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I. MODEL ADDITIONAL DETAILS

A. Interpretation of the defect related densities

In the main article, the bulk and interface defect related densities Nbulk, Ntop and Nbot are introduced. We give here
some elements of interpretation of these densities. They are to be considered when the defects are close to one of the
bands. By considering the conduction band, we can write Nbulk = Nc

2 exp
(
Et−Ec
kT

)
with the effective density of state

for the conduction band Nc, the energy of the defect Et, the energy of the conduction band Ec, k Boltzmann constant
and T the carrier temperature. For many absorbers, such as Silicon or III-V materials, defects lying energetically deep
in the band gap are the major channel of recombination [31].For such defects, the density Nbulk is negligible compared
to ∆n. However, if the defects are close to one of the band edges, as could be the case for lead halide perovskites
[3],Nbulk may not be neglected in front of ∆n(z, t) depending on position and time. Specifically, at long time after
the pulse, when the photogenerated carrier density has plummeted, Nbulk should be considered. Conversely, Nbulk
can be neglected at short time where the photogenerated carrier density is still high.

B. Computation of the scaling

We need to compute in our model framework the following quantity:

dInormPL

dt

∣∣∣∣
t=0

=
1

IPL(t = 0)
× dIPL

dt

∣∣∣∣
t=0

(1)

We can first compute IPL(t = 0) which given the definition yields:

IPL(t = 0) = A×
∫ L

0

∆n2(z′, t = 0) dz′ = An2
γα

2

∫ L

0

e−2αz′ dz′ =
An2

γα

2

(
1− e−2αL

)
(2)

For the derivative we have:

dIPL
dt

∣∣∣∣
t=0

= 2A×
∫ L

0

∆n(z′, t = 0)
d∆n

dt
(z′, t = 0)dz′ (3)

From the drift-diffusion equation given in the main, along with the definitions of the PL signal and the recombination
terms one may compute:

dIPL
dt

= −2A

[
k1

∫ L

0

∆n3

∆n+Nbulk
dz′ + k2

∫ L

0

∆n3 dz′ + Stop
∆n3(z = 0, t)

∆n(z = 0, t) +Ntop
+ Sbot

∆n3(z = L, t)

∆n(z = L, t) +Nbot

]

−2AD

∫ L

0

(
∂∆n

∂z

)2

dz′

(4)

A similar equation may also be found in [21].We then make the main approximation that we can compute the integrals
with a carrier distribution equal to the Beer-Lambert initial condition. We need compute the following integrals valid
within this approximation: ∫ L

0

∆n3 dz′ =
n3
γα

2

3

(
1− e−3αL

)
(5)

∫ L

0

(
∂∆n

∂z

)2

dz′ =
(
−nγα2

)2 ∫ L

0

e−2αz′ , dz′ =
n2
γα

3

2

(
1− e−2αL

)
(6)

The first integral in Equation 4 is computed in the following section, general result being :

I =

∫ L

0

dz
∆n3

∆n+Nbulk
= n2

γα

[(
Nbulk
nγα

)2

ln

(
Nbulk
nγα

+ 1

Nbulk
nγα

+ e−αL

)
+

1

2
− Nbulk

nγα
− 1

2
e−αL

(
e−αL − 2

Nbulk
nγα

)]
(7)
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The top and bottom recombination terms give:

Stop
∆n3(z = 0, t)

∆n(z = 0, t) +Ntop
= n2

γα
2Stop

1

1 +
Ntop
nγα

(8)

Sbot
∆n3(z = L, t)

∆n(z = L, t) +Nbot
= n2

γα
2Sbote

−2αL 1

1 + Nbote−αL

nγα

(9)

Finally one can compute the scaling in the general case. However this general form can be simplified by considering
the case where e−αL ≈ 0.039 � 1 (leading to simplify Eq. 2, Eq. 5, Eq.6, and neglect Eq.9 in front of Eq.8) and
Nbulk
nγα

� 1 (leading to simplify I), and Ntop
nγα

� 1 (leading to simplify Eq.8). The case of the approximation of the

integral I, appearing as a factor of the term proportional to k1 in Eq 4, is discussed below. This gives us a simplified
scaling valid in the high absorption and deep defects approximation :

dInormPL

dt

∣∣∣∣
t=0

= −2
[
k1 + 2αStop + α2D

]
− 4

3
k2αnγ (10)

C. Computation of the integral I

We need to compute the integral given by:

I =

∫ L

0

dz
∆n3

∆n+Nbulk
(11)

when the density is equal at short time to ∆n(z, t = 0) = nγαe
−αz. This yields us:

I = (nγα)2

∫ L

0

dz
e−3αz

e−αz + Nbulk
nγα

(12)

A change of variables x = exp(−αz) with dx = −αxdz yields:

I = n2
γα

∫ 1

e−αL
dx

x2

x+ Nbulk
nγα

(13)

A primitive of x2

x+a is a2 ln(a+ x) + 1
2x(x− 2a). This formula gives us the result:

I = n2
γα

[(
Nbulk
nγα

)2

ln

(
Nbulk
nγα

+ 1

Nbulk
nγα

+ e−αL

)
+

1

2
− Nbulk

nγα
− 1

2
e−αL

(
e−αL − 2

Nbulk
nγα

)]
(14)

This formula can be recast in the following way:

I =
n2
γα

2
× C

(
Nbulk
nγα

, e−αL
)

(15)

With C a function described by:

C

(
Nbulk
nγα

, e−αL
)

= 2

[(
Nbulk
nγα

)2

ln

(
Nbulk
nγα

+ 1

Nbulk
nγα

+ e−αL

)
+

1

2
− Nbulk

nγα
− 1

2
e−αL

(
e−αL − 2

Nbulk
nγα

)]
(16)

We will show that in a wide range of parameters one can make the approximation that C
(
Nbulk
nγα

, e−αL
)
≈ 1. In

our study, e−αL ≈ e−3.25 ≈ 0.039, and in Figure 1 we plot C as a function of Nbulk
nγα

and e−αL and report the expected

range of our study by a red polygon. To draw this polygon, we allow α to vary ±10% around the value α = 6.5× 104

cm−1. We see that the value of C depends weekly on both variable (a change of approximately 20% of C for a change
of almost 2 orders of magnitude of Nbulknγα

). As long as both e−αL � 1 and Nbulk
nγα

� 1, the value of C can be considered

constant to a first approximation: C = 1± 0.25.
Therefore, for our parameter set, we can approximate that:

I =
n2
γα

2
(17)
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FIG. 1. Plotting the map of C as a function of e−αL and Nbulk
nγα

. The red rectangle corresponds to our case of interest, with

L = 500nm and α = 6.5 × 104 cm−1 varied from ±10%, and nγ ∈ [4, 100] × 1011 ph.cm−2 and Nbulk = 4.9 × 1015 cm−3 (as
found by our fitting method, see the corresponding section below). In that region, the value of C is close to 1 at 25%.

D. Taking Auger Recombination into account

In the main text, Auger recombination are not considered. However, the model can be generalized to include
them. We consider the added term k3(∆n)3 in the recombination term, with k3 the Auger coefficient, so that the
recombination term becomes:

R = k1
(∆n)2

∆n+Nbulk
+ k2(∆n)2 + k3(∆n)3 (18)

To further simplify, we take the approximation that Nbulk
nγα

� 1. The scaling law can be computed with the added

Auger term, following the same demonstration as exposed above. One finds:

dInormPL

dt

∣∣∣∣
t=0

= −2
[
k1 + 2αStop + α2D

]
− 4

3
k2αnγ − k3α

2n2
γ (19)

When taking Auger recombination into account, one finds an order 2 polynomial in the laser fluence nγ . Experi-
mentally, we did not observe this behavior, which justifies the fact that we neglected Auger recombination.

E. The role of photon recycling

1. Description of the model

In this subsection, we discuss the role of photon recycling on the exhibited scaling. To do so, we implement the
model of Ansari-Rad and Bisquert [38].This model couples the density of photons, noted Γ, and the density of carriers,
∆n, via two drift diffusion equations. A coupling parameter β between them is introduced in [38]. The couple of
equations in the present case can be written as:

∂∆n

∂t
(z, t) = D

∂2∆n

∂z2
(z, t)− k1

(∆n)2

∆n+Nbulk
− k2(∆n)2 + βΓ (20)

∂Γ

∂t
(z, t) = DΓ

∂2Γ

∂z2
(z, t) + k2(∆n)2 − βΓ (21)
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with DΓ the effective diffusion coefficient for photons, β the coupling parameter. These equations are accompanied
with boundary conditions. For the equation of carriers on ∆n, they are given in the main paper. For the photon
density Γ they are as follows:

DΓ
∂Γ

∂z
(z = 0, t) = Stop−ΓΓ(z = 0, t) (22)

DΓ
∂Γ

∂z
(z = L, t) = −Sbot−ΓΓ(z = L, t) (23)

The initial condition for Γ is set at Γ(z, t = 0) = 0.
In this framework, one can define the output PL to be proportional to Γ(z = 0, t), i.e. to the output flow of photons

via the top surface.
We used this framework to estimate the impact of photon recycling. To do so, we simulated the decays using these

formulae and measured numerically the scaling law on the obtained decays. Our main parameter is the re-absorption
coefficient αreabs. In [38],formulae are given to link the effective diffusion coefficient for photons DΓ, the coupling
parameter β and the outcoupling parameters Stop−Γ and Sbot−Γ to the re-absorption coefficient αreabs, the speed of
light in vacuum c and nr the refractive index of the perovskite layer.

DΓ =
c

nrαreabs
(24)

β =
αreabsc

nr
(25)

Stop−Γ = Sbot−Γ =
c

2nr
(26)

2. Parameters of the model

For the recombination and charge carrier parameters, we used the parameters given in Table SI. For the photon
parameters, we used a value of nr = 2.5 and varied αreabs in the range 102 to 104 cm−1.

3. Results of the model

The results are presented in Figure 2. In (a) two decays obtained at the highest fluence (1013 ph.cm−2) are
presented for the case without photon recycling and the case with photon recycling with a reabsorption coefficient
of αreabs = 102cm−1. We observe no notable difference. In (b) we plot the scaling law obtained for three distinct
scenarii: (i) with no photon recycling, (ii) with photon recycling αreabs = 102cm−1, (iii) with photon recycling
αreabs = 104cm−1. All scalings show very similar slopes and intercept. We found an impact of the photon recycling
only for αreabs = 2 × 104cm−1 which is a very high value for the absorption coefficient around the emission peak.
Therefore, we observe no impact of photon recycling on the scaling for sensible values of reabsorption coefficient. We
conclude that in our case, the internal value of the radiative recombination coefficient is close to the external one.

4. Impact of photon-outcoupling at the surfaces

The impact of the photon outcoupling parameter at the surface is studied here. We start from using the value
suggested by Ansari-Rad and Bisquert and modify it with a increase and reduction of one order of magnitude. Two
cases are considered: one with low reabsorption (αreabs = 102 cm−1) and one with high reabosrption (αreabs = 104

cm−1). Result are shown in Figure 3 (a) and (b). In the low reabsorption coefficient case, no impact is observed of the
outcoupling parameter on the scaling. In the high reabsorption case, an impact is shown on the scaling. We have two
observations. One, the impact on the slope is limited to ±20% even though we changed the outcoupling parameter by
one order of magnitude. This would be below our measurement sensibility. Two, all scalings show a similar intercept.
This means that the outcoupling parameter does not affect the intercept of the scaling. We conclude that in the present
case, the outcoupling parameter has but low impact on the observed external radiative recombination coefficient. In
a more general case, the observed slope of the scaling would be modified by light outcoupling parameters: the value
of k2 extracted in this case is what we define as the external radiative recombination coefficient.
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FIG. 2. Impact of photon recycling. (a) TR-PL decay at high fluence (1e13 ph/cm²) simulated with (blue) and without
(orange) photon recycling taken into account. The reabsorption coefficient was set to 102 cm−1. (b) Scaling law at short time
as a function of fluence for the case with (blue and green) and without (yellow) photon recycling.

FIG. 3. Impact of the outcoupling surface parameter on the derived scaling law. (a) Case of low reabsorption (αreabs = 102

cm−1) – we see no impact of the surface outcoupling parameter (all the curves are superimposed). (b) Case of high reabsorption
(αreabs = 104 cm−1), for three different outcoupling parameters: reference value from Ansari-Rad and Bisquert, one order of
magnitude less, one order of magnitude more. The impact on slope of the scaling remains in the ± 20% range.

F. Low absorption regime

We report here the generalized case of the Scaling Law (Eq. 7 in the Main, and Eq. S10) for laser wavelengths where
the approximation e−α(λ)L � 1 cannot be made. We place ourselves in the case where the defect related densities
can be neglected meaning, specifically in the case where Nbulk,Ntop,Nbot � nγαe

−αL. In this case, the generalized
scaling we obtain is the following:
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dInormPL

dt

∣∣∣∣
t=0

= −2k1 − 2α2D − 4α

1− e−2αL

(
Stop + Sbote

−2αL
)
− 4

3
k2α

(
1− e−3αL

1− e−2αL

)
nγ (27)

In this case, the bottom surface recombination appears, even if it is scaled by a factor e−2αL compared to the top
surface recombination coefficient. In the high absorption case considered in our study, we have e−αL ≈ e−3.25 ≈ 0.039.
This gives the following numerical results for the coefficients:

dInormPL

dt

∣∣∣∣
t=0

= −2k1 − 2α2D − 4α
1

1− e−2αL︸ ︷︷ ︸
≈1.0015

Stop + Sbot e
−2αL︸ ︷︷ ︸
≈0.0015

− 4

3
k2α

(
1− e−3αL

1− e−2αL

)
︸ ︷︷ ︸
≈1.0014

nγ (28)

This computation justifies our assumption of high aborption that gives the equation given in the main text, see
Eq. 7 and Eq. S10. However, in the case of a laser light closer to the gap of the material under study, the condition
e−αL � 1 may be false and the correct formula for the scaling is given by Eq. S27.
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FIG. 4. Example of repetitions (labelled ’Rep’) of acquisitions (a) General view (b) Zoom 1 (c) Zoom 2. Three acquisitons are
performed in a row with a 5s waiting time. We saw a very good stability of the material under measurement. No light soaking
effects were noticed. The average of Rep 2 / Rep 1 is 1.0026± 0.0077, and for Rep 3 / Rep 1 it is 1.0012± 0.0085. The fluence
was 8.52× 1011ph.cm−2.

II. UNCERTAINTIES ON THE EXPERIMENTAL DATA

A. Repetition of the experiments

Each acquisition was repeated 3 times to verify reproducibility and stability of the material. Very good stability
was observed as examplified by Figure 4.

B. Numerical determination of the derivative at short time

To measure the numerical value of the derivative at short time we fit linearly the function log(IPL(t)/IPL(t = 0))
between 0.5 and 2.5ns. This linear fitting allows to extract a slope as well as its uncertainty that corresponds to the
initial derivative. The Matlab functions fit and confint are used.
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FIG. 5. (a-g) Deconvolution of the seven highly-resolved decays with Wiener filter. (Blue solid line) Original decays (red dotted
line) Deconvoluted decays. For this deconvolution the parameter K = 0.1. All curves are normalized to their maximal value.
We can observe oscillations after 3ns approximately after the maximum value is reached. (h) Temporal shape of the 3ns-long
gate of the camera. (Blue points) Experimental data ; (Red line) Phenomenological fit.

III. TEMPORAL DECONVOLUTION OF THE SIGNAL

A. Wiener Filter

A deconvolution algorithm via Fourier transform is used. We measured the temporal shape of the gate we used by
imaging the laser pulse (duration ¡70ps) on a Spectralon diffuser. The temporal shape of the gate was acquired and
fitted with a model using complementary error-functions, see Figure 5 (h). The model for the gate temporal shape is:

h(t) =
1

2

[
erfc

(
t− t1
∆t1

)
− erfc

(
t− t2
∆t2

)]
(29)

The fitted parameters for our gate are : t1 = −(1.361 ± 0.017)ns, ∆t1 = (0.719 ± 0.033)ns, t2 = (1.592 ± 0.016)ns,
∆t2 = (0.619± 0.030)ns. A noise constant of 600 counts was added.

To deconvolve the signal, a Wiener fielter is used. If S = F (s) and H = F (h) are the Fourier transform of the
signal and of our temporal gate, then we apply the following to obtain our deconvolved signal sd:

sd = F−1

(
S

H

|H|2

|H|2 +K

)
(30)

with K a chosen coefficient. The computation are performed using Fast Fourier Transform algorithms, and the
resulting decay with K = 0.1 are shown in Figure 5 (a-g). The deconvolution works well only for the short time and
high signal-to-noise-ratio temporal region, which is the one of interest for us.

The scaling law may be computed for the convoluted and for the deconvoluted cases. Figure 6 shows the two cases.
We observe that temporal convolution has an impact on both the intercept and the slope. The convoluted slope is
approximately 50% of the deconvoluted one, which is compatible with our simulations of the impact of deconvolution.
The intercept is slightly improved by the deconvolution algorithm.

The influence of the parameter K on the obtained decays and scaling laws is shown in Figure 7. In (a) and (b) the
impact on the the deconvoluted decays is shown. Higher noise is observed when lowering K towards the end of the
decay, but sharper results are obtained at the beginning, (a). One can see that the oscillations in the less intense part
of the signal become comparable to the maximal value observed. In (b), we see that increasing K gives a smoother
result but closer to the original convoluted one. The impact of K on the scaling is shown in (c). The slope is mainly
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FIG. 6. (a) Scaling computed on original decays. (b) Scaling computed on deconvoluted decays. The parameter K = 0.1. (c)
Comparison of the obtain fitted slope (d) Comparison of the obtained fitted intercept.

FIG. 7. Influence of the parameter K. (a-b) Similar decay deconvoluted with (a) K = 0.05 and K = 0.2. (c). Comparisons of
the scaling laws computed on deconvoluted decays with K = 0.05 (yellow) and K = 0.2 (blue). A linear fit is performed for
both. For the blue points with K = 0.2, Slope : −1.16e− 05± 1.28e− 06 cm2s−1 Intercept: −1.63e+ 08± 7.32e+ 06 s−1. For
the yellow points with K = 0.05, Slope : −1.07e− 05± 1.52e− 06 cm2s−1 Intercept: −2.06e+ 08± 8.71e+ 06 s−1.

not affected by K with a 10% change when K varies from 0.05 to 0.2. The intercept is more sensible to a change of
K with a 25% change in the intercept when K is divided by 4. The results still are compatible when considering the
error-bars. We conclude that K does not affect the slope, hence does not affect the extracted value of αk2 . We chose
K = 0.1 as an intermediate solution, with K small enough to have an effect of deconvolution but K high enough to
ensure that noise on the deconvoluted decays is less than the maximum of the curves.

B. Fitting of a convoluted exponential

We implemented a second method of deconvolution. It consists in fitting a bi-exponential decay convoluted by
the instrument response function on the experimental decay. From the parameters of the fitted bi-exponential, the
derivative at the origin is computed. If the bi-exponential is written:

E(t) = a1e
b1t + a2e

b2t
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FIG. 8. Comparison of the deconvolution methods. (a) Scaling law for the three ways to compute the initial slope: from
the raw decays (blue), from the Wiener deconvoluted decays (yellow) and from the parameters fitted from a bi-exponential
convoluted with the instrument response function (green). (b-h) Decays and the deconvolution results. The original decay (blue
line) is super-imposed with the Wiener deconvolution results (dashed red). The fitting result of a convoluted bi-exponential is
presented in (dashed green), while the resulting “raw” bi-exponential is in (dashed blue).

Then the derivative at short time is computed as a1b1 + a2b2. Only three parameters are fitted as we have the
normalization condition a1 + a2 = 1.

The results are shown in Figure 8. The Wiener deconvolution is also added for comparison. The fitted convoluted
exponential are quite close to the experimental observations. We note that the deconvoluted bi-exponential is very
close to the Wiener deconvolution result. The corresponding scaling is observed in (a). While the order of magnitude
is similar for the Wiener and bi-exp method, the bi-exp method is subject to higher uncertainty. The uncertainty
comes from the fitting algorithm and as the derivative is computed with three fitting parameters, all coming with an
uncertainty, the total uncertainty is high, of the order of 100%. This makes us conclude that the Wiener Filter is a
better method to use.
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FIG. 9. Local determination of parameters. (a-b). Map and histogram of the fitted intercept for the local scalings. (d-e). Map
and histogram of the fitted slope for the local scalings. (c) Experimental correlation between the two obtained parameters.
The 7 fluences acquisitions were used at a local scale. A binning of 10 pixels is applied, meaning that all pixels are averaged
out on a square of size 10 × 10 pixels. For each pixel decays are obtained. The derivative of the deconvoluted decays are
computed between 0.5 and 2.5ns. The derivatives are assembled to form the scaling, which is linearly fitted. (f) Simulated
correlation. Simulation of fitting linear curves with each point being multiplied by a relative error of 20%. This plot shows the
fitted intercept as a function of fitted slope after noise has been simulated.

IV. LOCAL DETERMINATION OF THE SCALING

A. Homogeneous perovskite sample

To use the scaling locally, local decays are computed. For all pixel (i, j), the decay is composed of the signal of all
the pixels in the square (i± 5, j ± 5). For each decay, the deconvolution algorithm is applied. Then the derivative is
computed. Thus, for each pixel a scaling of derivative as a function of fluence is established.

If local slope and intercept are fitted, the results are given in Figure 9. We can observe that the two maps Figure 9
(a,d) are greatly negatively correlated as highlighted by Figure 9 (c). Our tests of simulated noise conclude that such
correlation could appear as a simple result of measurement noise on the derivative, see (f). To perform this test we
simulated 2000 scalings from an original perfectly linear scaling with values of intercept and slope equal to the values
we found experimentally. From this perfectly linear scaling composed of ten points, we generated Gaussian noise
centered on 1 and of standard deviation 0.2. For each of the ten points, a random variable is drawn and multiplied to
the original point. Then we apply a linear fit and obtain a slope and intercept. We do this 2000 times and plot the
correlation between the intercept and slope in 9 (f). We can observe a linear negative correlation between the two as
observed on our experimental data.

We conclude that the independent measurement of the local slope and intercept requires more precise measurements.



13

FIG. 10. (a) Scheme of the perovskite sample on glass analyzed via XPS. (b) Map of the intercept of the scaling law. (c) Map
of the slope of the scaling law. (d) Two local scaling corresponding to the points in red and green in (b) and (c). We observe
that while the slope of the scaling is similar inside and outside of the region exposed to X-Rays, the intercept of the scaling has
changed. This means that the X-Rays did not modify the radiative recombination parameters k2 and α, but did induce more
non radiative recombination.

B. In-Homogeneous perovskite sample

To further verify that our technique allows for the interpretation of imaging data, we report here an analysis carried
out on a triple cation perovskite thin film after being exposed to an X-ray beam. We acquired time resolved maps
and then we applied the scaling law. In Figure 10(a) and 10(c) we show the maps of the intercept and of the slope,
respectively. In both cases, the XPS spot is clearly visible, proving that the transport properties of the material
have been modified by the X-rays. We then consider two points: the first on the “as deposited” sample (red) and
the second within the XPS spot (green) and we draw the corresponding scaling (Figure 10(d)). On one side, we can
notice that the slope of the scaling is similar in the two cases, indicating that the radiative recombination parameters,
namely k2 and α, did not evolve due to the X-rays. On the other side, the intercept values varied from -1e-7 s−1 to
-2e-7 −1, demonstrating an increase of the non-radiative recombination processes after beam exposure.
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FIG. 11. Fitting the long decays with of Triple-Cation Perovskite with the Drift Diffusion Model, Strategy 2. (a-g) Fitting
result (red dotted line) compared to experimental data (blue points). The experimental curves are a composition of the super-
resolved decays and regular decays. The model is fitted until a level of 5× 10−4 is reached by the experimental curves, which
corresponds to the last tolerable SNR. The extracted parameters are given in Table I. (h) Scaling of the short-time derivative:
from the model fitted parameters included in the theoretical formula of the scaling (red dotted line) vs. measured on the
experimental deconvoluted curves (blue points). The interval for the determination of the derivative was set to be from 0.5 to
2.5ns after the maximum of the decay is reached. Error bars come from linear fitting of the log decay, which is the method
used for derivative estimation.

TABLE I. Model Parameters, Strategy 2. These model parameters correspond to usual parameters for perovskite absorbers,
along with fitted parameters

Symbol Name Value Uncertainty Unit
α Absorpion coefficient 6.5× 104 n.a. cm−1

L Thickness 500 n.a. nm
k2 Radiative Recombination Coefficient 1.2× 10−10 n.a. cm3s−1

Sbot Bottom Surface recombination velocity 0 n.a. cm.s−1

D Diffusion Coefficient 3.54× 10−3 6% cm2s−1

k1 Order 1 Recombination Coefficient 9.23× 106 2% s−1

Nbulk Trap-Related Density for bulk defects 4.9× 1015 5% cm−3

Stop Top Surface recombination velocity 600 8% cm.s−1

Ntop Trap-Related Density for surface defects 1.7× 1014 25% cm−3

V. DRIFT DIFFUSION FIT

A. Fitting Method

The solver is coded with Matlab and uses the pdepe function. The equation solves for ∆n(z, t) , then computes
IPL(t) as the trapeze-computed integral of (∆n(z, t))2. Time convolution is also conducted with trapeze-computed
integral with the formula:

IconvPL (t) =

∫ +∞

−∞
dt′IPL(t′)h(t− t′)
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TABLE II. Correlations between fitted model Parameters, Strategy 2.

D Stop Ntop k1 Nbulk
D 1.00 0.10 0.78 -0.25 0.78
Stop 0.10 1.00 0.45 -0.57 0.29
Ntop 0.78 0.45 1.00 -0.64 0.44
k1 -0.25 -0.57 -0.64 1.00 0.12
Nbulk 0.78 0.29 0.44 0.12 1.00

with h defined in Equation 29. The fitting is realized using lsqcurvefit method.
The curves were fitted simultaneously on various time-spans that corresponded for each curve to the time where

InormPL > 5× 10−4. We chose to set the bottom surface recombination velocity Sbot to 0, because recombination at the
interface between glass and perovksite was proven to be negligible, and because our tests to include it in the fit were
inconclusive.

We were able to reproduce the behavior of our experimental data with only one parameter set for all fluences, see
Figure 11. The correspondence is excellent with all the curves. Not only does our model reproduce the behavior of
our sample over 2 orders of magnitude of excitation, but it also reproduces quite closely the scaling of the short-time
derivative as a function of fluence, as shown in Figure 11 (h). This means that the model we fitted both represents
the short-time and the longer-time dynamics of our sample.

B. Uncertainties from the fit

Uncertainties are estimated using the nlparci method of Matlab for non-linear fitting techniques.

C. Discussion on the obtained parameters

We found k1 = (9.23 ± 0.19) × 106 s−1, which could be interpreted as a lifetime τ = 1/k1 = (108 ± 3) ns. This is
compatible with values found in the literature in terms of orders of magnitude and precedent values obtained by our
group [24].Less expected and less commonly used as a parameter in the literature is the trap-related density for bulk
defects Nbulk = (4.9 ± 0.3) × 1015 cm−3. This density can be related to the difference in energy between the trap
energy and the closest band but also to the effective density of states of the corresponding band. If we assume that
the defects are close to the conduction band, then Nbulk = Nc

2 exp
(
Et−Ec
kT

)
. Our model cannot be used to determine

which band the defect is closest to, nor can it disentangle if Nc or Et is responsible for the value of Nbulk. What our
model can prove is that this density is not negligible compared to photo-generated carrier density for our sample at
long time after the pulse, even if the uncertainty for this value is quite large. The top surface recombination velocity
was found to be Stop = (6.0± 0.5)× 102 cm.s−1. This value is in the high range of what was already found for such
materials. The top surface defect related density Ntop = (1.7± 0.4)× 1014 cm−3 was found to be much smaller than
Nbulk. This could indicate that the nature of the defects at the top interface is different than the bulk defects. Note
that the ratio of the two densities gives access to their energy difference, which we estimate with

Ebulkt − Etopt = kT ln

(
Nbulk
Ntop

)
(31)

This results in Ebulkt −Etopt ≈ 85 meV . The diffusion coeffcient we obtain is equal to D = (3.54±0.21)×10−3 cm2s−1.
This corresponds to a mobility of approximately 0.14 cm2V −1s−1.

D. Two fitting strategies

Strategy 1 corresponds to fitting D, k1, Nbulk, St, Ntop and k2 with a starting point corresponding to the result of
Strategy 2. Strategy 2 corresponds to fitting D, k1, Nbulk, St, Ntop with a fixed value for k2 equal to the one obtained
thanks to the scaling. A comparison of the results is given in Table III. Strategy 1 has higher uncertainties than
Strategy 2, even if it has slightly smaller residuals.
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TABLE III. Fitted Parameters.Comparison between Strategy 1 (k2 fitted) and Strategy 2 (k2 fixed to the value from the
scaling). Residuals for Strategy 1 were 57.01 a.u. and for Strategy 2, 57.66. For Strategy 2 the value of k2 was fixed to
1.2× 10−10 cm3s−1.

Symbol Name Strategy Value Uncertainty Unit
D Diffusion Coefficient 1 (3.49± 0.30)× 10−3 9% cm2s−1

D Diffusion Coefficient 2 (3.54± 0.21)× 10−3 6% cm2s−1

k1 Order 1 Recombination Coefficient 1 (9.20± 0.30)× 106 3.3% s−1

k1 Order 1 Recombination Coefficient 2 (9.23± 0.19)× 106 2% s−1

Nbulk Trap-Related Density for bulk defects 1 (4.9± 0.4)× 1015 9% cm−3

Nbulk Trap-Related Density for bulk defects 2 (4.9± 0.3)× 1015 5% cm−3

Stop Top Surface recombination velocity 1 640± 62 10% cm.s−1

Stop Top Surface recombination velocity 2 600± 50 8% cm.s−1

Ntop Trap-Related Density for surface defects 1 (1.7± 0.7)× 1014 42% cm−3

Ntop Trap-Related Density for surface defects 2 (1.7± 0.4)× 1014 25% cm−3

k2 Order 2 Recombination Coefficient 1 (1.16± 0.07)× 10−10 5.6% cm3s−1
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