
HAL Id: hal-03473726
https://hal.science/hal-03473726

Submitted on 10 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Complexity Approach to Tree Algebras: the Bounded
Case

Thomas Colcombet, Arthur Jaquard

To cite this version:
Thomas Colcombet, Arthur Jaquard. A Complexity Approach to Tree Algebras: the Bounded Case.
International Colloquium on Automata, Languages, and Programming, ICALP, 2021, Glasgow, United
Kingdom. �10.4230/LIPIcs.ICALP.2021.127�. �hal-03473726�

https://hal.science/hal-03473726
https://hal.archives-ouvertes.fr

A Complexity Approach to Tree Algebras:
the Bounded Case
Thomas Colcombet
Université de Paris, CNRS, IRIF, F-75006, Paris, France

Arthur Jaquard
Université de Paris, CNRS, IRIF, F-75006, Paris, France

Abstract
In this paper, we initiate a study of the expressive power of tree algebras, and more generally
infinitely sorted algebras, based on their asymptotic complexity. We provide a characterization of
the expressiveness of tree algebras of bounded complexity.

Tree algebras in many of their forms, such as clones, hyperclones, operads, etc, as well as other
kind of algebras, are infinitely sorted: the carrier is a multi sorted set indexed by a parameter that
can be interpreted as the number of variables or hole types. Finite such algebras – meaning when all
sorts are finite – can be classified depending on the asymptotic size of the carrier sets as a function
of the parameter, that we call the complexity of the algebra. This naturally defines the notions of
algebras of bounded, linear, polynomial, exponential or doubly exponential complexity. . .

We initiate in this work a program of analysis of the complexity of infinitely sorted algebras. Our
main result precisely characterizes the tree algebras of bounded complexity based on the languages
that they recognize as Boolean closures of simple languages. Along the way, we prove that such
algebras that are syntactic (minimal for a language) are exactly those in which, as soon as there are
sufficiently many variables, the elements are invariant under permutation of the variables.

2012 ACM Subject Classification Theory of computation → Tree languages; Theory of computation
→ Regular languages

Keywords and phrases Tree algebra, infinite tree, language theory

Digital Object Identifier 10.4230/LIPIcs.ICALP.2021.127

Category Track B: Automata, Logic, Semantics, and Theory of Programming

Funding Thomas Colcombet: Supported by the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme (grant agreement No.670624),
and the DeLTA ANR project (ANR-16-CE40-0007).

1 Introduction

Infinitely sorted algebras occur naturally in many contexts of language theory, graph theory
or logic. A typical example is the case of tree algebras (such as clones, hyperclones, operads):
plugging a subtree into another one requires a mechanism for identifying the leaf/leaves in
which the substitution has to be performed. Notions such as variables, hole types, or colors
are used for that. Another example is the one of graphs (HR- and VR-algebras [8]) in which
basic operations (a) glue graphs together using a set of colors (sometimes called ports) for
identifying the glue-points, or (b) add all possible edges between vertices of fixed given colors.
In these examples, the algebras are naturally sliced into infinitely many sorts based on the
number of variables/hole types/colors that are used simultaneously.

However, a technical difficulty arises immediately when using such algebras. Even when
all sorts are finite (what we call a finite algebra), these algebras are not really finite due to
the infinite number of sorts. This forbids, for instance, to entirely and explicitly describe the
whole algebra in a finite way. And this is of course a problem for describing and using these
algebras in an algorithm. Indeed, a concrete algorithm can only maintain a subset of the

EA
T

C
S

© Thomas Colcombet and Arthur Jaquard;
licensed under Creative Commons License CC-BY 4.0

48th International Colloquium on Automata, Languages, and Programming (ICALP 2021).
Editors: Nikhil Bansal, Emanuela Merelli, and James Worrell; Article No. 127; pp. 127:1–127:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-6529-6963
https://orcid.org/0000-0001-7407-684X
https://doi.org/10.4230/LIPIcs.ICALP.2021.127
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

127:2 A Complexity Approach to Tree Algebras: The Bounded Case

algebra in its memory, say up to some given sort, or resort to other forms of representations,
which often means not really working with the algebra. This is particularly annoying since
often these objects are used for analyzing properties that admit finite descriptions, such as
tree automata or logical formulae (eg in monadic second-order logic for describing properties
of graphs).

This hurdle to handle infinitely sorted algebras can, arguably, be seen as one of the
causes of the many years that it took before having a good definition of an algebra for
infinite trees [2], or the time that it took before it was possible to characterize logically the
expressiveness of recognizable properties of graphs under bounded tree-width hypothesis [4].
Also, the long history of results characterizing language families by decidable algebraic
properties (initiated by the famous Schützenberger result [11]) has proven hard to extend to
these more complex objects, such as trees.

Classifying algebras based on their complexity. In this paper, we initiate a new approach
in the study of such algebras, which is to try to understand infinitely sorted algebras in
simpler cases. And we define these simpler cases using complexity considerations. Indeed, in
each of the above cases, the sorts are naturally indexed by a natural number parameter: the
number of variables, or hole types, or colors. Hence, an algebra A would have a carrier of
the form

(An)n∈N,

together with suitable operations that depend on the particular algebra type. This algebra
will be called finite if all the An sets are finite, and, in this case, we naturally define the
complexity map of the algebra cA : N→ N as follows:

cA(n) = |An| , for all n ∈ N.

Finite algebras can naturally be classified using this map c. Simple classes are then algebras
of bounded complexity if cA is bounded, of polynomial complexity if cA is bounded from above
by some polynomial in n, etc.

Other interesting complexity classes can be defined using orbits. Indeed, in all of
the mentioned examples, there is a natural operation that performs a renaming of the
variables/hole types/colors. This renaming is parameterized by a bijection over variables/hole
types/colors, and this permutation acts on the corresponding sort. Said differently, in all
examples, there is an action of the symmetric group over n elements, Sym(n), over An. It is
thus natural to consider the orbit complexity map c◦

A as follows

c◦
A(n) = |An/Sym(n)| , for all n ∈ N,

and define accordingly what are finite algebras of bounded orbit complexity, or polynomial
orbit complexity, etc.

Related works. As mentioned above, there is a long history of understanding the expressive
power of regular languages of words based on algebraic properties. The first work in this
direction [11], characterizing star-free languages, intiated a long list of deep results. It was
natural to extend this approach to trees. Here, the notion of algebra was less obvious,
and several definitions have been used. Some algebras for trees are one sorted, such as
deterministic bottom up automata (that can be seen as algebras). Some are two sorted,
such as forest algebras [7]. Some others, such as preclones [9], have infinitely many sorts.

T. Colcombet and A. Jaquard 127:3

Characterizations of classes have been obtained using these approaches [5, 10, 6], but remain
very limited due to difficulties inherent to the tree case. The study of algebras for infinite
trees renewed the interest in these questions [1, 2, 3]. This line of works also highlights
the difficulty to work with tree algebras, and the poor understanding we have so far of the
mechanism of recognition for infinite objects.

Contributions of the paper. In this paper we establish some first results in this complexity
analysis of infinitely sorted algebras, for the simplest complexity class, bounded complexity.
Our results are of two kinds: a characterization of algebras of bounded complexity; and a
characterization of the languages that they recognize, meaning we give a syntactic description
of the properties that can be recognized by algebras in this class. We more particularly
prove:

A characterization of syntactic finite tree algebras of bounded complexity as those
syntactic algebras in which, as soon as there are sufficiently many variables, the elements
are invariant under permutation of variables. See Theorem 5.
A characterization of languages recognized by finite tree algebras of bounded complexity
as Boolean closures of simple languages. See Theorem 14.

The second result actually uses the first as a building block in its proof.

Structure of the paper. In Section 2, we recall some classical definitions, and introduce
our notions of algebras. In Section 3, we look at the permutations of variables in finite
tree algebras, and prove Theorem 5. In Section 4, we study in more depth the bounded
complexity case for finite tree algebras, and establish our main result, Theorem 14. Section 5
is our conclusion.

2 Definitions

We denote by N the set of all non-negative integers. Given n ∈ N, we write [n] = {0, 1, ..., n−
1}. The symmetric group (resp. alternating group) over [n] is denoted Sym(n) (resp.
Alt(n)), the symmetric group of any set X is denoted Sym(X). We denote by Ac the
complement of a set A.

We fix a finite ranked alphabet Σ; the arity of a symbol a ∈ Σ is denoted ar(a). It is a
constant if ar(a) = 0, and is unary if ar(a) = 1. For k ∈ N, we set Σk = {a ∈ Σ | ar(a) = k}.
A∗ is the set of finite words over A, and A+ = A∗ \ {ε}.

2.1 Trees
In this section, we introduce notions and notations for trees.

We fix a countable set of variables. Given a finite set of variables X, a Σ, X-tree is,
informally, a tree in which nodes are labelled by elements of Σ and leaves also possibly by
variables. All variables have to appear at least once. Formally, a Σ, X-tree is a partial map
t : N∗ → Σ ⊎X such that dom(t) is non-empty and prefix-closed, and furthermore:

For all u ∈ dom(t) there exists n ∈ N such that {i | ui ∈ dom(t)} = [n], and
either t(u) ∈ Σn (symbol node), or
t(u) ∈ X and n = 0 (variable node). Note that a variable node is always a leaf.

All variables from X appear in t, i.e. for all x ∈ X, t(u) = x for some u ∈ dom(t).
The root is not a variable, i.e. t(ε) ̸∈ X.

ICALP 2021

127:4 A Complexity Approach to Tree Algebras: The Bounded Case

Σ, ∅-trees are simply called Σ-trees. The elements in dom(t) are called nodes. The prefix
relation over nodes is called the ancestor relation. The node ε is called the root of the tree.
The tree t is finite if it has finitely many nodes. A branch of a tree t is a maximal set of nodes
ordered under the ancestor relation. Let FiniteTrees(Σ, X) bet the set of finite Σ, X-trees,
for all finite set of variables X.

Building trees. We introduce now some operations on trees. See Fig. 1.
a(x0, . . . , xn−1), for x0, . . . , xn−1 variables and a ∈ Σn, denotes the Σ, {x0, . . . , xn−1}-tree
consisting of a root labelled a, and children 0, . . . , n−1 labelled with variables x0, . . . , xn−1
respectively.
s ·x t, for two trees s ∈ FiniteTrees(Σ, X), t ∈ FiniteTrees(Σ, Y) and a variable x ∈ X, is
the Σ, (X \{x})∪Y -tree s in which t is substituted for every occurrences of the variable x.
σ̃(t), for a tree t ∈ FiniteTrees(Σ, X) and σ : X → Y a surjective map, is the Σ, Y -tree
obtained as t in which variable σ(x) has been substituted to x for all x ∈ X. Note that
σ̃ ◦ τ̃ = σ̃ ◦ τ .
t[x0 ← t0, . . . , xn−1 ← tn−1] denotes the tree of sort X \ {x0, . . . , xn−1} ∪

⋃
i Yi obtained

from t by simultaneously substituting the tree ti for the variable xi for all i ∈ [n], where
t is a tree of sort X, x0, . . . , xn−1 ∈ X, and t0, . . . , tn−1 are trees of sort Yi for all i ∈ [n].
Note that this operation is equivalent to a combination of the previous ones.
a(t0, ..., tn−1), for a ∈ Σn, denotes the tree of root a and children t0, . . . , tn−1 at respective
positions 0, . . . , n−1. Again, this operation is equivalent to a combination of the previous
ones.

▶ Lemma 1. All finite trees can be obtained from the a(x0, . . . , xn−1)’s using the operation ·.

Expressions denoting finite trees. For X a finite set of variables, an FTΣ-expression of
sort X (over the alphabet Σ) is an expression built inductively as follows:

a(x0, . . . , xn−1) is an FTΣ-expression of sort {x0, . . . , xn−1} for every symbol a ∈ Σn,
S ·x T is an FTΣ-expression of sort X \ {x} ∪ Y for all FTΣ-expressions S of sort X, all
FTΣ-expressions T of sort Y , and all variables x ∈ X (substitution),
σ̃(T) is an FTΣ-expression of sort Y for all FTΣ-expressions T of sort X, and surjective
map σ : X → Y (renaming).

For an FTΣ-expression T of sort X, [[T]] denotes its evaluation into a finite Σ, X-tree using
the operations of substitution and renaming.

Contexts. We define now contexts, which are terms with a specific leaf called the hole.
Since we work in a multi-sorted algebra, the hole itself has a sort. Essentially, to a hole of
sort X will be substituted a term of sort X. Formally, for fixed finite set of variables Y , an
context of sort X with hole of sort Y (or simply a FTΣ-context) is defined inductively as an
expression of sort X, using the extra construction □Y (the hole of sort Y) which is a context
of sort Y with hole of sort Y . This new construction may appear multiple times in a context
but has to appear at least once.

For C a context of sort X with hole of sort Y , [[C]] : FiniteTrees(Σ, Y)→ FiniteTrees(Σ, X)
is the function which to a tree of sort Y t associates the tree of sort X obtained by evaluating
the operations as above, interpreting □Y as t.

T. Colcombet and A. Jaquard 127:5

a
x y

a

x b
x

a
z z

a

a
x y

b
x

a

x □{y}

t = a(x, y) t ·y b(x) σ̃(t) t[x← t, y ← b(x)] a(x,□{y})

Figure 1 Trees and contexts with their notations. Here σ(x) = σ(y) = z.

2.2 Finite tree algebras
Our notion of tree algebra is the natural notion associated to finite trees equipped with the
above operations. We give here a more formal definition, though the detail of identities is
more for reference. What matters is that it is defined such that the free algebra coincides
with finite trees.

An FTΣ-algebra A consists of an infinite collection of carrier sets AX indexed by finite
sets of variables X, together with operations:

σA : AX → AY for all surjective maps σ : X → Y ,
a(x0, . . . , xn−1)A ∈ A{x0,...,xn−1} for all a ∈ Σn and variables x0, . . . , xn−1,
·Ax : AX ×AY → AX\{x}∪Y for all finite sets of variables X, Y and x ∈ X,

that satisfy the expected identities, i.e. the ones guaranteeing that several ways to describe
the same tree yield the same evaluation in the algebra. Formally, for all s, t, u that belong
to AX , AY , AZ respectively,

(s ·Ax t) ·Ay u = x ·Ax (t ·Ay u) for all x ∈ X ∩Z and y ∈ X ∩Y (horizontal associativity), and
(s ·Ax t) ·Ay u = x ·Ax (t ·Ay u) for all x ∈ X and y ∈ Y \X ∪ {x} (vertical associativity),

for all s, t that belong to AX , AY , x ∈ X and surjection σ : X → Y ,
σA(s ·Ax t) = σA(s) ·Ax t if σ−1(σ(x)) = {x} and σ(y) = y for all y ∈ X ∩ Y \ {x},
σA(s ·Ax t) = s ·x σA(t) if σ(y) = y for all y ∈ X ∩ Y \ {x},

for all surjective maps σ : X → Y and τ : Y → Z, (τ ◦ σ)A = τA ◦ σA, and for all surjec-
tions σ : {x0, . . . xn−1} → Y and a ∈ Σn, σA(a(x0, . . . , xn−1)A) = a(σ(x0), . . . , σ(xn−1))A.
In practice, we shall not explicitly use these identities, and simply write two elements of the
algebra equal as soon as they obviously come from expressions denoting the same trees.

A morphism of FTΣ-algebras from A to B is a family of maps αX : AX → BX for all
finite sets of variables X which preserves all operations, i.e. αY (σA(s)) = σB(αX(s)) for all
surjective map σ : X → Y , α(a(x0, . . . , xn−1)A) = a(x0, . . . , xn−1)B, and αX\{x}∪Y (s ·Ax t) =
αX(s) ·Bx αY (t) for all s ∈ AX , t ∈ AY and x ∈ X.

The FiniteTrees(Σ, X) sets equipped with the operations of substitution and renaming
form an FTΣ-algebra (it is the free FTΣ-algebra generated by ∅). For A a FTΣ-algebra, its
associated evaluation morphism is the unique morphism from FiniteTrees(Σ) to A.

A congruence ∼ over a FTΣ-algebra A is a family ∼ of equivalence relations over the
AX ’s (each denoted ∼) such that, for any a ∼ b ∈ AX , c ∼ d ∈ AY , y ∈ Y and surjective
σ : X → Y : c ·y a ∼ c ·y b; c ·y a ∼ d ·y a and σ̃(a) ∼ σ̃(b). From such a congruence, one can
define the quotient algebra A/ ∼ in the natural way.

Compact presentation, and complexity. Our definition of algebras does not so far match
the one used in the introduction. In the introduction, algebras were considered as using
natural numbers as sorts, while here, our sorts are indexed by finite sets. What would be
these algebras should be pretty clear. The presentation used here is simpler to present and
to use. It is an exercise to show the equivalence.

What matters is that in what follows, a FTΣ-algebra is of bounded complexity if there
exists a bound K such that |AX | ⩽ K for all finite sets of variables X.

ICALP 2021

127:6 A Complexity Approach to Tree Algebras: The Bounded Case

2.3 Languages and syntactic algebras
A language of finite Σ-trees L is a set of Σ-trees. It is recognized by an FTΣ-algebra A if
there is a set P ⊆ A∅ such that L = α−1(P) in which α is the evaluation morphism of A.

The syntactic congruence ∼L of a language L of finite Σ-trees is defined in the following
way s ∼L t for s, t finite Σ-trees if, for all FTΣ-contexts C, [[C]](s) ∈ L if and only if
[[C]](t) ∈ L. It is easy to prove that ∼L is indeed a congruence. The quotient algebra
FiniteTrees(Σ)/∼L

is called the syntactic algebra of L.

▶ Example 2. The language of all finite trees in which the symbol a appears has for syntactic
FTΣ-algebra the algebra with sorts AX = {0, 1}, for all finite set of variables X, and whose
evaluation morphism is such that α(t) = 1 if and only if t is a tree in which a appears.

2.4 Tree automata
A tree automaton B = (Q, I, (δa)a∈Σ) over Σ has a finite set Q of states, a set of accepting
states I ⊆ Q and a transition relation δa ⊆ Q × Qar(a) for every symbol a ∈ Σ. A run of
B over a finite tree t is a mapping ρ : dom(t) → Q such that, for any vertex u ∈ dom(t)
with t(u) = a ∈ Σ, (ρ(u), (ρ(u0), ..., ρ(u(ar(a)− 1)))) ∈ δa. A run is accepting if ρ(ε) ∈ I. A
language L of finite trees is called regular if it is recognized by a tree automaton B, meaning
the trees in L are exactly those for which there is an accepting run in B.

Ex. 3 shows the translation from tree automata to tree algebra.

▶ Example 3 (Automaton algebra). Consider a regular language L of finite trees recognized
by the tree automaton B = (Q, q0, (δa)a∈Σ).

Consider some finite set of variables X. An X-run profile is a tuple τ ∈ Q×P(Q)X . For
a Σ, X-tree t, τ = (p, (Ux)x∈X) is a run profile over t if there exists a run ρ of the automaton
over Q such that ρ(ε) = p and for all variables x ∈ X, Ux is the set of states assumed by
ρ at leaves labelled x. We define a tree algebra A that has as elements of sort X sets of
X-run profiles. The definition of the operations is natural, and is such that the image of a
Σ, X-tree t under the evaluation morphism yields the set of run profiles over t. It naturally
recognizes the language L.

Note that this definition yields an algebra of doubly exponential complexity (and hence,
this is an upper bound for regular languages). Of course, in practice, one can restrict the
algebra to the reachable elements, and this may dramatically reduce the complexity.

The converse translation is also true, yielding the following classical result (it is for instance
proved for preclones in [9]).

▶ Proposition 4. A finite tree language is regular if and only if it is recognized by a finite
FTΣ-algebra.

3 Fundamental results on permutations in tree algebras

This section studies some fundamental phenomena concerning the effect of variable permuta-
tions on tree algebras. Its main objective is to prove Theorem 5. It is a characterization of
syntactic FTΣ-algebras of bounded complexity which turns out to be key in the subsequent
developments. Beyond that, several intermediate results in this section may also be relevant
in the analysis of algebras of unbounded complexity.

In this section, given an FTΣ-algebra A, φA
X : Sym(X)→ Sym(AX) (or simply φX when

there is no ambiguity) denotes the group morphism σ 7→ σA, for all finite sets of variables X.

T. Colcombet and A. Jaquard 127:7

▶ Theorem 5. A finite syntactic FTΣ-algebra A is of bounded complexity if and only for all
sufficiently large finite set of variables X, ker(φA

X) = Sym(X).

The meaning of ker(φX) = Sym(X) is that permuting the variables has no effect on AX (i.e.
σA = IdAX

for every σ ∈ Sym(X)). We fix from now the FTΣ-algebra A.
Our first step is to define a relation ≡ A which we show to be a congruence equivalent to

the syntactic one (Proposition 6). We set for all a ∈ AX :

⟨a⟩ : (A∅)X → A∅

b 7→ a[x0 ← b(x0), ..., xn−1 ← b(xn−1)] ,

in which X = {x0, ..., xn−1}. Define now a ≡A a′, for a, a′ ∈ AX to hold if ⟨a⟩ = ⟨a′⟩ (note
that it does not depend on the numbering of variables).

▶ Proposition 6. ≡ A is a congruence. If A is a syntactic FTΣ-algebra, then a = b if and
only if a ≡ A b, for all a, b in A.

By a simple counting argument, we obtain the following corollary.

▶ Corollary 7. Let A be a finite syntactic FTΣ-algebra, then

|AX | ≤ |A∅||A∅||X|
.

Recall the following result from finite group theory:

▶ Proposition 8. Let φ : Sym(X)→ G be a group morphism. If |X| ≥ 5, then ker(φ) equals
either Sym(X), Alt(X) or {IdX}.

Using Propositions 6 and 8, we prove that, whenever X is large enough, ker(φX) may
only be Sym(X) or {IdX}.

▶ Proposition 9. Let A be a finite syntactic FTΣ-algebra. There is an integer M such that,
for all X of cardinal at least M , either ker(φX) = Sym(X) or ker(φX) = {IdX}.

Proof. Let M = max(5, |A∅| + 1). Let X be a finite set of variables such that |X| ≥
M . By Prop. 8, ker(φX) is either Sym(X), Alt(X) or {IdX}. Assume, for the sake of
contradiction, that ker(φX) = Alt(X). This implies that the image of φX has exactly 2
elements: permutations of signature +1 are sent to IdAX

, and those of signature −1 are sent
to another (distinct) element. Let us call τ this permutation of AX .

Let t ∈ Sym(X) be a transposition, let us show that tA = IdAX
. According to Pro-

position 6, we only need to prove that ⟨tA(a)⟩ = ⟨a⟩ for all a ∈ AX . Let b ∈ (A∅)X , since
n ≥ |A∅| + 1, there must exists x ̸= y in X such that b(x) = b(y), thus: ⟨tA(a)⟩(b) =
⟨τ(a)⟩(b) = ⟨(x y)A(a)⟩(b) = ⟨a⟩(b ◦ (x y)) = ⟨a⟩(b). Since this holds for all a ∈ AX ,

tA = IdAX
. This is a contradiction. ◀

According to Proposition 9, for X large enough, ker(φX) may only be Sym(X) or {IdX}.
The next result shows that one of these two cases in fact holds for all sufficiently large X.

▶ Proposition 10. Let A be a finite syntactic FTΣ-algebra. There is an integer M such
that, either ker(φX) = Sym(X) for all X with |X| ≥M , or ker(φX) = {IdX} for all X with
|X| ≥M .

By simple counting, if ker(φX) = {IdX}, then |Sym(AX)| ≥ |Sym(X)| and hence
|AX | ≥ |X|. This yields the following corollary, which is one direction of Theorem 5.

ICALP 2021

127:8 A Complexity Approach to Tree Algebras: The Bounded Case

▶ Corollary 11. Let A be a syntactic FTΣ-algebra of bounded complexity. There is an integer
M such that, for every X with |X| ≥M , ker(φX) = Sym(X).

Heading toward the converse implication, we now show that when ker(φX) = Sym(X),
then ⟨a⟩ can only take very simple forms.

▶ Lemma 12. Let A be a finite syntactic FTΣ-algebra, and n be such that ker(φX) = Sym(X)
whenever |X| ∈ {n− 1, n}. Then, for all a ∈ AX with |X| = n,

⟨a⟩(b) = ⟨a⟩(b′)

for all b, b′ ∈ AX
∅ such that Im(b) = Im(b′).

Proof. Note first that for |X| ∈ {n− 1, n} we have ker(φX) = Sym(X). Hence for for all
permutations σ ∈ Sym(X),

⟨a⟩(b ◦ σ) = ⟨σA(a)⟩(b) = ⟨a⟩(b) . (⋆)

As a consequence, what matters is to prove that we can “duplicate” some b(x)’s. For Y ⊆ X

where Y = {y0, ..., yk−1} as well as h ∈ (A∅)Y and a ∈ AX , we simplify the notation with

a[h] = a[y0 ← h(y0), . . . , yk−1 ← h(yk−1)] .

Let x, y, z ∈ X be distinct variables and b, b′ ∈ (A∅)X be such that b and b′ coincide
everywhere but for b(z) = b(y) and b′(z) = b(x), we claim that

⟨a⟩(b) = ⟨a⟩(b′) . (⋆⋆)

Indeed, for σ that maps y to z and leaves all other variables unchanged, we have

a[x← d, y ← d′, z ← d′][h] = σA(a)[x← d, z ← d′][h]
= σA(a)[x← d′, z ← d][h] (by (⋆) applied to X \ {y})
= a[x← d′, y ← d, z ← d][h] (by (⋆) applied to X)
= a[x← d, y ← d′, z ← d][h] .

in which d, d′ ∈ A∅ and h ∈ (A∅)X\{x,y,z}, from which the claim (⋆⋆) follows.
At this point, (⋆⋆) allows to change the value b(z) to another providing that its values

before and after the change appear elsewhere in b, and (⋆) allows to permute all the b(x)’s.
Hence, by iterative applications of them, we obtain of (⋆) and (⋆⋆), ⟨a⟩(b) = ⟨a⟩(b′) providing
that b and b′ have same image. ◀

As a consequence of the above lemma, assuming that ker(φX) = Sym(X) for all sufficiently
large X, we can bound the number of possible elements in AX . This yields Corollary 13
below, which is the second direction of Theorem 5.

▶ Corollary 13. A finite syntactic FTΣ-algebra such that ker(φX) = Sym(X) for all
sufficiently large set of variables X, has bounded complexity.

Proof. By Lemma 12, we know that, for a ∈ AX , ⟨a⟩ must be chosen in a set of at most
|A∅|2

|A∅| functions, this is an upper bound on the number of elements of AX that does not
depend on |X| for X sufficiently large. ◀

T. Colcombet and A. Jaquard 127:9

4 Finite tree algebras of bounded complexity

The main theorem of this section, Theorem 14, provides a characterization of the languages
recognized by FTΣ-algebras of bounded complexity as Boolean combinations of simple
languages. We proceed as follows. We state Theorem 14 and establish its easier parts in
Section 4.1. In Section 4.2, we establish Lemma 22 which essentially amounts to the result for
trees with “sufficiently many branches”, which is the hardest part of the proof of Theorem 14.

4.1 Statement of the result
The main theorem of this section, Theorem 14, requires some preliminary definitions.

a

b

d

g

a

c

c

a

g

e c

c

upref(t) = ab (unary prefix)

fnu(t) = d (first non-unary symbol)

symb(t) = {a, b, c, d, e, g} (symbols in t)

pbsymb(t) = {a, c, e, g} (post-branching symbols)

Figure 2 A finite tree t and its associated data.

For a given finite tree t, we associate to it some data (see Figure 2 for an illustration).
Let n, be the depth of the first node labelled with a non unary symbol; formally, n is the
least natural number such that ar(t(0n)) ̸= 1. The unary prefix of t, denoted upref(t) is
the word t(01)...t(0n−1) ∈ Σ∗

1. The first non-unary symbol of t is t(0n), which we denote by
fnu(t). The set of symbols in t is symb(t) = {t(u) | u ∈ dom(t)} and its set of post-branching
symbols is, if it exists, pbsymb(t) = {t(0nv) | 0nv ∈ dom(t), v ̸= ε}.

▶ Theorem 14. For a language of finite trees, the following properties are equivalent:
1. being recognized by a FTΣ-algebra of bounded complexity,
2. having its syntactic FTΣ-algebra of bounded complexity,
3. being equal to a Boolean combination of languages of the following kinds:

a. The language of finite trees with unary prefix in a given regular language of words
L ⊆ Σ∗

1.
b. The language of finite trees with first non-unary symbol a for a fixed non-unary

symbol a.
c. The language of finite trees with post-branching symbols B, for B ⊆ Σ.
d. A regular language K of bounded branching, meaning that there exists a natural

number k such that all trees t ∈ K have at most k branches.
Let us establish the easiest parts of this statement. To start with, it is a generic fact–

generic meaning independent of the type of algebras under consideration–that the syntactic
FTΣ-algebra of a language divides1 any FTΣ-algebra that recognizes the same language.
Hence, each sort of the syntactic FTΣ-algebra has a lesser size than the same sort in any
other FTΣ-algebra recognizing the same language. Thus 1 implies 2.

We now prove the second easiest implication, 3 implies 1. For this, it is sufficient to prove
that the languages of kind 3a to 3d are recognized by FTΣ-algebras of bounded complexity,
and that FTΣ-algebras of bounded complexity are closed under all the Boolean connectives.
This is stated in Lemmas 15 to 17 below. All are straightforward.

1 Divides in the morphism sense: being a quotient of a sub-algebra.

ICALP 2021

127:10 A Complexity Approach to Tree Algebras: The Bounded Case

Given a regular language of words L ⊆ Σ∗
1, a non unary symbol a and a set B ⊆ Σ of

symbols, let us denote by UPref(L), FNU(a) and PBSymb(B), respectively the language
of trees with unary prefix in L, the language of trees with first non-unary symbol c, and
the language of trees t with pbsymb(t) = B. Lemma 15 shows that these languages are
recognized by algebras of bounded complexity, i.e. it treats Cases 3a to 3c.

▶ Lemma 15. Given a regular language of words L, a non unary symbol a ∈ Σ ̸=1 and a
set of symbols B ⊆ Σ, the languages UPref(L), FNU(a) and PBSymb(B) are recognized by
FTΣ-algebras of bounded complexity.

Proof. For space considerations, we only detail the case of UPref(L), which is arguably
the hardest one. Let φ : Σ∗

1 →M be a monoid morphism that recognizes L, meaning there
exists P ⊆ M such that φ−1(P) = L. Define on FiniteTrees(Σ) the relation ∼ by s ∼ t if
φ(upref(s)) = φ(upref(t)), this relation is easily seen to be a congruence, and UPref(L) is
obviously recognized by the quotient algebra FiniteTrees(Σ)/ ∼. Because ∼ only has |M |
equivalence classes in every sort, we just described a FTΣ-algebra recognizing UPref(L) of
bounded complexity. ◀

Next we deal with the languages that have bounded branching, i.e. Case 3d. It is done
with a modification of the automaton algebra of Example 3 so that it is also able to count
the number of branches of a tree up to the bound k. The key observation is that a tree
with k different variables must have at least k branches. This means that the sort AX where
X is a finite set of variables such that |X| > k can be collapsed to one element only. Note
that this is tightly related to our assumption that every variable from X must occur in all
Σ, X-trees. We do not give any further detail here.

▶ Lemma 16. The regular languages of finite trees of bounded branching are recognized by
FTΣ-algebras of bounded complexity.

Finally, using standard constructions, we can provide the last ingredient of the proof that
3 implies 1 in Theorem 14:

▶ Lemma 17. The languages recognized by FTΣ-algebras of bounded complexity are closed
under Boolean operations.

4.2 Trees with many branches
In this section, we fill the missing gap in the proof of Theorem 14, namely the implication
from 2 to 3.

Given two finite trees s and t and a FTΣ-algebra A with evaluation morphism α, let
s ≃A t hold if α(s) = α(t). We omit the sub- and superscript A when it is clear from the
context. Our goal is to prove Lemma 22 which states that if A is of bounded complexity, then
for all trees s and t with sufficiently many branches, if upref(s) = upref(t), fnu(s) = fnu(t)
and pbsymb(s) = pbsymb(t), then s ≃ A t

Given an Σ, X ⊎ {γ1, . . . , γn}-tree t in which the γi’s only appear once, and given trees
t1,. . . , tn, we denote t(t1, . . . , tn) the tree t[γ1 ← t1, . . . , γn ← tn]. We will use these
distinguished variables γi’s in this section.

The results we prove throughout this section are consequences of the properties of
permutations in FTΣ-algebras of bounded complexity and, more particularly, consequences
of Corollary 11. Our first objective is to show that if there are sufficiently many branches
in a tree, it is possible to exchange any two subtrees which are not related by the ancestor

T. Colcombet and A. Jaquard 127:11

relationwithout changing evaluation in the algebra (see Lemma 20). Lemma 18 is a first step
towards this goal: it says that, in a syntactic algebra, whenever a tree has many branches, it
is possible to exchange some of its subtrees. More precisely:

▶ Lemma 18. For every syntactic FTΣ-algebras A of bounded complexity, there exists an
integer N0 such that, for all finite trees t(t1, t2) such that t has at least N0 branches,

t(t1, t2) ≃ A t(t2, t1) .

Proof. Let N0 be the integer introduced in Corollary 11. Assume that t is a Σ, X ⊎ {γ1, γ2}-
tree that has at least N0 branches. Let s be a Σ, X ⊎ {γ1, γ2} ⊎ {x1, ..., xN0−2}-tree and let
s0, ..., sN0−2 be trees such that s[x1 ← s1, ..., xN0−2 ← sN0−2] = t. As such, s has at least
N0 variables. Hence by Corollary 11, t′ ≃ A σA(t′) in which σ is the transposition of γ1
and γ2. We now compute:

t(t1, t2) ≃ A s[γ1 ← t1, γ2 ← t2][x1 ← s1, ..., xN0−2]
≃ A σA(s)[γ1 ← t1, γ2 ← t2][x1 ← s1, ..., xN0−2]
= s[γ1 ← t2, γ2 ← t1][x1 ← s1, ..., xN0−2] = t(t2, t1) . ◀

Here, notice the similarity between this proof and the observations we made in the proof
of Lemma 12: this is the exact same argument, we just used the fact that a tree with many
branches can always be obtained from some tree with many variables. Taking this similarity
further, we may apply the other arguments we used in the proof of Lemma 12 to prove
Lemma 19, and change the number of occurrences of plugged subtrees.

▶ Lemma 19. For every syntactic FTΣ-algebras A of bounded complexity, there exists an
integer N1 such that, for any finite tree t(t1, t2, t2) such that t has at least N1 branches,

t(t1, t2, t2) ≃ A t(t1, t1, t2) .

The next step is to establish Lemma 20, which is very similar to the previous Lemma 18
but for the fact that it is sufficient to have many branches in t(t1, t2) instead of many branches
in t to be allowed to swap t1 and t2. It is obtained by repeated and careful applications of
Lemma 18.

▶ Lemma 20. For all syntactic FTΣ-algebras A of bounded complexity, there is an integer
N3 such that, for any finite tree t(t1, t2) where t(t1, t2) has at least N3 branches,

t(t1, t2) ≃ A t(t2, t1) .

As such, we may exchange two subtrees of a tree with many branches without changing
evaluation in the algebra. We will use this result to prove that two trees with the same unary
prefix, first non-unary symbol and set of post-branching symbols are not distinguished by
the algebra (Lemma 22).

Using Lemmas 19 and 20, we first establish Lemma 21 that allows in some situation to
make a symbol “appear” or “disappear”.

▶ Lemma 21. For all syntactic FTΣ-algebras A of bounded complexity, there exists an
integer N4 that has the following property. For all finite trees s(γ1, γ2), all finite trees t with
at least N4 branches, and all symbols c, d ∈ symb(t), c constant,

s(t, c) ≃ A s(t, d(c, . . . , c)) .

ICALP 2021

127:12 A Complexity Approach to Tree Algebras: The Bounded Case

In combination with Lemmas 19 and 20, it means that under the same assumptions,
s(t, c) ≃ A s(t, t′) for all finite trees t′ that use only symbols appearing in t. This building
block, used iteratively, allows to shuffle and change the number of occurrences of all symbols
that appear below a first non-unary symbol as soon as there are sufficiently many branches.
This is our key Lemma 22.

▶ Lemma 22. Let A be a syntactic FTΣ-algebra of bounded complexity. There is an
integer N , such that, for all finite trees s and t, both of which have at least N branches, if
upref(s) = upref(t), fnu(s) = fnu(t) and pbsymb(t) = pbsymb(t), then t ≃ A s.

Putting everything together we establish the last implication in Theorem 14:

▶ Lemma 23. A language of finite trees L recognized by a FTΣ-algebra of bounded complexity
can be written as a Boolean combination of languages of kinds 3a-3d in Theorem 14.

The idea behind this last proof is as follows. Given a regular word language K ⊆ Σ∗
1,

a non-unary symbol a, and a set of symbols B, let LK,a,B be the set of trees t such
that upref(t) ∈ K, fnu(t) = a and pbsymb(t) = B. Such languages can be written as
the intersection of UPref(K), FNU(a) and PBSymb(B) which are of the kinds 3a-3d in
Theorem 14. Let N be the value from Lemma 22.

In a first step, we construct finitely many tuples (Ki, ai, Bi), such that L and
⋃

i LKi,ai,Bi

coincide over all trees with sufficiently many branches. For this, for all t ∈ L with at least N

branches, consider the least language Kt ⊆ Σ∗
1 recognized by A{x} such that upref(t) ∈ Kt

(in which upref(t) is recognized by A{x} when seen as a tree made of unary symbols and the
variable x). The language Kt is regular and has the property that exchanging the unary
prefix of t for any other word in Kt leaves the tree in L. We use as the (Ki, ai, Bi)’s all
the tuples (Kt, fnu(t), pbsymb(t)) for t ranging over the trees in L with at least N branches
(note that since all the Kt’s are recognized by A{x}, there are finitely many of them). One
can show using Lemma 22 that, as claimed, L and

⋃
i LKi,ai,Bi

coincide over all trees with
at least N branches. In a second step one defines Li to be the set of trees in LKi,ai,Bi that
have at least N branches. Let also L′ be L restricted to trees with less than N branches.
One gets

L = L′ ∪
⋃

i

Li ,

and this is by construction a Boolean combination of languages of the kinds 3a-3d.
This concludes our proof of Lemma 23, and hence Theorem 14.

5 Conclusion

In this paper, we initiated a complexity analysis of the expressiveness of infinitely sorted
algebras. Our main result gives a descriptive characterization of the languages of finite
trees recognized by algebras of bounded complexity, Theorem 14. In this work, we made a
design choice in the definition of tree algebras. Indeed, we require that in a tree of sort X,
every variable occurs at least once. Removing this assumption would change our bounded
complexity characterization result, yielding only Boolean combinations of languages of the
form “the root symbol is a”. Another possible variant is to allow trees restricted to a single
variable: in this case our results remain unchanged.

T. Colcombet and A. Jaquard 127:13

Extensions to infinite trees. We also obtained a similar characterization for algebras for
infinite trees. We did not include it in this short abstract for space considerations (this was
in fact our original question). In this case, the algebras have to include an extra iterating
construct that allows to build all infinite regular trees (i.e. unfolding of finite graphs). By
Rabin’s lemma, regular languages of infinite trees are entirely characterized by the regular
trees they contain, and as a consequence such algebras describe regular languages of infinite
trees. Our result characterizes such algebras of bounded complexity along the same line as
Theorem 14. We show that over infinite trees, such algebras can express two extra things
(1) the existence of subtrees of unary shape that belong to a prescribed prefix-invariant
regular language of infinite words, and (2) the existence of subtrees in which a set of letters C

appears densely, i.e. every letter in C appears in every subtree.

Future work. The next simplest cases seem to be the algebras of polynomial complexity
and of bounded orbit complexity. An example in this case is the language of Σ-trees such
that the leftmost branch does not contain the symbol a (we assume the existence of other
symbols of arity 0, and at least 2). It is recognized by an algebra which is both of polynomial
complexity and bounded orbit complexity. So far, we do not even know whether these two
classes differ.

References
1 Achim Blumensath. Recognisability for algebras of infinite trees. Theor. Comput. Sci.,

412(29):3463–3486, 2011. doi:10.1016/j.tcs.2011.02.037.
2 Achim Blumensath. Regular tree algebras. Logical Methods in Computer Science, 16, 2020.
3 Mikolaj Bojanczyk and Bartek Klin. A non-regular language of infinite trees that is recognizable

by a sort-wise finite algebra. Log. Methods Comput. Sci., 15(4), 2019. URL: https://lmcs.
episciences.org/5927, doi:10.23638/LMCS-15(4:11)2019.

4 Mikolaj Bojanczyk and Michal Pilipczuk. Definability equals recognizability for graphs
of bounded treewidth. In Martin Grohe, Eric Koskinen, and Natarajan Shankar, editors,
Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science, LICS’16,
New York, NY, USA, July 5-8, 2016, pages 407–416. ACM, 2016. doi:10.1145/2933575.
2934508.

5 Mikolaj Bojanczyk and Luc Segoufin. Tree languages defined in first-order logic with one
quantifier alternation. Log. Methods Comput. Sci., 6(4), 2010. doi:10.2168/LMCS-6(4:1)2010.

6 Mikolaj Bojanczyk, Luc Segoufin, and Howard Straubing. Piecewise testable tree languages.
Log. Methods Comput. Sci., 8(3), 2012. doi:10.2168/LMCS-8(3:26)2012.

7 Mikolaj Bojanczyk and Igor Walukiewicz. Forest algebras. In Jörg Flum, Erich Grädel, and
Thomas Wilke, editors, Logic and Automata: History and Perspectives [in Honor of Wolfgang
Thomas], volume 2 of Texts in Logic and Games, pages 107–132. Amsterdam University Press,
2008.

8 Bruno Courcelle and Joost Engelfriet. Graph structure and monadic second-order logic: a
language-theoretic approach, volume 138. Cambridge University Press, 2012.

9 Zoltán Ésik and Pascal Weil. Algebraic recognizability of regular tree languages. Theor.
Comput. Sci., 340(1):291–321, 2005. doi:10.1016/j.tcs.2005.03.038.

10 Zoltán Ésik and Pascal Weil. Algebraic characterization of logically defined tree languages.
Int. J. Algebra Comput., 20(2):195–239, 2010. doi:10.1142/S0218196710005595.

11 Marcel-Paul Schützenberger. On finite monoids having only trivial subgroups. Information
and Control, 8:190–194, 1965.

ICALP 2021

https://doi.org/10.1016/j.tcs.2011.02.037
https://lmcs.episciences.org/5927
https://lmcs.episciences.org/5927
https://doi.org/10.23638/LMCS-15(4:11)2019
https://doi.org/10.1145/2933575.2934508
https://doi.org/10.1145/2933575.2934508
https://doi.org/10.2168/LMCS-6(4:1)2010
https://doi.org/10.2168/LMCS-8(3:26)2012
https://doi.org/10.1016/j.tcs.2005.03.038
https://doi.org/10.1142/S0218196710005595

	1 Introduction
	2 Definitions
	2.1 Trees
	2.2 Finite tree algebras
	2.3 Languages and syntactic algebras
	2.4 Tree automata

	3 Fundamental results on permutations in tree algebras
	4 Finite tree algebras of bounded complexity
	4.1 Statement of the result
	4.2 Trees with many branches

	5 Conclusion

