Plasma properties conditioned by the magnetic throat location in a helicon plasma device

Alfio E Vinci, Stéphane Mazouffre

To cite this version:

Alfio E Vinci, Stéphane Mazouffre. Plasma properties conditioned by the magnetic throat location in a helicon plasma device. Journal of Applied Physics, 2021, 130 (18), pp.183301. 10.1063/5.0069983 . hal-03474101

HAL Id: hal-03474101

https://hal.science/hal-03474101

Submitted on 10 Dec 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Plasma properties conditioned by the magnetic throat location ${ }_{2}$ in a Helicon plasma device

Alfio E Vincial and Stéphane Mazouffre ${ }^{\text {b) }}$
Institut de Combustion, Aérothermique, Réactivité et Environnement (ICARE), Centre National de la Recherche Scientifique, 1C Avenue de la Recherche Scientifique, 45071 Orléans, France
(Dated: 21 September 2021)

Measurements are conducted in a Helicon plasma device to analyze the spatial distribution of plasma properties as the throat of the magnetic nozzle is axially shifted with respect to the antenna center. Krypton plasma is generated in the sub-kilowatt range and probed using a suite of diagnostics including a rf-compensated Langmuir probe, a planar probe and laser-induced fluorescence. It is found that larger ion currents and increased plasma confinement are achieved when the throat of the magnetic nozzle is located downstream the antenna center, at a distance that equals or exceeds two times the antenna length. The ions, although being accelerated, retain subsonic velocities even beyond the magnetic throat.

7 I. INTRODUCTION

A recent keen interest in electric space propulsion stems ${ }_{9}$ from an increasing number of small satellites being deployed 10 for plural applications ${ }^{1-6}$. Simple and compact thrusters can 1 allow for in-space maneuvering of such small spacecrafts ${ }^{7}$ ${ }_{2}$ which usually do not boast large volume capacity to meet the ${ }_{3}$ needs of consolidated technologies, e.g. Gridded Ion thrusters 14 and Hall thrusters. As a result, a portion of research and devel${ }^{5}$ opment efforts are being focused on electrodeless devices and 16 magnetic nozzle (MN) acceleration ${ }^{8-13}$. This kind of technol${ }^{7}$ ogy can indeed offer a number of advantages compared to the 18 aforementioned state-of-the-art devices. Issues linked to ero19 sion of components are expected to be of little consequence ${ }_{20}$ due to the absence of direct interaction between plasma dis${ }_{21}$ charge and electrodes, resulting in a long lifetime. The plasma 2 beam leaving the discharge chamber is quasineutral, thus no ${ }_{3}$ neutralizer is required. Furthermore, these plasma sources 24 can more easily operate using condensible propellants with 25 respect to those system that require a dedicated neutralizer, ${ }_{26}$ whose lifetime and reliable functioning can be considerably ${ }_{7}$ affected ${ }^{14}$.
The Helicon plasma (HP) thruster is one such a device. It 9 mainly comprises three components: i) a dielectric tube as ${ }_{30}$ plasma discharge region, $i i$) a radiofrequency (rf) antenna for ${ }_{31}$ gas ionization and iii) an axially directed steady magnetic field 32 for plasma confinement and expansion throughout its diverg${ }_{3}$ ing region, i.e. the magnetic nozzle. Power radiated by the an34 tenna is deposited in the electron population as thermal energy ${ }_{35}$ by means of helicon wave modes ${ }^{15}$ and Trivelpiece-Gould ${ }_{36}$ wave modes ${ }^{16}$. The energy is used for plasma production and ${ }_{37}$ transport phenomena, such as ambipolar electric field, result${ }_{38}$ ing in axial acceleration of the ions in the MN by conversion 39 of the electron thermal energy.
${ }_{40}$ The maturity of this technology is still relatively low ${ }^{5}$, ${ }_{41}$ whereby several undesired aspects come along with the con42 sidered advantages. The most critical one perhaps regards the

[^0]thrust efficiency. Thus far, direct thrust measurements have revealed efficiencies typically below 10% in many different devices ${ }^{13,17-24}$, with the only recent exception of nearly 20% at several kW of input power ${ }^{12}$. In this scenario, improving the attained performance is required in order to turn HP thrusters into a competitive technology in the near future. The better understanding of the physics governing such rf plasma sources by exploring the different working parameters is currently the preferred approach to provide an exhaustive optimization pathway.

In an effort to model HP discharges, previous analy54 ses have considered different magnetic topologies inside 55 the source tube, e.g. uniform ${ }^{25,26}$, Helmholtz and Maxwell ${ }_{56}$ configurations ${ }^{27}$. The magnetic field inside the source is then ${ }_{57}$ matched with a divergent geometry through a magnetic throat ${ }_{58}$ localized in the proximity of the tube exit. This firm condi${ }_{59}$ tion is not necessarily the most convenient solution, as demon${ }_{60}$ strated in Ref. 28 where a stepped-diameter tube is employed 61 and the magnetic throat is placed downstream the exit cross 62 section of the small main tube. Besides, virtually every nu${ }_{63}$ merical and experimental work studying the influence of mag64 netic nozzle on the plasma properties, limited the analysis to ${ }_{65}$ the exploitation of different magnitudes at the throat. A fruit${ }_{66}$ ful investigation is reported in Ref. 29, where the location of ${ }_{67}$ the magnetic throat is indirectly shifted with respect to the an${ }_{68}$ tenna - which is constantly located at the back plate - by ${ }_{69}$ changing the discharge tube length. Another relevant analy${ }_{70}$ sis is reported in Ref. 30, where the authors characterized the ${ }_{71}$ plasma and the rf power circuit when the magnetic throat lo${ }_{72}$ calized either within the source or at the exhaust. Bennet et ${ }_{73} \mathrm{al}^{31}$ studied the generation of plasma as a function of the MN ${ }_{74}$ throat location. Yet, their setup did not include plasma expan${ }_{75}$ sion outside the discharge tube and many operating conditions ${ }_{76}$ relied on magnetized ions, which is not a typical scenario in ${ }_{77}$ propulsion. The shape of the magnetic nozzle and the location 78 of the throat are presumably strongly linked to the amount ${ }_{79}$ of the input energy that can be usefully converted into axial 80 thrust. Energetic electrons are mainly produced close to the ${ }_{81}$ region occupied by the antenna. Several phenomena occur ${ }_{82}$ in the nozzle, such as transport due to pressure gradient and 83 electron cooling via convection and/or conduction, which de84 termine the conversion efficiency of inlet thermal energy into

5 ion acceleration. Furthermore, as the throat is shifted along ${ }_{86}$ the thruster axis with respect to the antenna location, the ex${ }_{87}$ pansion ratio of the plasma beam changes, thus resulting in ${ }_{88}$ possibly different thrust levels.
${ }_{89}$ This paper reports on experimental results obtained in a HP 9 source operating with krypton under several configurations of ${ }_{91}$ the external magnetic field. Numerous plasma properties are ${ }_{92}$ spatially resolved as the throat of the magnetic field is moved ${ }_{3}$ with respect to the antenna axial position. A detailed descrip4 tion of the experimental setup is provided in Section II, in${ }_{95}$ cluding the HP source and the magnetic configurations. In ${ }_{6}$ Section III, the diagnostics are extensively described. They in${ }_{7}$ clude: a rf-compensated Langmuir probe to spatially charac8 terize plasma density, electron temperature, and plasma poten99 tial; a planar probe to measure the ion current density; laser100 induced fluoresce to explore the axial ions and atoms velocity 1 distribution function. Measurements are presented and dis2 cussed in Section IV. Eventually, conclusions are drawn in Section V.

II. EXPERIMENTAL SETUP

A schematics of the HP source employed in this study is 6 shown in Figure 1 along with an example of computed mag7 netic field lines. The entire experimental setup is oriented in a vertical position.

The discharge chamber consists in a borosilicate glass tube with $\phi=9 \mathrm{~cm}$ inner diameter and $L=58 \mathrm{~cm}$ length, whose 1 open exit arbitrarily identifies the origin of the axial coordi2 nate z. Krypton gas is introduced off-axis in the tube through 3 its top aperture at a nominal flow rate of $1 \pm 0.004 \mathrm{mg} \mathrm{s}^{-1}$. ${ }^{1} 4$ The bottom part is connected to a 30 cm in inner diameter and 50 cm in length expansion chamber made in aluminum which is equipped with a turbomolecular/primary 7 pumping system. The ultimate base pressure is in the order 8 of 10^{-5} mbar, whereas the typical pressure during operation reads $\sim 5 \times 10^{-3}$ mbar.

The rf antenna in use is a double-saddle type with $d_{A}=12 \mathrm{~cm}$ length centered at $z \cong-11 \mathrm{~cm}$. It is made of 2 pure copper and features two feeding arms which are long 23 enough to be directly connected to the matching network so

FIG. 2. 2D profiles of the externally applied magnetic fields. White line indicates the discharge tube walls, white rectangles represent the magnetic coils, the gray rectangle indicates the antenna region and the black solid line exemplifies the magnetic streamline crossing the tube edge at $z=0$.
that power losses due to intermediate links are prevented. Input rf power is generated by a 1 kW -class power supply at 13.56 MHz and kept constant to 750 W throughout the reported measurements. The power carried by higher order harmonics is certified to be lower than -40 dBc . Matching of the rf power is attained via a custom π-type network. During operation, values of the reflected power are below $\sim 2 \%$.

A set of nine electromagnets surrounds both the discharge ${ }_{132}$ tube and the expansion chamber. Their denomination is reported in Figure 1. Each electromagnet is made up of a 2 mm 4 diameter copper wire, constituting 510 loops for PB1-6 and 430 loops for GB1-3. The presence of multiple electromagnets enables the investigation of profoundly different magnetic field topologies. For the purpose of this study, five magnetic configurations are examined by powering two electromagnets at once. In doing so, the location of the magnetic throat is intentionally relocated along the z axis. The tested magnetic configurations are progressively labeled as Conf. A to Conf. E. When involved, PB coils are powered with 3 A 143 and GB coils with 6 A of direct current. Figure 2 shows the ${ }_{144}$ computed 2D magnetic field maps, highlighting the stream145 line that crosses the discharge tube edge at $z=0$, thus defin${ }_{146}$ ing the ideal shape of the plasma plume (whether it is assumed 147 fully magnetized). With reference to Figure 2, it is noteworthy 148 to emphasize on the magnetic throat location. It moves from 149 upstream the antenna in Conf. A to far downstream the an-

FIG. 3. Externally applied magnetic field on-axis profiles. Shaded area indicates the antenna location. Dashed lines represent simulation profiles, scatter points indicate probe measurements.
o tenna in Conf. E. The first axial mode the antenna can generate translates in an axial wavelength as $\lambda_{z}=24 \mathrm{~cm}$, see Section IV C. Notice that the magnetic throat in Conf. D is approximately one wavelength downstream of the antenna center. The magnitude of the on-axis magnetic field is reported in Figure 3 by comparing computed values and measured values. All magnetic configurations feature a peak value of $10 \div 13 \mathrm{mT}$ with a similar qualitative profile but shifted along z.

158 I

II. DIAGNOSTICS

A. RF-compensated Langmuir probe

Plasma density n_{p}, electron temperature T_{e} and plasma po${ }_{161}$ tential V_{p} are measured using a rf-compensated Langmuir 2 probe (LP), see Figure 4. A detailed description of the probe ${ }_{3}$ has been previously reported in ${ }^{11}$. It is designed in accor4 dance with the results reported in^{32-34}. A tungsten wire of 0.38 mm in diameter and 5 mm in length constitutes the probe 6 tip. An additional electrode made of stainless steel contributes to rf compensation and provides mechanical support to the ass sembly. The electrode is electrically insulated from the probe tip using a 1 mm in outer diameter alumina tube. A 1 nF axial capacitor is soldered to the compensation electrode and connected in parallel with the probe tip and a series of three axial chokes, each of which self-resonates at one of the first three harmonics. The whole assembly is encapsulated inside 14 a borosilicate glass tube of 6 mm outer diameter, which also accommodates the coaxial cable for probe biasing and current

FIG. 5. RF-compensated LP frequency spectrum $\left(V_{r e f}=10 \mathrm{~V}\right)$. Vertical dotted lines indicate 13.56 MHz and 27.12 MHz . 215

B. Planar probe with guard ring

The ion current density j_{i} is measured using a planar probe
measuring.
Chokes selection is attained by characterization of their impedance frequency spectrum. A $20 \mathrm{~V}_{p p}$ sinewave is generated by a function generator and fed to one lead of the testing choke. The other lead is connected to a $46.52 \mathrm{k} \Omega$ resistor and the series circuit closes to the ground. The frequency of the input sinewave is swept while the voltage drop across the resistor is monitored and used to calculate the current flowing in the circuit. The frequency at which the current is minimum is the choke self-resonating frequency. Functional check of the whole probe assembly is performed by applying a $20 \mathrm{~V}_{p p}$ sinewave to the tungsten tip at different frequencies. The probe output is recorded by a digital oscilloscope and shown in Figure 5 as a function of the input frequency. Local minima are evident in correspondence of the harmonic frequencies, as desired.

The probe is manually displaced within the plasma using a single-axis translation stage with a resolution of $10 \mu \mathrm{~m}$ and a stroke of 150 mm . Probe alignment is ensured by the use of a cross-line laser pendulum. I-V curves are recorded using a ALP control unit by Impedans Ltd. Thereafter, data is post-processed relying on OML theory ${ }^{34,35}$. Assuming local quasineutrality, plasma density n_{p} is inferred from the linear fit of the ion current squared versus the probe potential. The ion current fit is then subtracted from the total current to obtain a better estimation of the electron current. Assuming the electrons are described by a Maxwell-Boltzmann distribution function, the logarithmic profile of the electron current is linearly fitted, enabling the estimation of the electron temperature T_{e}. The plasma potential V_{p} is computed as the probe bias voltage where the first derivative of the I-V curve features its peak value.

Uncertainty associated with the probe measurements is estimated through a statistical approach. The detailed procedure has been previously reported in ${ }^{11}$. The outline of the analysis shows that all plasma parameters are measured with a statistical deviation as high as $\sim 2 \%$. with a guard ring (PPGR). It mainly comprises a disk-shaped

FIG. 6. Ion current profiles at $(x, y=0 ; z=15 \mathrm{~cm})$. Subplots denomination is linked to magnetic configurations Conf.s A-E.

216 collector and an outer ring, both made in stainless steel. The 7 role of the guard ring is to concentrate sheath edge effects far 8 from the collector, thus ensuring that the ion collection area 9 exactly corresponds to the collector geometrical area ${ }^{36}$. For correct functioning of the probe, it is required that i) the width of the guard ring is much larger than the local plasma sheath thickness and $i i$) the gap between the two electrodes is smaller than the local sheath thickness to introduce negligible potential irregularities. The collector is 5.6 mm in diameter and 1 mm in thickness, whereas the ring width is 1 mm . A gap of $100 \mu \mathrm{~m}$ is maintained between the two electrodes to ensure electrical insulation. Each electrode features a separated electrical connection for polarization and current measurement. Voltage is applied to the collector by way of a Keithley 2410 SourceMeter, which is also used to measure the flowing current. The guard ring is biased using a TTIEX752M power supply.

Functional check of the probe is carried out by recording the I-V curves at $(x, y=0 ; z=15 \mathrm{~cm})$ for the five magnetic 5 configurations denominated Conf.s A-E. The curves obtained with a biased and floating guard ring are compared in Figure 6. Saturation of the ion current is achieved for Conf.s C-D-E 8 at voltages lower than about -40 V , while no complete saturation is recorded for Conf.s A and B due to the fact that the guard ring width is not compatible with the local values of the sheath thickness. This can be confirmed by computing the local values of the characteristic lengths over the radial coordinate using the values of n_{p} and T_{e} later discussed in Section IV. Floating and high voltage sheath thickness, s_{f} and $s_{h v}$ re5 spectively, are computed in accordance with ${ }^{37}$, using -75 V for Conf.s A-B and -50 V for Conf.s C-D-E. Outcomes are plotted in Figure 7. It results evident that values of $s_{h v}$ for Conf.s C-D-E are much smaller than the guard ring width, whereas those for Conf.s A and B approach its size. It shall be noted that the attainment of a perfectly flat profile of the ion saturation current would require a guard ring width $5 \div 10$ times larger than the actual one. Thus, the overall probe size would probably lead to serious plasma perturbations. Furthermore, the scope of the presented measurements is not to, e.g., focus on indirect propulsive performance estimation but rather

FIG. 7. Debye length, floating and high-voltage sheath thickness at $z=15 \mathrm{~cm}$. Subplots denomination is linked to magnetic configurations Conf.s A-E. vacuum chamber through a borosilicate glass window located

TABLE I. Kr I and Kr II probed optical transitions.

	Transition	$\lambda_{\text {exc }}[\mathrm{nm}]$ (vacuum)	$\lambda_{\text {fluo }}[\mathrm{nm}]$ (air)
Kr I	$5 s^{2}[3 / 2]_{1}^{\circ} \rightarrow 5 p^{2}[3 / 2]_{2}$	819.23095	760.15457
Kr II	$5 p^{2} D_{5 / 2}^{\circ} \rightarrow 5 s^{2} P_{3 / 2}$	820.4959	461.91658

FIG. 8. Photographs of the plasma plume in (a) Conf. A, (b) Conf. B, (c) Conf. C, (d) Conf. D and (e) Conf. E. Windows are centered at $z=12$ and $z=24 \mathrm{~cm}$.
at the bottom of the reactor. Note that $\mathbf{k} \cdot \mathbf{v}<0$ here, where \mathbf{k}
${ }_{323}$ IV. EXPERIMENTAL RESULTS AND DISCUSSION
284 is the laser wavenumber and \mathbf{v} the particle velocity. The laser

285 beam is collimated using a combination of a 150 mm and a 1000 mm focal length plano-convex lenses. Uncertainty on ${ }_{287}$ the alignment with respect to the HP source axis is estimated 288 to be $\lesssim 1.6$ deg. In order to ensure a linear regime of the 289 studied optical transitions, the laser power density delivered 290 to the plasma is kept below $1.2 \mathrm{~W} \mathrm{~mm}^{-2}$, a threshold value 291 that has been determined during preliminary measurements. 292 A detection branch is placed perpendicularly to the excitation 293 beam featuring a pair of plano-convex lenses (250 mm and 294100 mm focal lengths) focusing on a $200 \mu \mathrm{~m}$ core diameter 295 optical fiber. Both the excitation and detection branches are 296 mounted on a dedicated computer-controlled high precision ${ }_{297}$ linear translation stage to enable spatially resolved measure298 ments along the y axis. The detection optical train can be 299 additionally displaced along the z axis within a few centimeoors using a manual stage. The $200 \mu \mathrm{~m}$ optical fiber transports 1 the fluorescence light to a monochromator which isolates the 2 desired line from the whole spectrum. Afterwards, a photo${ }_{3}$ multiplier tube is used to convert the light signal into volt304 age, which is fed into a lock-in amplifier operating at the laser 305 modulation frequency to distinguish the signal from the nat6 ural plasma emission. The VDFs are inferred by scanning 7 over the laser wavelength λ and computing the particles axial 8 velocity v_{z} as $v_{z}=c\left(\lambda-\lambda_{0}\right) / \lambda_{0}$, where λ_{0} is the unshifted transition wavelength and c is the speed of light. The mea0 sured LIF profiles result from the Doppler broaden line. The ${ }_{311}$ presence of Kr isotopes leads to broadening due to isotopic ${ }_{312}$ shift and hyperfine structure ${ }^{38}$. Moreover, due to the pres${ }_{313}$ ence of a steady magnetic field, the Zeeman effect splits the ${ }_{314}$ spectral lines into sub-levels ${ }^{38}$. Nevertheless, since the spec${ }_{315}$ trum is dominated by the ${ }^{84} \mathrm{Kr}$ isotope and the magnetic field ${ }_{316}$ is relatively weak, it is herein assumed that the observed fluo${ }_{317}$ rescence line profile images the local VDF.
318 The probed optical transitions are reported in Table I. The 319 zero-velocity wavelength for Kr I is estimated from prelimi320 nary measurements in the HP source shining the laser along 321 the x axis. The other listed wavelengths are given in the 322 literature ${ }^{38-42}$.

324 A. Visual inspection

${ }_{325}$ The very first piece of information regarding the way the 326 plasma responds to the applied magnetic field topology is pro${ }_{327}$ vided by visual inspection. The photographs of the plasma ${ }^{328}$ plume reported in Figure 8 are taken using a common DSLR ${ }_{329}$ camera framing the region $8<z<28 \mathrm{~cm}$ and set at $\mathrm{f} / 8$ and ${ }_{330} 1 / 40$ s exposure time. It results evident how significant differ${ }_{331}$ ences characterize the extracted plasma plume when employ${ }_{332}$ ing the different magnetic topologies. A faint plume is visible ${ }_{333}$ when the reactor operates in Conf. A and Conf. B. Instead, a 334 well defined plasma beam is noticed when Conf.s C, D and E ${ }_{335}$ are chosen. In the latter cases, the plasma radius visibly delin${ }_{336}$ eates the local magnetic streamlines, cf. Figure2 and Figure8. ${ }_{337}$ It is interesting to notice that the local magnitude of the ax${ }_{338}$ ial component B_{z} is nearly equal for Conf. C and Conf. E at ${ }_{339} z=12 \mathrm{~cm}$ (see Figure2), i.e. at the center of the top window 340 in Figure8. Yet, the two plasma beams show a very different ${ }_{341}$ structure. As a matter of fact, local values of the field radial ${ }_{342}$ component B_{r} and gradient $\partial B_{z} / \partial z$ significantly differ. This ${ }_{343}$ finding agrees with previous numerical models ${ }^{26,43}$ and intrin${ }_{344}$ sically points out that both $|\mathbf{B}|$ and $\nabla \mathbf{B}$ have an impact on the ${ }_{345}$ plasma behavior.

${ }_{36}$ B. LP measurements

Plasma properties are characterized using the diagnos348 tics described in Section III. The region delimited by ${ }_{349} 0<y<4 \mathrm{~cm}$ and $-4<z<21 \mathrm{~cm}$ is probed by means of the 350 rf -compensated LP. I-V characteristics are recorded with a ${ }_{351}$ spatial resolution of 5 mm . Data is post-processed as dis352 cussed in Section III A and eventually interpolated to enhance ${ }_{353}$ visualization. Figures 9, 10 and 11 illustrate normalized 2D 354 maps of n_{p}, T_{e} and V_{p}, respectively, for the five magnetic 355 topologies. Normalization values are: $6 \times 10^{17} \mathrm{~m}^{-3}$ as re${ }_{356}$ gards to $n_{p}, 6 \mathrm{eV}$ for T_{e} and 25 V for V_{p}. The solid black lines
Publishing

FIG. 9. Normalized plasma density for the five magnetic configurations. Normalization factor is $6 \times 10^{17} \mathrm{~m}^{-3}$. Solid black lines represent magnetic streamlines.

FIG. 10. Normalized electron temperature for the five magnetic configurations. Normalization factor is 6 eV . Solid black lines represent magnetic streamlines.

FIG. 11. Normalized plasma potential for the five magnetic configurations. Normalization factor is 25 V . Solid black lines represent magnetic streamlines.
included in the figures represent the magnetic streamlines delimited by the discharge tube edge at $z=0$. Furthermore, onaxis profiles of n_{p}, T_{e} and V_{p} are shown in Figure 12. These experimental measurements show that:

1. when the HP source operates in Conf. A, the extracted plasma plume is characterized by a low monotonically decreasing profile of n_{p} ranging between $\sim 1 \times 10^{17}$ and $\sim 9 \times 10^{15} \mathrm{~m}^{-3}$ along the reactor axis. The profile of T_{e} features a monotonic behavior as well, with a peak value of $\sim 3 \mathrm{eV}$. In a similar fashion, V_{p} drops from $\sim 24 \mathrm{~V}$ to $\sim 15 \mathrm{~V}$. All plasma properties peak onaxis at $z<0$. These quantitative observations agree with the faint light emitted in the nozzle region, as stated beforehand. Visual check of the plasma also reveals that light is instead concentrated within the discharge tube. It suggests that the radial and back boundaries represent a major loss term of plasma ${ }^{26,44}$.
2. when the HP source operates in Conf. B, analogous arguments can be put forward. The profile of n_{p} likewise peaks on-axis at $z<0$ and decays monotonically downstream. Altogether, slightly larger values of n_{p} are measured with respect to Conf. A. In the bulk of the plasma, T_{e} remains in the order of $\sim 3 \mathrm{eV}$ with lower values downstream. However, a population of relatively more energetic electrons ($T_{e} \sim 3.5 \mathrm{eV}$) appears off-axis, in correspondence of the magnetic nozzle edge, visible at $z<0$ in Figure 10(b). Although qualitatively very
similar，the distribution of V_{p} for Conf．B presents lower values with respect to Conf．A of a few volts．

3．when the HP source operates in Conf．C，results simi－ lar to those previously reported in ${ }^{11}$ using the same HP source are obtained．As a matter of fact，in both the ex－ periments the magnetic throat is located at $z=0$ ．In contrast to what was discussed in points（i）and（ii）， all plasma properties peak off－axis．Data acquisition in the region $(0<r<2, z<0)$ was not possible due to discharge instability possibly induced by the probe presence．The largest value of n_{p} is recorded at $z>0$ and it reads $\sim 3 \times 10^{17} \mathrm{~m}^{-3}$ ，whereas T_{e} reaches a peak of 4 eV at $z<0$ ．The distribution of V_{p} is relatively isotropic，ranging in the $8 \pm 0.5 \mathrm{~V}$ interval．The rea－ son why n_{p} and T_{e} present separated regions of the re－ spective maximum values has been explained in ${ }^{11,45}$ in terms of pressure balance．When considering the z com－ ponent of the electron momentum conservation equa－ tion in the limit of negligible contribution due to mo－ mentum transfer collisions and due to the Lorenz force， the potential gradient and the pressure gradient balance each other．In the region where $B_{r} / B_{z} \ll 1$ ，i．e．where the local magnetic field divergence angle is small，the reduced cross field electron mobility yields a relatively large axial conductivity，resulting in a nearly null poten－ tial gradient．Hence，for equilibrium reasons，the pres－ sure gradient is required to be small，which results in a larger n_{p} where T_{e} is lower and vice versa．Similar results are numerically found and discussed in ${ }^{46}$ ．
4．when the HP source operates in Conf．D，light emis－ sion upstream the antenna is almost absent，hinting that plasma losses at the back and lateral walls are mitigated with respect to the previous cases．With reference to Figure $9(\mathrm{~d})$ ，it is evident that n_{p} follows the axial gra－ dient of B_{z} ．The maximum value of $\sim 5 \times 10^{17} \mathrm{~m}^{-3}$ is therefore located in correspondence of the magnetic throat．In Figure 10（d），it is relevant to notice the dis－ tinct transport pattern of a relatively more energetic electron population along the magnetic field lines at the edge of the nozzle，which exhibits $T_{e} \approx 3.5 \div 4.2 \mathrm{eV}$ ．A relatively small V_{p} is measured throughout the probed region，with a peak value in the order of 10 V in the area of maximum n_{p} ．

5．when the HP source operates in Conf．E，similar ob－ servations to those stated in point（4）can be raised． Profiles of n_{p} and T_{e} have a strong dependence on the spatial distribution of B_{r} and B_{z} ．The highest plasma density value among all the studied magnetic configura－ tions is herein recorded to be $\sim 5.5 \times 10^{17} \mathrm{~m}^{-3}$ nearby the magnetic throat．As highlighted in point（4），also in this case a more energetic population of electrons is transported along the external surface of the magnetic nozzle，cf．Figure 10（e）．At $z \cong 10 \mathrm{~cm}$ ，all the electrons with $T_{e} \gtrsim 3 \mathrm{eV}$ are concentrated in a radius of about 3 cm ，as visually confirmed by Figure 8（e）．

FIG．12．On－axis profiles of（top）plasma density，（middle）electron temperature and（bottom）plasma potential．Data is extracted from Figures 9－11 and down－sampled to enhance visualization．

FIG．13．Ion density profile in the proximity of the back－plate for the five magnetic configurations．

Eventually，it is worth observing that the different config－ 440 urations of B possibly influence the power deposition map． ${ }_{41}$ This，in turn，very likely relates to the different spatial distri－ ${ }_{442}$ butions of n_{p} and T_{e} as discussed in points（1）－（5）．

In addition to the measurements performed using the rf－ ${ }_{444}$ compensated LP，a simple uncompensated LP is inserted on－ ${ }_{445}$ axis at the back／injection plate of the HP source to measure ${ }_{446} n_{p}$ as an indicator of the plasma flux lost in this region．The ${ }_{477}$ probe is biased to scan over the ion saturation branch only．
${ }_{448} \mathrm{~N}$ 9 t 450 of 451 to

${ }_{4} 52$ p

 453 f
${ }_{455} \mathrm{p}$

456 r
457 for 458 C 459 t

460 S

 461 th 462 m
${ }_{463}$ C
 C. Plasma density profile model

Using a simplified description of the plasma, the measured
55 axial profiles of n_{p} can be compared with theoretical profiles 6 retrieved from the helicon wave dispersion relation, which is
thereafter derived accounting for the non-uniformity of the external magnetic field along z. This approach implicitly as9 sumes that the plasma production entirely relies on the wave0 mode power coupling. Although the helicon regime is not 1 proven here by direct measurement of the excited wave, previ2 ous experiments performed on the same device operated with similar ranges of magnetic field strength and input power have ${ }_{4}$ shown the presence of the propagating wave ${ }^{11}$. Considering 5 that the electric $\tilde{\mathbf{E}}$ and magnetic $\tilde{\mathbf{B}}$ components of the exited 76 wave are described ${ }^{47,48}$ as

$$
\begin{equation*}
\tilde{\mathbf{E}}, \tilde{\mathbf{B}} \sim \exp \left[i\left(m \theta+k_{z} z-\omega t\right)\right] \tag{1}
\end{equation*}
$$

77 where m is the azimuthal mode number, θ is the azimuthal 478 angle and k_{z} is the axial wavenumber, Maxwell equations as479 sume the form

$$
\begin{equation*}
\nabla \cdot \tilde{\mathbf{B}}=0, \tag{2a}
\end{equation*}
$$

$$
\begin{equation*}
\nabla \times \tilde{\mathbf{E}}=i \omega \tilde{\mathbf{B}} \tag{2b}
\end{equation*}
$$

$$
\begin{equation*}
\nabla \times \tilde{\mathbf{B}}=\mu_{0} \mathbf{j} \tag{2c}
\end{equation*}
$$

${ }_{483}$ where \mathbf{j}_{e} is the electron current density, \mathbf{B} is the external mag 4 netic field and v is a collision rate accounting for all dissi485 pation phenomena. Additional comments and derivation of 5 ${ }_{486}$ Equation 3 are reported in^{47}. The widespread ideal assump- ${ }_{5}$ 487 tion of perfectly uniform magnetic field is not appropriate in 520 488 the actual case. Therefore, although still simplistic, it is as${ }_{489}$ sumed that $\mathbf{B}=B(z) \hat{\mathbf{z}}$, i.e. only the variation of the magnetic 516

TABLE II. Helicon wave parameters at $z=10 \mathrm{~cm}$.

	Conf. A	Conf. B	Conf. C	Conf. D	Conf. E
$r_{p}[\mathrm{~cm}]$	7.3	8.1	5.1	4.0	3.5
$k_{z}\left[\mathrm{~cm}^{-1}\right]$	0.26	0.26	0.26	0.26	0.26
$\lambda_{z}[\mathrm{~cm}]$	24	24	24	24	24
$\kappa_{1}\left[\mathrm{~cm}^{-1}\right]$	0.46	0.41	0.68	0.88	1.03
$\kappa_{2}\left[\mathrm{~cm}^{-1}\right]$	0.14	0.17	0.07	-0.01	-0.08

field along z is accounted for. Combining Equation $2 \mathrm{a}-(2 \mathrm{c})$ and Equation 3, one obtains

$$
\begin{align*}
\left(\frac{\omega+i v}{\omega_{c_{e}}}\right) \nabla \times(\nabla \times \tilde{\mathbf{B}}) & +k_{z} \nabla \times \tilde{\mathbf{B}}+ \\
& +\frac{\mu_{0} \omega e n_{p}}{B} \tilde{\mathbf{B}}=\mathbf{0} \tag{4}
\end{align*}
$$

2 where the explicit dependence on z has been omitted, $\omega_{c_{e}}$ is the electron cyclotron frequency and the rest is conventional. 494 Detailed derivation of Equation 4 is likewise included in ${ }^{47}$. Eventually, in the limit of $m_{e} \rightarrow 0$, the local dispersion relation 496 is retrieved in the same shape of the well known 0D dispersion ${ }_{497}$ relation, i.e.

$$
\begin{equation*}
k(z) k_{z}=\frac{\mu_{0} \operatorname{\omega en}_{p}(z)}{B(z)} \tag{5}
\end{equation*}
$$

${ }_{498}$ where $k(z)$ indicates the total wavenumber. The wave bound499 ary conditions are fixed by ${ }^{48}$

$$
\begin{equation*}
m k(z) \mathbf{J}_{m}\left[k_{r}(z) r_{p}(z)\right]+k_{z} \mathbf{J}_{m}^{\prime}\left[k_{r}(z) r_{p}(z)\right]=0 \tag{6}
\end{equation*}
$$

where \mathbf{J}_{m} and $\mathbf{J}^{\prime}{ }_{m}$ are the Bessel function of the first kind of order m and its derivative, respectively, $k_{r}(z)$ is the local radial wavenumber and $r_{p}(z)$ is the local plasma radius. The value of k_{z} is fixed by the antenna length, i.e. $k_{z}=\pi / d_{A}, 3 \pi / d_{A}, 5 \pi / d_{A}$, etc. Pretending that only the first order axial mode is coupled with the antenna, the computation algorithm includes:

- the axial wavenumber is estimated as $k_{z}=\pi / d_{A}$, therefore the axial wavelenth is $\lambda_{z}=24 \mathrm{~cm}$;
- $r_{p}(z)$ is set equal to the radius of the magnetic streamline crossing the tube edge at $z=0$, see Figure 2;
- considering the geometry of the antenna and the direction of the external magnetic field, it is imposed that $m=+1$;
- two cases are distinguished:

1. $k_{r}(z)$ is computed numerically from Equation 6 and it is named as $\kappa_{1}(z)$ for the sake of clarity in the following;
2. $k_{r}(z)$ is evaluated as $\kappa_{1}(z) \sin [\alpha(z)]$ referred to as $\kappa_{2}(z)$ hereafter. Here $\alpha(z)$ is the local magnetic field divergence angle. The purpose of this heuristic strategy is to provide the model with the information that the applied magnetic field is not

523
524

526

527
528

$$
534 k
$$

53

537 O

538

 539.

542

$$
5431
$$

$544 n$

545

547

549 t550 MFIG. 14. Plasma density at $r=0$ computed using the helicon waves dispersion relation in the $k_{r}(z)=\kappa_{1}(z)$ and $k_{r}(z)=\kappa_{2}(z)$ cases compared to measurement data.
purely axial. In doing so, it is postulated that the helicon wave resonance cone reduces to a line at the magnetic throat, i.e. where $\alpha=0$, thus k equals k_{z}.

- the profile $n_{p}(z)$ is consequently computed from Equation 5 for the aforementioned two cases.

Numerical values of the relevant parameters are reported in Table II for all magnetic configurations. In Figure 14, the obtained theoretical curves are compared with measurements of n_{p} extracted from Figure 9 at $x, y=0$ for all the tested magnetic configurations. In general, it is found that the case $k_{r}(z)=\kappa_{1}(z)$ provides an overestimation of the plasma density. When dealing with Conf.s D and E, the $k_{r}(z)=\kappa_{2}(z)$ case is in very good agreement with the data in correspondence of the magnetic throat, that is where the strong assumption $\mathbf{B}=B(z) \hat{\mathbf{z}}$ is more representative. Ultimately, n_{p} measured in Conf. C is in relatively good agreement with the latter case. It is noted that even the $k_{r}(z)=\kappa_{2}(z)$ case overestimates the measured values of n_{p} for Conf.s A and B, although matching the qualitative profile. This suggests that the helicon wave is evanescent in this region of the plasma since the measured n_{p} is lower than the one required by the dispersion relation. In conclusion, these profiles of n_{p} computed from the dispersion relation represent a first effective estimation of the actual spatial evolution of plasma density. Therefore, these quantitative information can be of some convenience for guessing the propagation region of helicon waves and for preliminary modeling of the plasma dynamics and/or design of the axial magnetic field profile.

FIG. 15. Ion current density at $(a) z=5$ and $(b) z=15 \mathrm{~cm}$ for the five magnetic configurations.

TABLE III. Plume divergence parameter δ from data in Figure 15.

	Conf. A	Conf. B	Conf. C	Conf. D	Conf. E
δ at $z=5 \mathrm{~cm}$	0.218	0.359	0.041	0.014	0.021
δ at $z=15 \mathrm{~cm}$	0.523	0.567	0.224	0.028	0.035

D. PPGR measurements

A further insight into the properties of the plasma when operating with the different magnetic topologies is rendered by the employment of the PPGR described in Section III. The probe is displaced radially along the x axis at $z=5 \mathrm{~cm}$ and $z=15 \mathrm{~cm}$ in order to analyze the divergence of the extracted plasma plume. The measurements of j_{i} are shown in Figure 15(a-b). Table III gathers the values of the divergence parameter δ computed as the ratio $j_{i}(x=-11.5 \mathrm{~cm}) / j_{i}(x=0 \mathrm{~cm})$. Results confirm that a lowcurrent high-divergence ion beam is extracted from the HP source when operating in Conf. A and B. Differently, the ion beams related to Conf.s C, D and E feature a similar lowdivergence profile of j_{i} in the proximity of the tube exit, see Figure 15(a). Yet, the divergence angle of Conf. C rapidly grows as the plasma expands downstream, cf. Figure 15(b). The highest value of j_{i} is recorded in Conf.E at $z=15 \mathrm{~cm}$, in agreement with the largest n_{p} probed in the same configuration. Larger values of j_{i} relate well with higher propellant utilization efficiency, which is a desirable working condition 572 for space propulsion applications.
Publishing

TABLE IV. Order of magnitude of relevant velocity quantities.

	$\mathscr{O}(v)$
Ion acoustic velocity	$v_{B}=\sqrt{k T_{e} / m_{i}} \approx 2000 \mathrm{~m} \mathrm{~s}^{-1}$
Thermal velocity	$v_{t h}=\sqrt{8 k T_{i} / \pi m_{i}} \approx 275 \mathrm{~m} \mathrm{~s}^{-1}$

E. LIF measurements

574
575 576 M

577 e

578 t

 579 M$$
\begin{aligned}
& 580 \mathrm{C} \\
& 581 \mathrm{~S}
\end{aligned}
$$ netic configurations. The spatial resolution is 10 mm . In this 54 case, the reported data did not require any post-processing as 5 a adequate signal-to-noise ratio was found. These measure56 ments show that the most probable velocity of Kr I is nearly ${ }_{7}$ unchanged over the different magnetic topologies, reading $\sim 250 \div 300 \mathrm{~ms}^{-1}$, therefore in the order of the thermal velocity assuming $T_{i} \approx 300 \mathrm{~K}$, cf. Table IV. No dependence of the velocity on the radial location y is recorded. Dissimilar values of velocity spread are found between the magnetic configurations, with a broader VDF for Conf. C and Conf. D.

Axial VDFs of Kr II are probed in the same radial region 54 with a spatial resolution of 5 mm at three distinct axial positions, i.e. $z=10.5 \mathrm{~cm}, z=12 \mathrm{~cm}$ and $z=25 \mathrm{~cm}$. At some $56 y$ locations, the LIF signal was not distinguishable from the \Rightarrow background noise due to small local values of n_{p}, therefore mapping of the VDFs was not possible. For the very same reason, Conf.s A and B did not allow obtaining an appropriate signal-to-noise ratio in any of the probed locations. Raw VDFs are post-processed using a least squares Gaussian fit. 2 The resulting profiles when the HP source operates in Conf.s 3_{3} C, D and E are reported in Figure 17, 18 and 19, respectively. 54 In addition, the most probable velocity is extracted and plot 50 in Figure 20 thus to facilitate comparison among the various magnetic configurations. It is noticed that the profiles related to Conf.s C and D feature a nearly identical trend, whereas the ion velocity in Conf. E generally retains lower readings. This 0 is in agreement with the measured values of V_{p} which remain below those concerning Conf. C and D, cf. Figure 11. In the further upstream regions, namely $z=10.5 \mathrm{~cm}$ and $z=12 \mathrm{~cm}$, velocities smaller than $\sim 250 \mathrm{~ms}^{-1}$ are measured, therefore in the order of the thermal velocity assuming $T_{i} \approx 300 \mathrm{~K}$. Conversely, at $z=25 \mathrm{~cm}$, all the velocities increase by a factor of 2 to 3 , reaching values as high as $\sim 500 \mathrm{~ms}^{-1}$. These small velocities somewhat concur with the fact that the magnetic field is weakly divergent in the probed region for Conf.s C and D, while $z=25 \mathrm{~cm}$ represents the throat location for Conf. E. A weakly divergent magnetic field does not allow for a significant momentum gain imparted by the Lorentz force. Measurements farther downstream were prevented due to the limited

FIG. 16. Kr I velocity distribution function for the five magnetic configurations measured along the y axis at $z=12 \mathrm{~cm}$.

FIG. 17. Kr II velocity distribution function for Conf. C measured along the y axis at $z=10.5,12$ and 25 cm .
${ }_{62}$ size of the vacuum chamber. Similar small values of ion ve${ }_{623}$ locity are reported in Ref. 49 using LIF on a large scale HP 624 source. In all of the magnetic configurations, the drop of V_{p} ${ }_{625}$ is fairly small (in the order of 1 V) within $z<21 \mathrm{~cm}$, cf. Fig626 ure 11. Considering Conf. E for instance, since at $z<25 \mathrm{~cm}$ ${ }_{62}$ the magnetic field is convergent, it is expected that the favored ${ }_{62}$ inward transport of electrons do not allow for a significant po629 tential drop in this region. In the purely electrostatic case,

FIG. 18. Kr II velocity distribution function for Conf. D measured along the y axis at $z=10.5,12$ and 25 cm .

FIG. 19. Kr II velocity distribution function for Conf. E measured along the y axis at $z=10.5,12$ and 25 cm .
${ }_{630}$ a potential drop of $\sim 1 \mathrm{~V}$ translates into an ion velocity in ${ }_{631}$ crease of $\sim 1.5 \mathrm{~km} \mathrm{~s}^{-1}$. Hence, the acceleration of the ions 632 throughout the MN does not fully exploit the available en${ }_{633}$ ergy. This phenomenon is related to some dissipation phe634 nomenon, e.g. collisions, as later discussed. Moreover, al635 though no sonic condition is achieved at the magnetic throat 636 in Conf.s C and D, ions experience a further acceleration in ${ }_{637}$ the divergent part of the nozzle, see Figure 20. It suggests that 638 the sonic point, if ever reached, is shifted downstream, in con${ }_{639}$ trast with the ideal postulation of gas-dynamics-like plasma ${ }_{640}$ expansion ${ }^{50}$. In this experiment, the ions might reach the ${ }_{641}$ sonic speed only at the sheath edge that forms downstream 642 between the chamber wall and the plasma plume. Numer643 ous works focusing on modeling of magnetic nozzle dynam${ }_{644}$ ics have assumed that the ion Mach number equals unity at 645 the throat ${ }^{51-53}$. Albeit this condition conveniently allows sep646 arating the processes of plasma generation and plasma accel-

FIG. 20. Kr II most probable axial velocity extracted from Figure 17-19. Error bar is $60 \mathrm{~m} \mathrm{~s}^{-1}$ (typical instrument absolute error). ($0.5 \mathrm{mg} \mathrm{s}^{-1}, 1 \mathrm{mgs}^{-1}$ and $2 \mathrm{mgs}^{-1}$); current in the elec665 tromagnets (6 A and 8 A). The magnetic configuration is fixed 666 to Conf. D for this experiment because of its divergent shape at $z=25 \mathrm{~cm}$ and larger signal-to-noise ratio with respect to Conf. C. The resulting VDFs are shown in Figure 21, which includes the raw data, the Gaussian fittings and the unfold most probable velocities obtained at each working condition. ${ }_{671}$ The overall tendency results clear. Indeed, higher ion veloci${ }_{672}$ ties are attained as the mass flow rate decreases and the magnetic field is increased, whereas slower ions are recorded with larger mass flow rates. These outcomes suggest that collisions resulting from a larger pressure do play a role in the acceler6 ation process. At lower pressures, a larger mean free path is expected, therefore allowing for greater values of T_{e}.

FIG. 21. Kr II axial VDF for Conf. D at $z=25 \mathrm{~cm}$ as function of $P_{I N}, \dot{m}$ and electromagnets current. Scatter points indicate raw data, solid lines exemplify least squares Gaussian fittings.

v. CONCLUSION

In summary, several plasma properties are inferred via direct measurement to establish empirical approaches to thruster design and optimization. The magnetic throat is displaced along the reactor axis and the resultant plasma is studied in the near-field plume using electrostatic diagnostics and LIF spectroscopy. It is found that a low-current high-divergence plume is extracted from the plasma source when the magnetic throat is located upstream or in correspondence of the antenna center point. Plasma density measurements at the back plate emphasize that, in those cases, the generated plasma mainly remains within the discharge tube and is lost at the radial and back boundaries. Larger ion currents and higher confinement levels are attained when the magnetic throat is located downstream the antenna, namely at a distance at least equal to the wavelength corresponding to the first order axial mode of the helicon wave. Hence, optimization of the plasma generation process in a Helicon thruster would include the separation of the magnetic throat from the antenna location in accordance with the excited helicon wavelength.
Theoretical axial profiles for the plasma density are directly derived from the dispersion relation under the hypothesis of non-uniform magnetic field. Comparison with probe measurements show relatively good agreement therefore hinting the applicability of this theoretical description for guessing

DATA AVAILABILITY

The data that support the findings of this study are available from the corresponding author upon reasonable request.

REFERENCES

$725{ }^{1}$ Igor Levchenko, Kateryna Bazaka, Yongjie Ding, Yevgeny Raitses, Stéphane Mazouffre, Torsten Henning, Peter J. Klar, Shunjiro Shinohara, Jochen Schein, Laurent Garrigues, Minkwan Kim, Dan Lev, Francesco Taccogna, Rod W. Boswell, Christine Charles, Hiroyuki Koizumi, Yan Shen, Carsten Scharlemann, Michael Keidar, and Shuyan Xu. Space micropropulsion systems for Cubesats and small satellites: From proximate targets to furthermost frontiers. Applied Physics Reviews, 5(1), 2018.
${ }^{2}$ Javier Martínez Martínez, Dmytro Rafalskyi, and Ane Aanesland. Development and Testing of the NPT30-I2 Iodine Ion Thruster. In 36th International Electric Propulsion Conference, 2019.
${ }^{3}$ Antonio Gurciullo, Julien Jarrige, Paul Lascombes, and Denis Packan. Experimental performance and plume characterisation of a miniaturised 50 W Hall thruster. In 36th International Electric Propulsion Conference, 2019. ${ }^{4}$ I. Levchenko, S. Xu, S. Mazouffre, D. Lev, D. Pedrini, D. Goebel, L. Garrigues, F. Taccogna, and K. Bazaka. Perspectives, frontiers, and new horizons for plasma-based space electric propulsion. Physics of Plasmas, 27(2), 2020.
${ }^{5}$ E. Dale, B. Jorns, and A. Gallimore. Future Directions for Electric Propulsion Research. Aerospace, 7(120), 2020.
${ }^{6}$ David Krejci, Lou Grimaud, Tony Schönherr, Valentin Hugonnaud, Alexander Reissner, and Bernhard Seifert. ENPULSION NANO and MICRO propulsion systems: development and testing. In AIAA Propulsion and Energy Forum, 2021.
${ }^{7}$ Dillon O'reilly, Georg Herdrich, and Darren F. Kavanagh. Electric propulsion methods for small satellites: A review. Aerospace, 8(1):1-30, 2021.
${ }^{8}$ S. N. Bathgate, M. M.M. Bilek, and D. R. McKenzie. Electrodeless plasma thrusters for spacecraft: A review. Plasma Science and Technology, 19(8), 2017.
$753 \quad 9$
source. Journal of Plasma Physics, 85(4):1-19, 2019
${ }^{28}$ K. Takahashi, Y. Takao, and A. Ando. Increased Thrust-to-Power Ratio of a Stepped-Diameter Helicon Plasma Thruster with Krypton Propellant. Journal of Propulsion and Power, 2020.
${ }^{29}$ J. M. Little and E. Y. Choueiri. Electron Cooling in a Magnetically Expanding Plasma. Physical Review Letters, 117(22):1-5, 2016.
${ }^{49}$ Yuriko TANIDA, Daisuke KUWAHARA, and Shunjiro SHINOHARA Spatial Profile of Ion Velocity Distribution Function in Helicon HighDensity Plasma by Laser Induced Fluorescence Method. Transactions of the Japan Society for Aeronautical and Space Sciences, Aerospace Technology Japan, 14(ists30): $\mathrm{Pb}_{7}--P b_{1} 2,2016$.
${ }^{30}$ T. Lafleur, C. Charles, and R. W. Boswell. Characterization of a helicon plasma source in low diverging magnetic fields. Journal of Physics D: Applied Physics, 44(5), 2011.
${ }^{31}$ Alexander Bennet, Christine Charles, and Rod Boswell. Non-local plasma generation in a magnetic nozzle. Physics of Plasmas, 26(7), 2019.
${ }^{32}$ I. D. Sudit and F. F. Chen. RF Compensated Probes for High-density Discharges. Plasma Sources Science and Technology, 3(2):162-168, 1994.
${ }^{33}$ F. F. Chen. Lectures Notes on Langmuir Probe Diagnostics, 2003.
${ }^{34}$ F. F. Chen. Langmuir probes in RF plasma: Surprising validity of OML theory. Plasma Sources Science and Technology, 18(3), 2009
${ }^{35}$ F. F. Chen. Langmuir probe analysis for high density plasmas. Physics of Plasmas, 8(6):3029-3041, 2001.
${ }^{36}$ S. Mazouffre, G Largeau, L Garrigues, C Boniface, and K Dannenmayer. Evaluation of various probe designs for measuring the ion current density in a Hall thruster plume. 35th International Electric Propulsion Conference, (8-12 October):IEPC-2017-336, 2017.
${ }^{37}$ S. Mazouffre. Mesure de la densité de courant ionique dans le jet plasma d'un propulseur de Hall. Théorie et instrumentation. Technical report, 2016. ${ }^{38}$ S. Mazouffre. Laser-induced fluorescence diagnostics of the cross-field discharge of Hall thrusters. Plasma Sources Science and Technology, 22(1), 2012.
${ }^{39}$ A. Lejeune, G. Bourgeois, and S. Mazouffre. Kr II and Xe II axial velocity distribution functions in a cross-field ion source. Physics of Plasmas, 19(7), 2012.
${ }^{40}$ A. Kramida, Yu. Ralchenko, J. Reade, and Team NIST ASD. NIST Atomic Spectra Database (ver. 5.8), [Online]. Available: https://physics.nist.gov/asd [2021, June 7]. National Institute of Standards and Technology, Gaithersburg, MD, 2020.
${ }^{41}$ V. Kaufman. Wavelengths and Energy Levels of Neutral Kr ${ }^{84}$ and Level Shifts in All Kr Even Isotopes. J. Res. Natl. Inst. Stand. Technol., 98, 1993. ${ }^{42}$ C. J. Humphreys and E. Paul Jr. Interferometric Observations in the Spectra of ${ }^{86}$ Kr. J. Opt. Soc. Am., 60:200-205, 1970.
${ }^{43}$ M. Martinez-Sanchez, J. Navarro-Cavallé, and E. Ahedo. Electron cooling and finite potential drop in a magnetized plasma expansion. Physics of Plasmas, 22(5):1-12, 2015.
${ }^{4}$ K. Takahashi and A. Ando. Enhancement of axial momentum lost to the radial wall by the upstream magnetic field in a helicon source. Plasma Physics and Controlled Fusion, 59(5), 2017.
${ }^{5}$ I. D. Sudit and F. F. Chen. Discharge equilibrium of a helicon plasma. Plasma Sources Science and Technology, 5(1):43-53, 1996.
${ }^{46}$ D. Bose, T. R. Govidan, and M. Meyyappan. Modeling of a helicon plasma source. IEEE TRANSACTIONS ON PLASMA SCIENCE, 31(4), 2003.
${ }^{47}$ F. F. Chen and D. Arnush. Generalized theory of helicon waves. I. Normal modes. Physics of Plasmas, 4(9):3411-3421, 1997.
${ }^{48}$ P. Chabert and N. Braithwaite. Physics of Radio-Frequency Plasmas. Cambridge University Press, 2011. logy Japan, 14(ists30): $\mathrm{Pb}_{7}--\mathrm{Pb}_{1} 2,2016$ supersonic plasma wind tunnel. Physics of Fluids, 12(3):557-560, 1969.
${ }^{51}$ E. Ahedo and M. Merino. Two-dimensional supersonic plasma acceleration in a magnetic nozzle. Physics of Plasmas, 17(7):1-15, 2010.
${ }^{52}$ M. Merino and E. Ahedo. Plasma detachment in a propulsive magnetic nozzle via ion demagnetization. Plasma Sources Science and Technology, 23(3), 2014.
${ }^{53}$ E. Ahedo, S. Correyero, J. Navarro, and M. Merino. Macroscopic and parametric study of a kinetic plasma expansion in a paraxial magnetic nozzle. Plasma Sources Science and Technology1, 29(045017):0-20, 2020.
${ }^{54}$ Sara Correyero, Julien Jarrige, Denis Packan, and Eduardo Ahedo. Ion acceleration in the magnetic nozzle of an ECR thruster: Comparison of experimental measurements with a quasi 1D kinetic model. Space Propulsion 2018, (May):1-8, 2018.
Journal of
Applied Physics
This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this vercinnpnce it has been copyedited and typeset.

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this versiononce it has been copyedited and typeset.

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this versiononce it has been copyedited and typeset.

$$
\begin{array}{lllllll}
\square- & \mathrm{A} & -\Delta & \square & \mathrm{C} & \square & \mathrm{D}
\end{array} \square^{-}-\mathrm{E}
$$

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset

 ard will be different from this versionphofifhra3peen coper

[^0]: a) alfio.vinci@cnrs-orleans.fr
 b) stephane.mazouffre@cnrs-orleans.fr

