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Shape optimization of a linearly elastic rolling structure under

unilateral contact using Nitsche’s method and cut finite elements.

Élie Bretin ∗ Julien Chapelat † Pierre-Yves Outtier ‡ Yves Renard §

December 7, 2021

Abstract

The main motivation of this work is to develop a numerical strategy for the shape optimization of
a rolling elastic structure under contact with respect to a uniform rolling criterion. A first objective
is to highlight the influence on the treatment of the contact terms. To do so, we present a numerical
comparison between a penalty-based approach and the use of Nitsche’s method which is known to
have good consistency properties. A second task concerns the construction of an objective functional
to force the uniform rolling criterion. Here, we present and compare two different strategies that will
lead to quite similar results. All the numerical experiments proposed in this paper were performed
using a fictitious domain approach coupled with a level set representation of the shape and the use
of a cut finite element method to approximate the elastic equation.

Key words: unilateral contact, linear elasticity, Nitsche’s method, fictitious domains method, finite
element method, shape optimization, level set representation.

1 Introduction

The motivation of this work is the optimization of an elastic load-bearing rolling structure under criteria
of compliance and uniformity of the contact stress in a multi-loading context.

Shape optimization has become popular in recent decades for the optimal design of structures,
and applications can be intricate according to the mechanical context. Difficulties might appear while
differentiability of optimization criteria, which can be non-linear, can be hard to obtain in mathematical
models. In this work, the elastic rolling structure is in contact with a flat ground. This generates some
non-linearity and non-differentiability issues according to the contact approximation. The latter can be
consistent or not, and lead to numerical imprecisions. The elastic rolling structure is optimized under
mechanical criteria such as deformation and stability criteria while the structure rolls. Thereby, a
multi-loading strategy simulates the rotation of the structure and leads to uniformity criteria on all the
loading computations. We derive the correpsonding shape gradient and a descent strategy classically
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based on the early ideas of J. Hadamard [24] and on later developments, such as the formulation in
terms of a Lagrangian due to J. Céa [11] and the adjoint method [37] introduced by J.-L. Lions.

Our purpose is to compare two methods for the approximation of the contact condition in the shape
optimization framework: the penalty approach and Nitsche’s method. We also introduce two strategies
to deal with the uniformity criteria while the structure is rolling. We propose numerical experiments,
representing the geometry thanks to the level set method to ease its evolution as exposed by G. Allaire,
F. Jouve and A.-M. Toader in [4]. We also use the finite element method to compute the mechanical
problem and especially we develop the fictitious domains method [31, 10] based on cut finite elements
to deal with complex geometries.

The difficulty coming from the contact boundary conditions, also called Signorini’s conditions, is
that they are more intricate conditions than Dirichlet and Neumann conditions. They lead to a highly
non-linear problem classically set in terms of a variational inequality (at least for the frictionless case).
The contact term implies a projection operator, which is, for the shape optimization, not differentiable in
the usual sense. A so-called conical derivative was introduced in [39] with a derivation of the optimality
conditions using a weak notion of differentiability. The shape sensitivity analysis of contact problems
is analyzed in the work of J. Sokolowski and J.-P. Zolesio [51, 52]. We also refer to the work of J.
Haslinger et al. [29, 30, 28, 26, 25, 27, 7] where in particular existence of an optimum is proved under
assumptions of Lipschitz regularity of the boundary, from the discrete formulation to its continuous
limit. A regularized approach is used in [6] and [5] and more recently [38] for different friction laws.
See also the recent work [12] for the penalized approach and [13] for the augmented Lagrangian one.

We consider a rolling linearly elastic structure occupying in its reference configuration a domain
Ω ⊂ Rd, d = 2 or 3 whose shape is to be optimized, an example being depicted in Figure 1. The
boundary ∂Ω of the domain is split into three non-overlapping parts, ΓN , ΓC and ΓD. A Neumann
condition is considered on ΓN where a force density gN is prescribed. A contact with friction might occur
with a flat and horizontal rigid obstacle on ΓC , and a homogeneous Dirichlet condition is prescribed on
ΓD.

Figure 1: Schematic representation of Ω and the rigid obstacle.

The displacement uΩ : Ω → Rd of the body according to its reference configuration is solution to
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the following linearized elasticity problem:
- div σ(uΩ) = f in Ω where σ(uΩ) = A ε(uΩ),
σ(uΩ) n = gN on ΓN ,
uΩ = 0 on ΓD,

(1)

where A is the fourth order symmetric tensor of elasticity, ε(u) is the small deformations tensor, and
n is the outward unit vector to Ω. The contact condition on ΓC will be developed in the next section.
Assuming the isotropy of the material, the tensor A finally reads

σ(u) = A ε(u) = 2µε(u) + λtr(ε(u))Id, (2)

where µ and λ are the Lamé material parameters.
For the purpose of our study, we consider that the contact and Dirichlet boundaries ΓC and ΓD

are not some optimizable parts. However, the generalization to optimizable contact and Dirichlet
boundaries is rather straightforward.

The structure is supposed to roll upon a ground (the obstacle) along its outer radius. We take
this into account by considering Nl load positions, obtained as Nl rotations Ωi of the domain Ω (see
Figure 2), for i from 1 to Nl, with regularly spaced rotations of angles i2π/Nl. The displacement for
the rotated domain Ωi will be denoted uiΩ.

Figure 2: Rolling structure representation. Two configurations of Ω at different rotations for i = 1, 2.

Classically, the basic optimization criterion we consider corresponds to the strain energy, which we
sum here on each load position:

Nl∑
i=1

Je(Ωi, u
i
Ω) where Je(Ωi, u

i
Ω) =

∫
Ωi

1

2
Aε(uiΩ) : ε(uiΩ) dx. (3)

It aims at minimizing the energy associated to the elastic deformation corresponding to each domain
Ωi.

In order to obtain a structure that rolls as uniformly as possible, we introduce a second criterion.
To this aim, we introduce the mean contact stress on the contact boundary ΓC , where the average is
obtained over the different load positions:

pmean =
1

Nl

Nl∑
i=1

σ(uiΩ)n.
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A first idea leads to minimize on each load position

Jp(Ω, uΩ, pmean) =

∫
ΓC

L

2E
(σ(uΩ)n− pmean)2ds(x), (4)

where L is a characteristic length and E is Young’s modulus.
However, expression (4) is not completely satisfactory since the contact stress σ(u)n may not be

square integrable in some context and even if it is, continuity of (4) with respect to the problem data
cannot be ensured. We develop in section 3.3 two more consistent variants of this criterion.

Finally, we consider the following global objective function

J(Ω) =

Nl∑
i=1

Jg(Ωi, u
i
Ω, pmean), (5)

where
Jg(Ωi, u

i
Ω, pmean) = Je(Ωi, u

i
Ω) + αJp(Ωi, u

i
Ω, pmean), (6)

and we study the influence of the parameter α on the optimal shape Ω.
The main contribution of this work is twofold: first of all, we propose a comparison of the penalty

and Nitsche’s method in the framework of shape optimization. The second contribution of this work is
to propose and test an efficient criterion for the uniformization of the contact stress according to the
different load positions.

In section 2, we introduce the problem with a frictional contact condition, its approximation with a
penalty approach and a consistent formulation based on Nitsche’s method. In section 3, the geometric
shape optimization framework is presented. In section 4, we introduce the discretization used and the
optimization strategy. Finally, in section 5, we present some numerical results which highlight the
interest of Nitsche’s method and the efficiency of the geometric shape optimization to obtain optimal
domains Ω that minimize the criteria previously introduced.

2 Weak formulation of the contact problem

In this section, we describe the unilateral contact condition with friction on the boundary ΓC and
provide the weak formulation of the elastic problem for both a penalized contact condition and Nitsche’s
method.

2.1 Classical weak inequality formulations

The displacement uΩ : Ω → Rd of the body according to its reference configuration satisfies the
equations of system (1). To derive a weak formulation, let us also introduce the Hilbert space V =
{v ∈ H1(Ω;Rd) : v = 0 on ΓD} and the two applications a : V × V → R and ` : V → R, defined for all
(u, v) ∈ V × V by

a(u, v) =

∫
Ω
Aε(u) : ε(v) dx,

`(v) =

∫
Ω
f(x) · v dx+

∫
ΓN

gN · v ds(x).

Then, using Green’s formula and under regularity assumptions, one shows that the displacement
field uΩ ∈ V satisfies

a(u, v)−
∫

ΓC

σ(u)n · v ds(x) = `(v), ∀v ∈ V. (7)
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The obstacle is supposed to be rigid and flat. We consider ny, the inward unit vector to the rigid
obstacle and g the initial gap between the elastic body and the obstacle (see Figure 3). On the contact
boundary ΓC , the displacement u : Ω→ Rd, is decomposed into its normal component un = u · ny and
its tangent one ut = (I − ny ⊗ ny)u such that

u = unny + ut. (8)

Figure 3: Contact surface representation for the vertical load configuration.

The initial gap between the body and the obstacle is defined on x ∈ ΓC by

g = ny · (y − x), (9)

where y is the orthogonal projection of x upon the rigid obstacle. We note also the decomposition of
the contact stress on ΓC into normal and tangent parts:

σn(u) = (σ(u) n) · ny, σt(u) = (I − ny ⊗ ny)(σ(u) n). (10)

The unilateral contact condition on ΓC can be expressed by the following complementary condition:

(un − g) ≤ 0, (11a)

σn(u) ≤ 0, (11b)

(un − g) σn(u) = 0. (11c)

In case of frictionless contact, the displacement uΩ is the minimizer of the energy 1
2a(u, u)−`(u) on the

convex K of admissible displacements satisfying the non-interpenetration condition on the boundary
ΓC defined as

K := {v ∈ V : vn − g ∈ K0}, K0 := {v ∈ L2(ΓC) : v ≤ 0}. (12)

The corresponding optimality system reads (see [21]){
Find u ∈ K such that

a(u, v − u) ≥ `(v − u), ∀v ∈ K.
(13)

Under standard assumptions, the existence and uniqueness of the solution to problem (13) is a direct
consequence of Stampacchia’s theorem.

The classical Coulomb law of friction can be written on ΓC as{
|σt(u)| ≤ −Fσn(u) if u̇t = 0,

σt(u) = Fσn(u) u̇t
|u̇t| otherwise,

(14)
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where F ≥ 0 is the friction coefficient, depending on the couple of materials in contact and u̇t is the
sliding velocity. The Coulomb law of friction is usually approximated by replacing the sliding velocity
by the finite difference

ut − u0
t

∆t
, (15)

where u0
t stands for the tangent displacement at an initial time step and ∆t the time step. For the sake

of simplicity, taking u0
t = 0 leads to the so called static Coulomb’s law of friction:{

|σt(u)| ≤ −Fσn(u) if ut = 0,

σt(u) = Fσn(u) ut
|ut| otherwise.

(16)

In case of contact with friction, the displacement uΩ is solution to the following weak inequality
formulation (see [21]): {

Find u ∈ K such that

a(u, v − u) + j(v)− j(u) ≥ `(v − u), ∀v ∈ K,
(17)

where j(v) = −
∫

ΓC

Fσn(v)|vt|ds(x). The existence of solutions to Problem (17) is addressed for

instance in [35, 22] and is not generally ensured for arbitrary large friction coefficients. Condition
of uniqueness of the solution to this problem still remains an open question, partially addressed in
[47, 33, 34].

2.2 Weak formulation with a penalty method

The penalty method (see [36] for instance) is a simple way to treat contact problems. It involves an
additional weak term in the weak formulation standing for a stiffness at the boundaries limiting inter-
penetration between the body and the obstacle. It is non-consistent in the sense that it represents a
supplementary approximation of the contact condition. For γ > 0 the penalty parameter, the frictional
contact conditions (11) - (16) are approximated by

σn(u) = −γ[g − un]−,

σt(u) = PB(ny ,ρ(u))(γu),
(18)

where ρ(u) = Fγ[g − un]− is the friction threshold, the negative part being defined by [x]− = 1
2(|x| −

x),∀x ∈ R and the projection of an element x ∈ Rd on the ball B(ny, ρ(u)) of radius ρ(u) on the tangent
plane with respect to ny (see also [46]) is defined by

PB(ny ,ρ)(q) =

{
(Id − ny ⊗ ny)q if |(Id − ny ⊗ ny)q| ≤ ρ,
ρ

(Id−ny⊗ny)q
|(Id−ny⊗ny)q| otherwise.

(19)

Recall that using (7) the displacement field uΩ ∈ V satisfies

a(u, v)−
∫

ΓC

(σn(u)vn + σt(u) · vt)ds(x) = `(v), ∀v ∈ V. (20)

Finally, a weak formation for the penalty method can be easily deduced by incorporating equalities
(18) in (20) which conduces to introduce the solution uPΩ ∈ V of

a(u, v) + IP (u, v, ny) = `(v), ∀v ∈ V, (21)

where the penalty contact term IP (u, v, ny) is

IP (u, v, ny) =

∫
ΓC

(γ[g − un]− vn − PB(ny ,ρ(u))(γu) · vt)ds(x). (22)

We refer to [21, 20] for the existence of a solution to problem (21).

6



2.3 Weak formulation using Nitsche’s method

Nitsche’s method, presented by J. Nitsche in [42], aimed first at treating Dirichlet conditions. The
Nitsche method we used to account for the contact condition with friction was originally introduced in
[16, 18] for frictionless contact, then generalized to Tresca’s friction in [14] and Coulomb’s friction in [17]
(see also the overview [15]). The Nitsche method introduces a contact term which weakly prescribed the
frictional contact conditions (11)-(16) in a consistent manner. It is based on the equivalent reformulation
of the contact conditions which has been originally derived from the augmented Lagrangian approach
[2] and reads as

σn(u) = −[σn(u)− γ(un − g)]−,

σt(u) = PB(ny ,ρ(u))(σ(u)n− γu),
(23)

where ρ is now defined by ρ(u) = F [σn(u)− γ(un − g)]−. More precisely, incorporating

vn = −1

γ
(θσn(v)− γvn) +

θ

γ
σn(v), vt = −1

γ
(θσt(v)− γvt) +

θ

γ
σt(v), (24)

for a fixed θ ∈ R in the weak formulation (7), we see that

a(u, v)−
∫

ΓC

θ

γ
σn(u)σn(v) ds(x) +

∫
ΓC

1

γ
σn(u) (θ σn(v)− γvn) ds(x)

−
∫

ΓC

θ

γ
σt(u) · σt(v) ds(x) +

∫
ΓC

1

γ
σt(u) · (θ σt(v)− γvt) ds(x) = `(v), ∀v ∈ V,

(25)

which becomes

a(u, v)−
∫

ΓC

θ

γ
σn(u)σn(v) ds(x)−

∫
ΓC

1

γ
[σn(u)− γ(un − g)]− (θ σn(v)− γvn) ds(x)

−
∫

ΓC

θ

γ
σt(u) · σt(v) ds(x) +

∫
ΓC

1

γ
PB(ny ,ρ(u))(σ(u)n− γu) · (θ σt(v)− γvt) ds(x)

= `(v), ∀ v ∈ V,

(26)

by using additionally (23). Finally, the Nitsche approach conduces to define the solution uNΩ to

a(u, v) + IN (u, v, n) = `(v), ∀v ∈ V, (27)

where the contact term IN (u, v, n) reads

IN (u, v, n) =

∫
ΓC

(− θ
γ
σn(u)σn(v) ds(x)− 1

γ
[σn(u)− γ(un − g)]− (θ σn(v)− γvn)

− θ

γ
σt(u) · σt(v) +

1

γ
PB(ny ,ρ(u))(σ(u)n− γu) · (θ σt(v)− γvt)) ds(x).

(28)

Remark 1. The introduction of the parameter θ leads to different variants acting on the symmetry,
skew-symmetry or non-symmetry of the contact term (see [18]). In particular, in the frictionless case,
when θ = 1, the formulation is symmetric and admits a potential energy. When θ = 0, a non-symmetric
method is set whose formulation is closer to the penalty approach described in 2.2. Finally, when
θ = −1, the contact term is skew-symmetric and leads to interesting properties independent of the
Nitsche parameter γ.
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2.4 Analysis of a Nitsche-based finite element method

Let V h ⊂ V be a family of finite dimensional vector spaces indexed by h coming from a family T h of
triangulations of the domain Ω supposed to be polygonal for the sake of simplicity (h = maxT∈T hhT
where hT is the diameter of T ). The family of triangulations is supposed regular (i.e., there exists σ > 0
such that ∀T ∈ T h, hT /ρT ≤ σ where ρT denotes the radius of the inscribed ball in T ) and conformal to
the subdivision of the boundary into ΓD, ΓN and ΓC (i.e. a face of an element T ∈ T h is not allowed to
have simultaneous non-empty intersection with more than one part of the subdivision). For instance,
a standard Lagrange finite element method of degree k reads

V h := {vh ∈ C 0(Ω̄)d : vh|T ∈ (Pk(T ))d,∀T ∈ T h, vh = 0 on ΓD}. (29)

Let γ be a piecewise constant function on the contact interface ΓC defined for any x ∈ ΓC lying on the
relative interior of ΓC ∩ T for a (closed) element T having a non-empty intersection of dimension d− 1
with ΓC by

γ(x) =
γ0

hT
, (30)

where γ0 is a positive given constant. The generalized Nitsche-based approximation then reads:{
Find uh ∈ V h such that

a(uh, vh) + IN (uh, vh, n) = `(vh), ∀vh ∈ V h.
(31)

The advantage of Nitsche’s method over the penalty approach is its consistency which can be established
in the following sense.

Lemma 2. Suppose that the solution u of (1), (11) and (16) is in (H
3
2

+ν(Ω))d where d = 2, 3 and
ν > 0. Then u is also solution, ∀vh ∈ V h, of

a(u, vh) + IN (u, vh, n) = `(vh). (32)

Proof. Let u be the solution to (1), (11) and (16). Let vh be in V h
0 . Since u ∈ (H

3
2

+ν(Ω))d and ν > 0,
σn(u) and σt(u) ∈ Hν(ΓC) ⊂ L2(ΓC). As a result,

a(u, vh)−
∫

ΓC

θ

γ
σn(u) σn(vh) ds(x)−

∫
ΓC

θ

γ
σt(u) · σt(vh) ds(x), (33)

makes sense, and σn(u)−γ(un−g) and σt(u)−γut ∈ L2(ΓC). Using the reformulation of σn(u) and σt(u)
in (23) and formulation (25), it holds:

a(u, vh)−
∫

ΓC

θ

γ
σn(u)σn(vh) ds(x)−

∫
ΓC

1

γ
[σn(u)− γ(un − g)]− (θσn(vh)− γvhn) ds(x)

−
∫

ΓC

θ

γ
σt(u) · σt(vh) ds(x) +

∫
ΓC

1

γ
PB(ny ,ρ(u))(σ(u)n− γu) · (θσt(v

h)− γvht ) ds(x)

= a(u, vh)−
∫

ΓC

θ

γ
σn(u)σn(vh) ds(x)−

∫
ΓC

1

γ
σn(u) (θσn(vh)− γvhn) ds(x)

−
∫

ΓC

θ

γ
σt(u) · σt(vh) ds(x) +

∫
ΓC

1

γ
σt(u) · (θσt(v

h)− γvht ) ds(x)

= a(u, vh)−
∫

ΓC

σn(u)vhn ds(x)−
∫

ΓC

σt(u) · vht ds(x).

(34)

In the same time, using an integration by parts, it holds:

a(u, vh)−
∫

ΓC

σn(u)vhn ds(x)−
∫

ΓC

σt(u) · vht ds(x) = `(vh), (35)

which ends the proof, as the equality is strictly respected, whatever θ is.
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The well-posedness and the consistency are analyzed in [16] and [18] for the frictionless formulation.
When θ = −1, the well-posedness does not depend on γ0 anymore, which implies that the value of
θ = −1 is a convenient choice for the rest of the computation if robustness is required. Concerning the
Nitsche-based formulation with the Coulomb law of friction, the existence of solution is studied in [17].

3 Geometric shape optimization

The geometric shape optimization aims at minimizing a criterion J(Ω) to find the optimal shape of a
structure by forcing the domain frontiers to evolve. The energy of the structure can be expressed as
a target criterion. If several criteria must be minimized, that energy can be a combination of these
criteria and lead to a multi-criterion optimization. The generic formulation for the energy or the target
criterion might be expressed as

J(Ω) =

∫
Ω
M(uΩ, x) dx+

∫
∂Ω
N (uΩ, x) ds(x), (36)

where uΩ is defined as the solution of

a(uΩ, v) + I(uΩ, v, n) = `(v), ∀v ∈ V.

Here the contact term I is written as I(u, v, n) = IP (u, v, n) or I(u, v, n) = IN (u, v, n) according to
the contact approximation used. Here, M and N are two functions assumed to be sufficiently smooth
so that the shape derivative of J is well defined.

Remark 3. As specified for instance in [38], it is often assumed that

|M(u, x)| ≤ C(1 + |u|2), |N (u, x)| ≤ C(1 + |u|2),

|〈DuM(u, x), v〉| ≤ C|u · v|, |〈DuN (u, x), v〉| ≤ C|u · v|,
(37)

for some constants C > 0 which includes the case of the compliance energy when it is expressed as

J(Ω) =

∫
Ω
fuΩ dx+

∫
ΓN

gN · uΩ ds(x).

Yet using additional frictional contact terms, it is not clear whether this expression takes properly into
account the elastic strain energy or not and we prefer to use the following formulation

J(Ω) =

∫
Ω

1

2
Aε(uΩ) : ε(uΩ)dx,

which unfortunately does not meet the above conditions. However, as we will see later, these conditions
are not necessary to obtain the existence of the shape derivatives of the criteria we use.

Let D ⊂ Rd be a fixed bounded and smooth domain whose boundary is split into ΓC and ΓD
supposed in our case to be some fixed non-optimizable boundaries. Let Ωad be the admissible set
composed of all smooth open domains Ω having ΓC and ΓD as parts of its boundary and having an
additional optimizable boundary ΓN (see Figure 1)

Ωad := {Ω ⊂ D|Ω open and of class C 1,ΓC ⊂ Ω,ΓD ⊂ Ω}. (38)

Then, the shape optimization consists in finding some domains Ω ∈ Ωad minimizing the target criterion
J(Ω) with a volume constraint.

Note that, in the rest of the paper, we use the following notation of the directional derivative of an
element A with respect to x in the direction y:

〈DxA(x), y〉 = lim
ε→0

A(x+ εy)−A(x)

ε
. (39)
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3.1 Shape derivative

The differentiation with respect to the domain aims at modifying the reference state of the domain
Ω ∈ Ωad using the boundary method first described by J. Hadamard in [24] and then developed for
instance in [32], [41], [45], [50] and [52]. Let Θ ∈ W 1,∞(Rd;Rd) ∩ C 1(Rd) be a vector field displacing
the reference domain Ω towards different admissible shapes Ωt ∈ Ωad. The domain variation in the
direction tΘ reads for t small:

Ωt = (Id+ tΘ)(Ω). (40)

The shape derivative 〈D J(Ω),Θ〉 of J(Ω) with respect to the reference domain Ω in the direction Θ is
defined as the derivative on t = 0 of the application t 7→ J(Ωt) when it exists and gives

J(Ωt) = J(Ω) + t 〈D J(Ω),Θ〉+ o(t). (41)

Recall that the shape gradient for general functional in a context of linear elasticity with penalized
contact is derived in [38]. We develop the case where Nitsche’s method is used to deal with the contact
although the contact boundary ΓC is not optimized.

Theorem 4. Assume that f ∈ H1(Ω;R), g ∈ H2(Ω;R) and that (21) or (27) admits a unique solution
uΩt ∈ H1(Ωt;R) for t small enough and Θ ∈ W 1,∞(Rd;Rd). If we denote 〈D J(Ω),Θ〉 the Gâteaux
derivative of J(Ω) with respect to Ω in the direction Θ ∈ W 1,∞(Rd;Rd), we have when this derivative
exists:

〈D J(Ω),Θ〉 =

∫
Γm

(Θ · n) (M(uΩ, x) +Aε(uΩ) : ε(pΩ)− f(x) · pΩ) ds(x)

+

∫
Γm

(Θ · n) (κm N (uΩ, x) +∇N (uΩ, x) · n) ds(x)

−
∫

Γm∩ΓN

(Θ · n) (κm pΩ · gN +∇(pΩ · gN ) · n) ds(x).

(42)

where Γm is a moving boundary of Ω, assuming Γm ∩ ΓC = Γm ∩ ΓD = ∅, κm is the mean curvature of
∂Ω, and pΩ is the adjoint state defined as the solution of

a(q, p) + 〈Du I(uΩ, p, n), q〉+

∫
Ω
〈DuM(uΩ, x), q〉dx+

∫
∂Ω
〈DuN (uΩ, x), q〉ds(x) = 0, ∀q ∈ V. (43)

Remark 5. As explained previously, the existence of adjoint state problem requires that the applications
q 7→ 〈DuM(uΩ, x), q〉 and q 7→ 〈DuN (uΩ, x), q〉 must be continuous in V , which is clearly the case under
assumptions (37). However, these conditions are sufficient but not necessary to verify these continuity
properties.

We develop now the Lagrangian method introduced by J. Céa [11] which aims at describing a
constrained optimization problem. To this end, we first present two useful results: let Ω be a bounded
open and regular set from Rd.

• Let f ∈ H1(Ω,R) and let the application J : Ωad 7→ R defined by

J(Ω) =

∫
Ω
f(x) dx. (44)

Then J is differential with respect to Ω in the direction Θ ∈ C 1(Rd,Rd) and

〈D J(Ω),Θ〉 =

∫
∂Ω

Θ · n f(x) ds(x). (45)

10



• Let g ∈ H1(Ω,R) and let the application J : Ωad 7→ R defined by

J(Ω) =

∫
∂Ω

g ds(x). (46)

Then J is differential in Ω and for all Θ ∈ C 1(Rd Rd) and

〈D J(Ω),Θ〉 =

∫
∂Ω

Θ · n (∇g(x) · n+ κmg(x)) ds(x). (47)

Proof of theorem (4):
We intend to minimize the criterion J(Ω) given by (36) under the constraint that the weak formulation
(21) or (27) is satisfied. Let L : V 7→ R, the Lagrangian application defined by

L(u, v, n,Ω) = J(Ω, u) + (a(u, v) + I(u, v, n)− `(v)). (48)

where J(Ω, u) =

∫
Ω
M(u, x) dx +

∫
∂Ω
N (u, x) ds(x). The key is to remark that J(Ω) = J(Ω, uΩ) and

then to identify J(Ω) as
J(Ω) = L(uΩ, v, n,Ω). (49)

If L is differentiated with respect to the domain Ω in the direction Θ, it gives

〈D J(Ω),Θ〉 = 〈D [L(uΩ, v, n,Ω)] ,Θ〉
= 〈DΩ L(uΩ, v, n,Ω),Θ · n〉+ 〈Dn L(uΩ, v, n,Ω), 〈DΩ n,Θ〉〉
+ 〈Du L(uΩ, v, n,Ω), 〈DΩ uΩ,Θ〉〉.

(50)

In order to vanish the last term of equation (50) and obtain an explicit formulation of the shape
derivative of J , the idea is to follow the method of the adjoint state introduced by J.-L. Lions in [37].
More precisely, let pΩ ∈ V be defined as the solution of

〈Du L(uΩ, pΩ, n,Ω), q〉 = 0, ∀q ∈ V. (51)

Then, evaluating the equation (50) at v = pΩ shows that

〈DΩ L(uΩ, pΩ, n,Ω),Θ〉 = 〈DΩ L(uΩ, pΩ, n,Ω),Θ · n〉+ 〈Dn L(uΩ, pΩ, n,Ω), 〈DΩ n,Θ〉〉, (52)

as 〈DΩ u,Θ〉 ∈ V . Moreover, the term 〈Du L(u, p, n,Ω), q〉 can be identified as

〈Du L(u, p, n,Ω), q〉 = a(q, p) + 〈Du I(u, p, n), q〉

+

∫
Ω
〈DuM(u, x), q〉 dx+

∫
∂Ω
〈DuN (u, x), q〉 ds(x).

(53)

This leads to the following explicit expression of the shape gradient in linear elasticity:

〈D J(Ω),Θ〉 =

∫
Γm

(Θ · n) (M(uΩ, x) +Aε(uΩ) : ε(pΩ)− f(x) · pΩ) ds(x)

+

∫
Γm

(Θ · n) (κm N (uΩ, x) +∇N (uΩ, x) · n) ds(x)

−
∫

Γm∩ΓN

(Θ · n) (κm pΩ · gN +∇(pΩ · gN ) · n) ds(x),

(54)

as Γm ∩ ΓC = ∅ and I(u, p, n) is an integral term defined on ΓC .
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3.2 Contact term

In this section, we give an explicit formulation of the contact term and its directional derivative in the
adjoint equation.

3.2.1 Case of the penalty method

In this case, we have I(u, v, n) = IP (u, v, n) defined by (22). The derivative term 〈Du IP(u, p, n), q〉
from (43) can then be developed as

〈Du IP (u, p, n), q〉 = −
∫

ΓC

(
γ H(−(g − un))qn pn +Du PB(ny ,ρ(u))(γu) γqt · pt

)
ds(x), (55)

where H is the Heaviside function defined by H(x) = 1 for x ≥ 0 and H(x) = 0 otherwise. Moreover,
the computation of Du PB(n,ρ(u))((γu)) is obtained thanks to the the partial derivatives of the projection
ball PB(n,τ)(q) according to q and τ . Indeed, it reads (see [46])

∂qPB(n,τ)(q) =


0 for τ ≤ 0,

Tn if |qt| ≤ τ,
τ
|qt|(Tn −

qt
|qt| ⊗

qt
|qt|) otherwise,

(56)

and

∂τPB(n,τ)(q) =

{
0 for τ ≤ 0 or |qt| ≤ τ,

qt
|qt| otherwise,

(57)

Where Tn is defined by Tn = Id−n⊗n, qt = Tnq. We refer to [12] for the differentiability of the penalty
approach.

3.2.2 Case of Nitsche’s approach

Concerning Nitsche’s method, we now have I(u, v, n) = IN (u, v, n) defined by (28).
The directional derivative 〈Du IN (u, p, n), q〉 from (43) has the following form

〈Du IN (u, p, n), q〉 =

∫
ΓC

(− θ
γ
σn(q)σn(p) − θ

γ
σt(q) · σt(p)

+
1

γ
H(−(σn(u)− γ(un − g)))(σn(q)− γqn) (θ σn(p)− γpn)

+
1

γ
Du PB(ny ,ρ(u))(σ(u)n− γu)(σt(q)− γqt) · (θ σt(p)− γpt)) ds(x).

(58)

Remark 6. Note that the term 〈Du IN (u, p, n), q〉 is not clearly defined in the continuous framework
because of the possible lack of regularity of uΩ and pΩ. In this work, we focus only on the discrete
case which does not pose any existence problem. The analysis of the convergence of the solutions of the
discrete problem will be addressed in a further work.

3.3 Criterion minimization

The main energy that is to be minimized, namely the elastic strain energy and defined by (3) can then
be expressed in the general form (36) by considering

M(uiΩ, x) =
1

2
Aε(uiΩ) : ε(uiΩ) and N (uiΩ, x) = 0.

12



Consequently, the associated term in the adjoint equation of the strain energy criterion (3) reads

〈Du Je(Ω, uΩ), q〉 =

∫
Ω
Aε(q) : ε(uΩ) dx. (59)

Note that a sufficient condition for the adjoint equation to make sense is that q 7→ 〈Du Je(Ω, uΩ), q〉 is
continuous in V which is satisfied here even though the term do not meet the conditions (37).

An additional criterion developed in this work consists of uniformizing the contact stress on the
contact boundary of the rolling structure according to the load positions. As mentioned in the intro-
duction, a first natural idea would be to minimize the objective function (4). However, this expression
is possibly difficult to define according to the regularity of uiΩ whose basic guaranteed regularity is to
be in H1(Ω,Rd). Assuming additionally a square integrable right hand side, the trace σ(uΩ)n on ΓC
belongs only to H−1/2(ΓC ,Rd) (see [36]) and not necessarily to L2(ΓC ,R) meaning in particular that
there is no continuous dependence of the objective function (4) with respect to the data of the problem.

Two variants of the criterion will be developed to recover this continuity. A first idea is to thicken
the contact boundary of a size ε , which leads to the first criterion

Jp,1(Ω, uΩ, pmean) =

∫
ΓεC

L

2Eε
(σ(uΩ)n− pmean)2dx, (60)

where ε > 0 is a fixed small length, ΓεC is an annulus delimited by ΓC on the exterior and of thickness
ε and n is an extension in the domain ΓεC of the unit outward normal vector on ΓC . A second idea is
to consider a criterion depending on the H−1/2(ΓC ,Rd)−norm by considering the energy

Jp,2(Ω, uΩ, pmean) =
1

2
‖σ(uΩ)n− pmean‖2H−1/2(ΓC ,Rd)

. (61)

In order to simplify the minimization of Jp,1 and Jp,2, we treat the computation of pmean by freezing
it to the value at the previous optimization step. The advantage of that is to uncouple the computation
of the adjoint problem on each load position.

3.3.1 Uniformity of the contact stress on the thickened boundary

As explained previously, a first strategy consists in thickening the contact boundary with a size ε which
leads to the criterion (60). It can be expressed in the general form (36) with

M(uΩ, x) =
L

2Eε
(σ(uΩ)n− pmean)2 χΓεC

(x), and N (uΩ, x) = 0, (62)

where χΓεC
(x) =

{
1 if x ∈ ΓεC ,

0 otherwise
. In that case, the associated term in the adjoint equation of the

contact stress criterion from equation (60), assuming pmean known in advance, reads as

〈Du Jp,1(Ω, uΩ, pmean), q〉 =

∫
ΓεC

L

Eε
(σ(uΩ)n− pmean) · σ(q)n dx. (63)

Note that in this case, q 7→ 〈Du Jp,1(Ω, uΩ, pmean), q〉 is continuous on V .

3.3.2 Uniformity of contact stress using a H−1/2(ΓC ,Rd)−norm

The second strategy consists in minimizing the functional (61). It can be expressed constructively using
a Neumann to Dirichlet operator (see for instance [47] and [1]). Indeed, let B be a fixed domain whose
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boundary is decomposed as the union of ΓC and ΓD. We first introduce the norm || · ||
H

1/2
00 (ΓC ,Rd)

defined

by
||w||

H
1/2
00 (ΓC ,Rd)

= inf
z∈V0,z=w on ΓC

||z||V0 , (64)

where V0 = {v ∈ H1(B;Rd), v = 0 on ΓD} and

||z||2V0 =

∫
B
A ε(z) : ε(z) dx. (65)

The norm || · ||H−1/2(ΓC ,Rd) is then defined as the dual of || · ||
H

1/2
00 (ΓC ,R)

by

||g||H−1/2(ΓC ,Rd) = sup
z∈H1/2

00 (ΓC ,R),z 6=0

〈g, z〉
||z||

H
1/2
00 (ΓC ,R)

= sup
z∈V0

〈g, z〉
||z||V0

. (66)

In particular, we can show that
||g||H−1/2(ΓC ,Rd) = ||w[g]||V0 , (67)

where w[g] ∈ V0 is defined as the solution of
- div σ(w) = 0 in B where σ(w) = A ε(w),
σ(w)n = g on ΓC ,
w = 0 on ΓD.

(68)

The weak formulation of (68) reads as∫
B
A ε(w[g]) : ε(z) dx = 〈g, z〉,∀z ∈ V0, (69)

which shows also by using z = ω[g] that ω[g] satisfies

1

2

∫
B
Aε(ω[g]) : ε(ω[g]) dx = 〈g, ω[g]〉 =

∫
ΓC

g · ω[g]ds(x). (70)

Using these equalities, the criterion for the uniformization of the contact stress finally reads

Jp,2(Ω, uΩ, pmean) =
1

2
‖σ(uΩ)n− pmean‖2H−1/2(ΓC ,Rd)

=
1

2
‖wΩ‖2V0

=
1

2

∫
B
σ(wΩ) : ε(wΩ) dx =

1

2

∫
ΓC

g · wΩ ds(x)

=
1

2

∫
ΓC

(σ(uΩ)n− pmean) · wΩ ds(x).

(71)

where wΩ = ω[σ(uΩ)n− pmean] is the solution to (68) for g = σ(uΩ)n− pmean.
Still assuming pmean known in advance, the associated term in the adjoint equation of theH−1/2(ΓC ,Rd)−norm

criterion reads

〈Du Jp,2(Ω, uΩ, pmean), q〉 =
1

2

∫
Ω
〈DuAε(wΩ)2, q〉 dx =

∫
Ω
Aε(wΩ) : ε(w[σ(q)n])) dx

=

∫
ΓC

σ(q)n · wΩ ds(x),
(72)

where w[σ(q)n] is defined as the solution to (68) for g = σ(q)n. As previously, the existence of the
adjoint would expect the continuity of q 7→ 〈Du Jp,2(Ω, uΩ, pmean), q〉 in V which is not satisfied but
is the case in a subspace Hσ = {v ∈ V : div(σ(v)) ∈ L2(Ω)} containing the solutions of the contact
problem.

Remark 7. The Dirichlet to Neumann operator can also be defined by an intermediary Poisson problem
instead of the elasticity problem (68). The preference given here to the elasticity problem is guided by
mechanical considerations.
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4 Numerical discretization and optimization strategy

The aim of this section is to introduce the optimization strategy to minimize the objective function
given by (5) and (6). Since the optimization is to be performed on the whole structure, it would be
necessary to make computations for all the load positions. In order to save some computational time,
we assume a certain periodicity of the structure, using its axi-symmetry, and we perform computations
only for the load positions corresponding to a single sector of the structure. The structure is divided into
Ns = 16 sectors (see Figure 4) and we perform the computations on Nd load positions corresponding
to only one sector, regularly spaced in rotations of angles i2π/(Nd × Ns) for i from 1 to Nd. Then
the computations for the load positions corresponding to the other sectors are deduced by a simple
rotation, so that we obtain at the end the computations for Nl = Nd ×Ns load positions.

Figure 4: Periodicity of the domain Ω. On the left: the domain drilled by 16 circular holes and on the
right: focus on the sector corresponding to the load positions for which computations are performed.

We consider a minimizing sequence Ωk of J starting from an initial domain Ω0 and taking volume
and symmetry constraints into account. From a domain Ωk, we intend to reach a domain Ωk+1 by
performing the following steps:

• For each load position on the first sector, for i from 1 to Nd, we compute ui
Ωk

the solution to the
direct non-linear problem (21) or (27) approximated by a finite element method. The solutions
ui

Ωk
for i from Nd + 1 to Nd ×Ns are deduced by rotations of solutions on the first sector.

• The mean contact stress pkmean is computed on ΓC :

pkmean =
1

Nd

Nd∑
i

(σ(uiΩk)n). (73)

• For each load position on the first sector, for i from 1 to Nd, we compute pi
Ωk

the solution to
the adjoint problem (51) approximated by a finite element method. The solutions pi

Ωk
for i from

Nd + 1 to Nd ×Ns are also deduced by rotations of solutions on the first sector.

• For each load position, we compute the shape gradient of Jg(Ω
k, ui

Ωk
) which we extend harmoni-

cally into the holes by solving a Poisson equation.

• We sum each term to obtain the shape gradient Gk = ∇J(Ωk) of J(Ωk) on all the load positions.

• We prescribe the volume to remain constant thanks to a penalization on the gradient as G̃k =
Gk − λk where λk = 8 ∗ (max(Gk)−min(Gk)) ∗ (r0

v − rkv ) is the Lagrange multiplier with rkv the
volume ratio at iteration k.

• We compute the new shape Ωk+1 by approximating the equation Ωk+1 = (Id − δkG̃k)(Ωk), δk
being the descent step of the shape optimization.
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As an illustration, Figure 5 successively depicts the treatments led on the shape gradients: The com-
putation of the shape gradient on a load position, the harmonic extension of that shape gradient, and
the summed gradients, periodically repeated on the different sectors and the additional correction for
volume constraint.

Figure 5: Successive shape gradient treatments. Left to right: the shape gradient computed on the cut
elements from the solutions uΩk and pΩk , the harmonic extension of the shape gradient on the complete
mesh and the symmetry and volume correction of the shape gradient.

4.1 Domain representation and level set function

The level set method has been introduced by S. J. Osher and J. A. Sethian in [43] to describe a geometry
and its evolutions. The first applications of the level set method were about geodesics, lithography,
generation of minimal surfaces, propagation of flame fronts and fluid interfaces. This method was first
introduced for shape optimization applications by S. J. Osher and F. Santosa in [44] and then by G.
Allaire et al. in [3] and [4]. Let D ⊂ Rd still being a fixed bounded domain in which the domain Ω is
included. The representation of the domain Ω in D is expressed by a function ψ defined in D as:

ψ(x) = 0 if x ∈ ∂Ω,

ψ(x) < 0 if x ∈ Ω,

ψ(x) > 0 otherwise.

(74)

Figure 6: Representation of the domain Ω. Left to right: a schematic representation of the domain, a
regular polar grid to approximate the level set and the level set representation of the domain.

The interface between holes and matter is represented by the zero value of the level set function.
One way to represent the level set function ψ is to define the latter as a signed distance function
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according to the domain boundaries:

ψ(x) =

{
−d(x, ∂Ω) if x ∈ Ω,

d(x, ∂Ω) otherwise,
(75)

where d(x, ∂Ω) is the distance between x and ∂Ω.
The particular situation we use for our application, i.e. the representation of a load-bearing rolling

structure is depicted in Figure 6. The domain D is a ring of minor radius Ri and of major radius Re. In
our main numerical tests, we consider sixteen holes in the initial domain Ω0. The optimization process
only takes place at the interface of the different holes.

4.2 Transport and redistancing

For each step, the domain Ωk is represented by the function ψk. A crucial step consists of transporting
the level set function ψk by the perturbed shape gradient Gk by solving the transport equation{

∂tϕ(t, x) = −G̃k |∇ϕ(t, x)|,
ϕ(0, x) = ψk(x),

and taking ψk+1(x) = ϕ(δk, x), where δk is the descent step in the shape gradient algorithm.
For reason of efficiency and simplicity, the numerical approximation of this transport step is per-

formed using Sethian’s finite difference schemes (see [49]) with a slight adaptation for the polar grid.
As it is well known, successive transport steps applied to the level-set function can degrade its

properties and in particular move it away from a signed distance. To remedy this, we classically apply
some reinitialization steps (see for instance [53]), also based on Sethian’s schemes.

Additionally, to avoid irregularities brought by the level set transport, some smoothing steps are
also added consisting in finding the minimum of

E(ψ) =

∫
Ω

1

2
(ψ(x)− ψk+1(x))2dx+

∫
Ω

τ

2
|∇ψ(x)|2dx, (76)

as developed for instance in [19]. The smoothing parameter τ must be wisely set to smooth the solution
without disrupting it.

4.3 Load condition on a rigid rim

Aiming at a model closer to a load-bearing rolling structure, the Dirichlet condition on ΓD is replaced
by a rigid boundary condition (rim) that is only allowed to have a vertical rigid motion and is subject
to a global load. Denoting gD the prescribed load and αD the unknown vertical rigid displacement on
ΓD, the weak formulation reads now

Find u ∈ V, αD ∈ R, λD ∈ H−1/2(ΓD)d such that ∀v ∈ V,∀βD ∈ R and ∀µD ∈ H−1/2(ΓD)d,

a(u, v) + I(u, v, n) =

∫
Ω
f(x) · v dx+

∫
ΓD

(λD · v + (u− αDny) · µD + (λD · ny − gD)βD) ds(x).

(77)
where λD is a multiplier representing the force density on ΓD introduced to enforce the condition.

Consequently, a new term is added to the adjoint problem on ΓD and the two new variables αD and
λD are introduced in the Lagrangian. The adjoint problem now reads ∀q ∈ V,∀qαD ∈ R and ∀qλD ∈
H−1/2(ΓD)

d
,

〈Du L(u, p, αD, λD, n,Ω), q〉+ 〈DαD L(u, p, αD, λD, n,Ω), qαD〉
+ 〈DλD L(u, p, αD, λD, n,Ω), qλD〉 = 0,

(78)
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which leads to

Find p ∈ V, pαD ∈ R, pλD ∈ H−1/2(ΓD)
d

such that ∀q ∈ V,∀qαD ∈ R and ∀qλD ∈ H−1/2(ΓD)
d
,

a(q, p) + 〈Du I(u, p, n), q〉+

∫
Ω
〈DuM(u, x), q〉 dx+

∫
∂Ω
〈DuN (u, x), q〉 ds(x)

=

∫
ΓD

(pλD · q + (p− pαDny) · qλD − pλD · nyqαD) ds(x).

(79)

4.4 Finite element discretization and fictitious domains method

To compute each direct and adjoint problem on the evolving domain Ωk, we use a fictitious domain
method with respect to the fixed domain D containing Ωk. The fictitious domains method used in this
work is close to the Xfem approach [40]. It is presented in [31, 9] and applied to the unilateral contact
and to Nitsche’s method in [23]. One of the main advantages of this method is its optimal convergence,
including when a high-order base finite element method is used. It mainly consists in considering a
classical finite element method, here a Lagrange P2 finite element on the polar grid also used for the
level set discretization, and taking its restriction on the real domain Ωk. Consequently, only one fixed,
regular and polar grid is manipulated for the level set and the finite element method. As an illustration,
Figure 7 successively depicts an example of a polar structured mesh of the fictitious domain D, the
mesh cut by the level set representing Ωk and the computed direct solution uΩk using a Lagrange P2

cut finite element method.
The discretized non-linear direct problems are solved with a non-smooth Newton-Raphson algo-

rithm. The finite element software used for the analysis is GetFEM++ [48] with its python interface.

Figure 7: Left to right: the structured polar mesh, the mesh cut by the level set representing Ωk and
a direct solution uΩk plot on the deformed mesh.

It has been noted in [31, 9] that an optimal approximation of the gradient of the solution is not
achieved in the cut element method without the addition of a stabilization term, mainly on elements
having a very small intersection with the real domain Ωk, as illustrated in Figure 8. Since the compu-
tation of the shape gradient requires the computation of the gradient of the displacement on the level
set itself, we added a stabilization term to ensure a good quality of the approximation. We have chosen
to use the so-called ghost penalty method proposed by E. Burman and P. Hansbo in [8] which aims
at penalizing some inter-element jumps, on the elements cut by the level set. A stabilization term is
added to the direct problem which then reads{

Find u ∈ H1(Ω) such that

a(u, v) + I(u, v, n) +G(u, v, n) = `(v),
(80)
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where G is the ghost penalty term

G(u, v, n) =
∑
E∈Ek

1

2

∫
E

ξ

γ

[[
σ(u)n

]]
·
[[
σ(v)n

]]
ds(x), (81)

where Ek denotes the set of edges (for d = 2) or faces (for d = 3) of the mesh having a non empty
intersection with ∂Ωk,

[[
σ(u) · n

]]
denotes the inter-element stress jump over E, n is a unit normal

vector to E and ξ is the penalty parameter. The same term is imposed on the adjoint equation (43)
and reads

〈DuG(u, p, n), q〉 =
∑
E∈Ek

1

2

∫
∂T

ξ

γ

[[
σ(q)n

]]
·
[[
σ(p)n

]]
ds(x). (82)

Figure 8: Example of a structured mesh at the interface with a hole. The red areas depict cut elements
having a small intersection with the domain Ωk where the gradient of the solution may be of poor
quality.

Figure 9: Focus on the Von Mises stress of two solutions of the direct problem near a hole. On the left
the stress jump is not penalized to compute the solution (ξ = 0) and on the right the stress jump is
penalized (ξ = 10−3).

To illustrate the influence of the stabilization parameter, Figure 9 shows that the stress (here the
Von-Mises stress) can be badly estimated on the elements having a very small intersection with the real
domain in the absence of a stabilization term (ξ = 0), whereas the application of a small stabilization
term (ξ = 10−3) allows to recover a good approximation. In the following, all the computations are
performed with a penalization parameter ξ = 10−3.
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5 Numerical experiments

In this section, we present a set of numerical tests, beginning with a simple initial geometry. The
objective is successively to evaluate the difference in behavior of the penalty and Nitsche methods for
the approximation of the contact condition, and to evaluate the different criteria of uniformization of the
contact force density. Finally, we illustrate the shape optimization on more complex initial geometries.

5.1 Geometry setting

We consider the domain presented in Figure 6 which is a ring with an inner radius Ri = 20 cm and
an outer radius Re = 34 cm containing sixteen regularly spaced holes of radius r = 4 cm. The ring
width is set to wr = 12 cm. The domain is divided in Ns = 16 sectors for periodic simplification. We
compute Nd = 8 mechanical load positions per sector. The Young modulus is set to E = 200 MPa and
the Poisson ratio is ν = 0.48. A contact might occur on the boundary ΓC upon the outer radius Re
with a flat rigid body representing the ground. A load condition is set on the rigid boundary ΓD upon
the inner radius Ri and the load is supposed to be 300 kg. We only present frictionless tests as friction
does not influence the optimal shapes we obtained in our tests, in the absence of horizontal load.

5.2 Minimization of the sole elastic strain energy

A first optimization is performed on the simple initial geometry with only a minimization of the elastic
strain energy Je. The result is presented in Figure 10 for a contact condition approximated by Nitsche’s
method with parameters γ = E/hT and θ = −1.

Figure 10: Shape optimization for the sole strain energy. The vertical displacement is displayed.
Contact treated by Nitsche’s method. From left to right: first iteration, 20th iteration and 100th
iteration.

The circular holes progressively radially lengthen along the optimization process to bring stiffness
and to reduce deformation whatever the load position is. The evolution of the objective function Je is
presented in Figure 11.
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Figure 11: Evolution of the elastic strain energy Je for the configuration presented in Figure 10 according
to the successive iterations of the shape optimization algorithm.

5.3 Comparison of contact methods for the geometric shape optimization

In order to compare the two strategies to account for the contact condition, the test of the previous
section is now performed using the penalty method to treat the contact. The penalty parameter is also
taken equal to γ = E/hT . The result of the shape optimization is shown in Figure 12.

Figure 12: Optimal shapes for different contact methods. On the left: optimal shape with the contact
treated by penalization and on the right: optimal shape with the contact treated by Nitsche’s method.

21



Figure 13: Evolution of the strain energy Je during the shape optimization: comparison between
Nitsche’s method and penalization.

It can be noted, comparing with Figure 10 that both methods almost lead to the same final and
optimal shape. A very careful comparison shows that the solution with penalty corresponds to a slightly
higher deflection of the structure. The difference is more significant in Figure 13 where a comparison
of the evolution of elastic strain energy is plotted for the two methods. With the penalty, the elastic
strain energy is underestimated because of the interpenetration. To overcome this drawback, the penalty
parameter γ might be increased so that the contact would be better estimated. Two other tests are
performed with γ = 10E/hT for both methods. The optimal shape and deformation obtained can be
seen in Figure 14. The two deformations are very close to each other in that case and the evolution
of the strain energy, plotted in Figure 15 is also almost the same. The main conclusion that can be
drawn by considering the result presented in Figure 15 is that the use of the penalty method leads to
a shape optimization more sensitive to the parameter γ than Nitsche’s method whose results are quite
independent of γ. The consideration of Nitsche’s method thus allows the use of a parameter γ with a
smaller value without deteriorating the quality of the solution. It also allows to avoid some potential
difficulties which can be encountered when γ is large and which can result in a stiff problem difficult
to solve numerically. As a consequence of this comparison, for the rest of our numerical study, we use
Nitsche’s method with a parameter γ = E/hT .

Figure 14: Optimal shapes for different contact methods. γ = 10E/hT . On the left: optimal shape
with the contact treated by penalization and on the right: optimal shape with the contact treated by
Nitsche’s method.
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Figure 15: Evolution of the strain energy Je during the shape optimization: comparison between
Nitsche’s method and penalization and different values of the parameter γ.

5.4 Comparison of contact criterion strategies

A comparison is led between the contact stress criterion strategies described earlier. We recall that to
uniformize the contact stress between the successive load positions, two strategies were presented in the
previous parts: either the contact boundary is thickened with a size ε which leads to the criterion Jp,1
given by (60), or we consider the norm H−1/2(ΓC ,Rd) of the criterion Jp,2 given by (61). We also recall
that the general criterion set in the optimization algorithm reads as in (5). Here, the characteristic
length L is chosen to be equal to ε. To perform a comparison between the two strategies Jp,1 and Jp,2,
the parameter α is chosen to reach the same criterion amplitude at the first iteration of the optimization
on both contact criterion strategies, i.e.

Nd∑
i=1

α1Jp,1(Ω0, uiΩ0 , pmean) =

Nd∑
i=1

α2Jp,2(Ω0, uiΩ0 , pmean). (83)

To this aim, we take in our case a weight α1 = 6 for the criterion Jp,1(Ω, ui, pmean) and a weight
α2 = 100 for Jp,2(Ω, ui, pmean). In order to measure the effect of the uniformization criteria, Figure 16
first gives the optimal shape and the contact stress curves on the different positions without using these
criteria (i.e. with α = 0). One can see a significant disparity of contact stresses on the different loading
positions which obviously corresponds to the presence or not of a hole near the effective contact area.
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Figure 16: Optimization with Je (α = 0). Contact treated by Nitsche’s method. On the left: optimal
shape and on the right: contact stresses on the 8 load positions.

Figure 17: Optimization with Je and Jp,1 (α1 = 6). Contact treated by Nitsche’s method. On the left:
optimal shape and on the right: contact stress on the 8 load positions.

Figure 18: Optimization with Je and Jp,2 (α2 = 100). Contact treated by Nitsche’s method. On the
left: optimal shape and on the right: contact stresses on the 8 load positions.

The effect of the addition of the uniformization criteria can be seen in Figures 17 and 18 for Jp,1
and Jp,2, respectively. Both criteria give some similar results, in particular the disparities on contact
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stresses have been significantly reduced compared to Figure 16 when only the strain energy is used.
One of the effect of both criteria is a certain radial transfer of the holes away from the contact boundary
resulting in some thickening of the ring of material located between the contact boundary ΓC and the
holes. It is quite obvious that this transfer contributes to the desired uniformization. One also notes a
slight difference between the shapes obtained with Jp,1 and Jp,2, the thickening being a little bit more
important for Jp,1 and ending with a smaller amount of material between the holes. There is also a
difference in the decrease of the two criteria that is presented in Figure 19, Jp,2 having a proportionally
larger decrease which shows that Jp,2 is actually a bit more efficient than Jp,1. In particular, one
advantage of the criterion Jp,2 over Jp,1 is that it does not depend on the parameter ε. And so, the
calculation with Jp,2 does not require a non-optimizable zone of thickness ε which is more natural than
the calculation with Jp,1 in this mechanical study.

Figure 19: Comparison between the contact criterion strategies Jp,1 and Jp,2. Evolution of the contact
stress uniformization criteria Jp,1 and Jp,2 for the configurations presented in Figures 17 and 18.

The parameter α2 influences the optimization and the minimization of Je and Jp,2. One notes that
α2 = 10 leads to a light optimization of Jp,2 as shown in Figure 20 whereas α2 = 1000 leads to a good
uniformization of the contact stress even though the deflection of the structure increases (see Figure
21), and so Je is less minimized. A wise choice of α2 = 100 is a good compromise to minimize both Je
and Jp,2 for this configuration (see Figure 18).

Figure 20: Optimization with Je and Jp,2 (α2 = 10). Contact treated by Nitsche’s method. On the
left: optimal shape and on the right: contact stresses on the 8 load positions.
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Figure 21: Optimization with Je and Jp,2 (α2 = 1000). Contact treated by Nitsche’s method. On the
left: optimal shape and on the right: contact stresses on the 8 load positions.

5.5 Shape optimization of complex geometries

It is obvious that the final geometry obtained by shape optimization depends on the chosen initial
geometry. This is especially the case since we have chosen to constrain the amount of material to
remain constant. To illustrate the variety of shapes that can be obtained, optimization results are
presented on Figure 22 with or without the use of an uniformization criterion of the contact stress and
for an initial geometry with 48 holes. Finally, we present a case with an initial geometry with 108 holes
optimized for the sole strain energy in two-dimensional and three-dimensional configurations in Figure
23.

Figure 22: Optimal designs for 48 initial holes. From left to right: initial geometry with 48 circular
holes, optimization with the Je energy criterion and a multi-criterion optimization with Je and Jp,2
with α = 50.

26



Figure 23: Optimal designs for 108 initial holes with the minimization of the Je energy criterion. From
left to right: initial two-dimensional geometry with 108 circular holes, a two-dimensional optimal shape
and a three-dimensional optimal shape.

6 Conclusion

In this paper, we have presented a strategy for the shape optimization of a linearly elastic rolling struc-
ture in contact with a flat ground.
The main ingredients was Nitsche’s method for the contact approximation, the use of cut finite ele-
ments, a level set representation of the geometry approximated on a regular polar grid and Sethian’s
schemes for its evolution. More precisely, the cut finite element method was used on the regular grid for
the approximation of the displacement fields and the adjoint variables. Indeed, thanks to its optimal
convergence, it allows the use of a coarser grid than for other fictitious domain methods. Finally, the
ghost penalty stabilisation allows us to obtain a good quality gradient on the boundary of the evolving
domain.
Beyond these choices, we have presented comparisons of the treatment of the contact condition by
penalty and by Nistche’s method. In particular, these numerical experiments highlight the advantage
of Nitsche’s method which allows a consistent approximation of the contact condition without the use of
Lagrange multipliers. We have also introduced two variants of a criterion for the uniformization of the
contact stress for which, the associated adjoint state is well defined and has a continuous dependence on
the data. Finally, the numerical experiments using each of these two criteria show very similar optimal
elastic structures.
The natural perspectives of this work are the transition to large elastic deformations and the mathe-
matical study of differentiability of objective functions which we plan to address in a future work.
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with Coulomb friction and a solution-dependent friction coefficient. SIAM Journal on Control and
Optimization, 52(5):3371–3400, 2014.

[8] E. Burman and P. Hansbo. Edge stabilization for the generalized stokes problem: a continuous in-
terior penalty method. Computer methods in applied mechanics and engineering, 195(19-22):2393–
2410, 2006.

[9] E. Burman and P. Hansbo. Fictitious domain finite element methods using cut elements: I. a
stabilized Lagrange multiplier method. Computer Methods in Applied Mechanics and Engineering,
199(41-44):2680–2686, 2010.

[10] E. Burman and P. Hansbo. Fictitious domain finite element methods using cut elements: Ii. a
stabilized Nitsche method. Applied Numerical Mathematics, 62(4):328–341, 2012.

[11] J. Cea. Conception optimale ou identification de formes, calcul rapide de la dérivée directionnelle
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[41] F. Murat and J. Simon. Etude de problèmes d’optimal design. In IFIP Technical Conference on
Optimization Techniques, pages 54–62. Springer, 1975.
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