigid motion and is subject to a global load. Denoting
gD the prescribed load and αD the unknown vertical rigid displacement on



Shape optimization of a linearly elastic rolling structure 23

ΓD, the weak formulation reads now: Find u ∈ V, αD ∈ R, λD ∈ H−1/2(ΓD)d

such that ∀v ∈ V,∀βD ∈ R and ∀µD ∈ H−1/2(ΓD)d,

a(u, v) + I(u, v, n) =
∫
Ω

f(x) · v dx

+

∫
ΓD

(λD · v + (u− αDny) · µD + (λD · ny − gD)βD) ds(x),

where λD is a multiplier representing the force density on ΓD introduced
to enforce the condition.

Consequently, a new term is added to the adjoint problem on ΓD and the
two new variables αD and λD are introduced in the Lagrangian. The adjoint

problem now reads ∀q ∈ V,∀qαD
∈ R and ∀qλD

∈ H−1/2(ΓD)
d
,

⟨Du L(u, p, αD, λD, n,Ω), q⟩+ ⟨DαD
L(u, p, αD, λD, n,Ω), qαD

⟩
+ ⟨DλD

L(u, p, αD, λD, n,Ω), qλD
⟩ = 0,

which leads to p ∈ V, pαD
∈ R, pλD

∈ H−1/2(ΓD)
d
such that ∀q ∈ V,∀qαD

∈ R
and ∀qλD

∈ H−1/2(ΓD)
d

a(q, p) + ⟨Du I(u, p, n), q⟩ = ℓu(q)

+

∫
ΓD

(pλD
· q + (p− pαD

ny) · qλD
− pλD

· nyqαD
) ds(x).

4.4 Finite element discretization and fictitious domains
method

To compute each direct and adjoint problem on the evolving domain Ωk, we
use a fictitious domain method with respect to the fixed domain D containing
Ωk. The fictitious domains method used in this work is close to the Xfem
approach [40]. It is presented in [9, 31] and applied to the unilateral contact and
to Nitsche’s method in [23]. One of the main advantages of this method is its
optimal convergence, including when a high-order base finite element method
is used. It mainly consists in considering a classical finite element method,
here a Lagrange P2 finite element on the polar grid also used for the level set
discretization, and taking its restriction on the real domain Ωk. Consequently,
only one fixed, regular and polar grid is manipulated for the level set and
the finite element method. As an illustration, Figure 7 successively depicts an
example of a polar structured mesh of the fictitious domain D, the mesh cut
by the level set representing Ωk and the computed direct solution uΩk using a
Lagrange P2 cut finite element method.

The discretized non-linear direct problems are solved with a non-smooth
Newton-Raphson algorithm. The finite element software used for the analysis
is GetFEM++ [49] with its python interface.
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Figure 7: Left to right: the structured polar mesh, the mesh cut by the level
set representing Ωk and a direct solution uΩk plot on the deformed mesh.

It has been noted in [9, 31] that an optimal approximation of the gradient of
the solution is not achieved in the cut element method without the addition of
a stabilization term, mainly on elements having a very small intersection with
the real domain Ωk, as illustrated in Figure 8. Since the computation of the
shape gradient requires the computation of the gradient of the displacement
on the level set itself, we added a stabilization term to ensure a good quality of
the approximation. We have chosen to use the so-called ghost penalty method
proposed by E. Burman and P. Hansbo in [8] which aims at penalizing some
inter-element jumps, on the elements cut by the level set. A stabilization term
is added to the direct problem which then reads{

Find u ∈ H1(Ω) such that

a(u, v) + I(u, v, n) +G(u, v, n) = ℓ(v),

where G is the ghost penalty term

G(u, v, n) =
∑
E∈Ek

1

2

∫
E

ξ

γ

[[
σ(u)n

]]
·
[[
σ(v)n

]]
ds(x),

where Ek denotes the set of edges (for d = 2) or faces (for d = 3) of the
mesh having a non empty intersection with ∂Ωk,

[[
σ(u) · n

]]
denotes the inter-

element stress jump over E, n is a unit normal vector to E and ξ is the penalty
parameter. The same term is imposed on the adjoint equation (21) and reads

⟨DuG(u, p, n), q⟩ =
∑
E∈Ek

1

2

∫
∂T

ξ

γ

[[
σ(q)n

]]
·
[[
σ(p)n

]]
ds(x).
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Figure 8: Example of a structured mesh at the interface with a hole. The
red areas depict cut elements having a small intersection with the domain Ωk

where the gradient of the solution may be of poor quality.

Figure 9: Focus on the von Mises stress of two solutions of the direct problem
near a hole. On the left the stress jump is not penalized to compute the solution
(ξ = 0) and on the right the stress jump is penalized (ξ = 10−3).

To illustrate the influence of the stabilization parameter, Figure 9 shows
that the stress (here the von Mises stress) can be badly estimated on the
elements having a very small intersection with the real domain in the absence
of a stabilization term (ξ = 0), whereas the application of a small stabilization
term (ξ = 10−3) allows to recover a good approximation. In the following, all
the computations are performed with a penalization parameter ξ = 10−3.

5 Numerical experiments

In this section, we present a set of numerical tests, beginning with a simple
initial geometry. The objective is successively to evaluate the difference in
behavior of the penalty and Nitsche methods for the approximation of the
contact condition, and to evaluate the different criteria of uniformization of
the contact force density. Finally, we illustrate the shape optimization on more
complex initial geometries.
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5.1 Geometry setting

We consider the domain presented in Figure 6 which is a ring with an inner
radius Ri = 20 cm and an outer radius Re = 34 cm containing sixteen regularly
spaced holes of radius r = 4 cm. The ring width is set to wr = 12 cm. The
domain is divided in Ns = 16 sectors for periodic simplification. We compute
Nd = 8 mechanical load positions per sector. The Young modulus is set to
E = 200 MPa and the Poisson ratio is ν = 0.48. A contact might occur on
the boundary ΓC upon the outer radius Re with a flat rigid body representing
the ground. A load condition is set on the rigid boundary ΓD upon the inner
radius Ri and the load is supposed to be 300 kg. We only present frictionless
tests as friction does not influence the optimal shapes we obtained in our tests,
in the absence of horizontal load.

5.2 Minimization of the sole elastic strain energy

A first optimization is performed on the simple initial geometry with only a
minimization of the elastic strain energy Je. The result is presented in Figure
10 for a contact condition approximated by Nitsche’s method with parameters
γ = E/hT and θ = −1.

Figure 10: Shape optimization for the sole strain energy. The vertical dis-
placement is displayed. Contact treated by Nitsche’s method. From left to
right: first iteration, 20th iteration and 100th iteration.

The circular holes progressively radially lengthen along the optimization
process to bring stiffness and to reduce deformation whatever the load position
is. The evolution of the objective function Je is presented in Figure 11.
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Figure 11: Evolution of the elastic strain energy Je for the configuration
presented in Figure 10 according to the successive iterations of the shape op-
timization algorithm.

5.3 Comparison of contact methods for the geometric
shape optimization

In order to compare the two strategies to account for the contact condition,
the test of the previous section is now performed using the penalty method
to treat the contact. The penalty parameter is also taken equal to γ = E/hT .
The result of the shape optimization is shown in Figure 12.

Figure 12: Optimal shapes for different contact methods. On the left: optimal
shape with the contact treated by penalization and on the right: optimal shape
with the contact treated by Nitsche’s method.
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Figure 13: Evolution of the strain energy Je during the shape optimization:
comparison between Nitsche’s method and penalization.

It can be noted, comparing with Figure 10 that both methods almost lead
to the same final and optimal shape. A very careful comparison shows that
the solution with penalty corresponds to a slightly higher deflection of the
structure. The difference is more significant in Figure 13 where a comparison
of the evolution of elastic strain energy is plotted for the two methods. With
the penalty, the elastic strain energy is underestimated because of the inter-
penetration. To overcome this drawback, the penalty parameter γ might be
increased so that the contact would be better estimated. Two other tests are
performed with γ = 10E/hT for both methods. The optimal shape and de-
formation obtained can be seen in Figure 14. The two deformations are very
close to each other in that case and the evolution of the strain energy, plotted
in Figure 15 is also almost the same. The main conclusion that can be drawn
by considering the result presented in Figure 15 is that the use of the penalty
method leads to a shape optimization more sensitive to the parameter γ than
Nitsche’s method whose results are quite independent of γ. The consideration
of Nitsche’s method thus allows the use of a parameter γ with a smaller value
without deteriorating the quality of the solution. It also allows to avoid some
potential difficulties which can be encountered when γ is large and which can
result in a stiff problem difficult to solve numerically. As a consequence of this
comparison, for the rest of our numerical study, we use Nitsche’s method with
a parameter γ = E/hT .
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Figure 14: Optimal shapes for different contact methods. γ = 10E/hT . On
the left: optimal shape with the contact treated by penalization and on the
right: optimal shape with the contact treated by Nitsche’s method.

Figure 15: Evolution of the strain energy Je during the shape optimization:
comparison between Nitsche’s method and penalization and different values of
the parameter γ.

5.4 Frictional contact and pressurized holes analysis

In this section, we perform two different shape optimizations with the Nitsche-
based approach. We first set pressure into the holes with gN = −phln where
phl = 3 bar. In a second time, we perform a shape optimization taking into
account a frictional contact (see section 2.1) with F = 1.
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Figure 16: Optimal shapes. On the left: Shape optimization with pressure
into the holes (phl = 3 bar) and on the right: Shape optimization with friction
(F = 1).

The two physical phenomena show very limited impacts on the optimal
shapes in Figure 16 compared to Figure 10. Both pressure into the holes and
frictional contact lead to a very similar optimal shape as the frictionless con-
tact without pressure into the holes, at least in the framework of linearized
elasticity where small deformations occur and when only a vertical load is
applied. Therefore we lead the next optimization tests without friction and
without pressure into the holes.

Remark 6 In case where the Neumann condition gN = −phln corresponds to a
pressure term, the following derivative must be considered in the shape gradient (22)∫

Γm∩ΓN

(Θ · n) phldiv (pΩ) ds(x),

instead of

−
∫
Γm∩ΓN

(Θ · n) (κm pΩ · gN + (∇(pΩ · gN )) · n) ds(x),

as gN depends on n.

5.5 Comparison of contact criterion strategies

A comparison is led between the contact stress criterion strategies described
earlier. We recall that to uniformize the contact stress between the successive
load positions, two strategies were presented in the previous parts: either the
contact boundary is thickened with a size ϵ which leads to the criterion Jp,1
given by (25), or we consider the norm H−1/2(ΓC ,Rd) of the criterion Jp,2
given by (26). We also recall that the general criterion set in the optimization
algorithm reads as in (4). Here, the characteristic length L is chosen to be
equal to ϵ. To perform a comparison between the two strategies Jp,1 and Jp,2,
the parameter α is chosen to reach the same criterion amplitude at the first
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iteration of the optimization on both contact criterion strategies, i.e.

Nd∑
i=1

α1Jp,1(Ω
0, uiΩ0 , pmean) =

Nd∑
i=1

α2Jp,2(Ω
0, uiΩ0 , pmean).

To this aim, we take in our case a weight α1 = 6 for the criterion
Jp,1(Ω, u

i, pmean) and a weight α2 = 100 for Jp,2(Ω, u
i, pmean). In order to

measure the effect of the uniformization criteria, Figure 17 first gives the op-
timal shape and the contact stress curves on the different positions without
using these criteria (i.e. with α = 0). One can see a significant disparity of
contact stresses on the different loading positions which obviously corresponds
to the presence or not of a hole near the effective contact area.

Figure 17: Optimization with Je (α = 0). Contact treated by Nitsche’s
method. On the left: optimal shape and on the right: contact stresses on the
8 load positions.

Figure 18: Optimization with Je and Jp,1 (α1 = 6). Contact treated by
Nitsche’s method. On the left: optimal shape and on the right: contact stress
on the 8 load positions.
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Figure 19: Optimization with Je and Jp,2 (α2 = 100). Contact treated by
Nitsche’s method. On the left: optimal shape and on the right: contact stresses
on the 8 load positions.

The effect of the addition of the uniformization criteria can be seen in
Figures 18 and 19 for Jp,1 and Jp,2, respectively. Both criteria give some similar
results, in particular the disparities on contact stresses have been significantly
reduced compared to Figure 17 when only the strain energy is used. One of
the effect of both criteria is a certain radial transfer of the holes away from
the contact boundary resulting in some thickening of the ring of material
located between the contact boundary ΓC and the holes. It is quite obvious
that this transfer contributes to the desired uniformization. One also notes a
slight difference between the shapes obtained with Jp,1 and Jp,2, the thickening
being a little bit more important for Jp,1 and ending with a smaller amount
of material between the holes. There is also a difference in the decrease of
the two criteria that is presented in Figure 20, Jp,2 having a proportionally
larger decrease which shows that Jp,2 is actually a bit more efficient than Jp,1.
In particular, one advantage of the criterion Jp,2 over Jp,1 is that it does not
depend on the parameter ϵ. And so, the calculation with Jp,2 does not require a
non-optimizable zone of thickness ϵ which is more natural than the calculation
with Jp,1 in this mechanical study.
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Figure 20: Comparison between the contact criterion strategies Jp,1 and Jp,2.
Evolution of the contact stress uniformization criteria Jp,1 and Jp,2 for the
configurations presented in Figures 18 and 19.

The parameter α2 influences the optimization and the minimization of Je
and Jp,2. One notes that α2 = 10 leads to a light optimization of Jp,2 as shown
in Figure 21 whereas α2 = 1000 leads to a good uniformization of the contact
stress even though the deflection of the structure increases (see Figure 22),
and so Je is less minimized. A wise choice of α2 = 100 is a good compromise
to minimize both Je and Jp,2 for this configuration (see Figure 19).

Figure 21: Optimization with Je and Jp,2 (α2 = 10). Contact treated by
Nitsche’s method. On the left: optimal shape and on the right: contact stresses
on the 8 load positions.
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Figure 22: Optimization with Je and Jp,2 (α2 = 1000). Contact treated by
Nitsche’s method. On the left: optimal shape and on the right: contact stresses
on the 8 load positions.

5.6 Shape optimization of complex geometries

It is obvious that the final geometry obtained by shape optimization depends
on the chosen initial geometry. This is especially the case since we have cho-
sen to constrain the amount of material to remain constant. To illustrate the
variety of shapes that can be obtained, optimization results are presented on
Figure 23 with or without the use of an uniformization criterion of the con-
tact stress and for an initial geometry with 48 holes. Finally, we present a case
with an initial geometry with 108 holes optimized for the sole strain energy in
two-dimensional in Figure 24 and three-dimensional in Figure 25.

Figure 23: Optimal designs for 48 initial holes. From left to right: initial
geometry with 48 circular holes, optimization with the Je energy criterion and
a multi-criterion optimization with Je and Jp,2 with α = 50.
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Figure 24: Optimal designs for 108 initial holes with the minimization of
the Je energy criterion in a two-dimensional framework. On the left: initial
geometry and on the right an optimal shape.

Figure 25: Optimal design for 108 initial holes with the minimization of the
Je energy criterion in a three-dimensional framework.

6 Conclusion

In this paper, we have presented a strategy for the shape optimization of a
linearly elastic rolling structure in contact with a flat ground.
The main ingredients was Nitsche’s method for the contact approximation,
the use of cut finite elements, a level set representation of the geometry ap-
proximated on a regular polar grid and Sethian’s schemes for its evolution.
More precisely, the cut finite element method was used on the regular grid for
the approximation of the displacement fields and the adjoint variables. Indeed,
thanks to its optimal convergence, it allows the use of a coarser grid than for
other fictitious domain methods. Finally, the ghost penalty stabilisation allows
us to obtain a good quality gradient on the boundary of the evolving domain.
Beyond these choices, we have presented comparisons of the treatment of the
contact condition by penalty and by Nistche’s method. In particular, these
numerical experiments highlight the advantage of Nitsche’s method which al-
lows a consistent approximation of the contact condition without the use of
Lagrange multipliers. We have also introduced two variants of a criterion for
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the uniformization of the contact stress for which, the associated adjoint state
is well defined and has a continuous dependence on the data. Finally, the nu-
merical experiments using each of these two criteria show very similar optimal
elastic structures.
The natural perspectives of this work are the transition to large elastic defor-
mations and the mathematical study of differentiability of objective functions
which we plan to address in a future work.
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optimization in contact problems with Coulomb friction and a solution-
dependent friction coefficient. SIAM Journal on Control and Optimiza-
tion, 52(5):3371–3400, 2014.

[8] E. Burman and P. Hansbo. Edge stabilization for the generalized stokes
problem: a continuous interior penalty method. Computer methods in
applied mechanics and engineering, 195(19-22):2393–2410, 2006.

[9] E. Burman and P. Hansbo. Fictitious domain finite element methods
using cut elements: I. a stabilized Lagrange multiplier method. Computer



Shape optimization of a linearly elastic rolling structure 37

Methods in Applied Mechanics and Engineering, 199(41-44):2680–2686,
2010.

[10] E. Burman and P. Hansbo. Fictitious domain finite element methods
using cut elements: Ii. a stabilized Nitsche method. Applied Numerical
Mathematics, 62(4):328–341, 2012.

[11] J. Cea. Conception optimale ou identification de formes, calcul rapide de
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unterworfen sind. Abhandlungen aus dem Mathematischen Seminar der
Universität Hamburg, 36:9–15, 1971.

[43] S. J. Osher and J. A. Sethian. Fronts propagating with curvature-
dependent speed: Algorithms based on Hamilton-Jacobi formulations.
Journal of Computational Physics, 79(1):12 – 49, 1988.

[44] S. J. Osher and F. Santosa. Level set methods for optimiza-
tion problems involving geometry and constraintsi. frequencies of a
two-densityinhomogeneous drum. Journal of Computational Physics,
171:272–288, 2001.



40 Shape optimization of a linearly elastic rolling structure

[45] O. Pironneau. Optimal shape design for elliptic systems. In System
Modeling and Optimization, pages 42–66. Springer, 1982.

[46] K. Poulios and Y. Renard. An unconstrained integral approximation
of large sliding frictional contact between deformable solids. Comput.
Struct., 153(C):75–90, June 2015.

[47] Y. Renard. A uniqueness criterion for the Signorini problem with Coulomb
friction. SIAM journal on mathematical analysis, 38(2):452–467, 2006.

[48] Y. Renard. Generalized Newton’s methods for the approximation and
resolution of frictional contact problems in elasticity. Computer Methods
in Applied Mechanics and Engineering, 256:38 – 55, 2013.

[49] Y. Renard and K. Poulios. GetFEM: Automated FE modeling of multi-
physics problems based on a generic weak form language. Transactions
on Mathematical Software, 47:1, 2020.

[50] J. A. Sethian. Level set methods and fast marching methods: evolving
interfaces in computational geometry, fluid mechanics, computer vision,
and materials science, volume 3. Cambridge university press, 1999.

[51] J. Simon. Differentiation with respect to the domain in boundary value
problems. Numerical Functional Analysis and Optimization, 2(7-8):649–
687, 1980.

[52] J. Sokolowski and J.-P. Zolésio. Shape sensitivity analysis of unilat-
eral problems. SIAM journal on mathematical analysis, 18(5):1416–1437,
1987.

[53] J. Sokolowski and J.-P. Zolésio. Introduction to shape optimization. In
Introduction to Shape Optimization, pages 5–12. Springer, 1992.

[54] M. Sussman, P. Smereka, and S. J. Osher. A level set approach for comput-
ing solutions to incompressible two-phase flow. Journal of Computational
Physics, 114(1):146–159, 1994.


	Introduction
	Weak formulation of the contact problem
	Classical weak inequality formulations
	Weak formulation with a penalty method
	Weak formulation using Nitsche's method
	Analysis of a Nitsche-based finite element method

	Geometric shape optimization
	Shape derivative
	Contact term
	Case of the penalty method
	Case of Nitsche's approach

	Criterion minimization
	Uniformity of the contact stress on the thickened boundary
	Uniformity of contact stress using a H-1/2(C, Rd)-norm


	Numerical discretization and optimization strategy
	Domain representation and level set function
	Transport and redistancing
	Load condition on a rigid rim
	Finite element discretization and fictitious domains method

	Numerical experiments
	Geometry setting
	Minimization of the sole elastic strain energy
	Comparison of contact methods for the geometric shape optimization
	Frictional contact and pressurized holes analysis
	Comparison of contact criterion strategies
	Shape optimization of complex geometries

	Conclusion

