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Abstract
Overparameterization is a key factor in the absence
of convexity to explain global convergence of gradi-
ent descent (GD) for neural networks. Beside the well
studied lazy regime, infinite width (mean field) anal-
ysis has been developed for shallow networks, using
on convex optimization technics. To bridge the gap
between the lazy and mean field regimes, we study
Residual Networks (ResNets) in which the residual
block has linear parameterization while still being
nonlinear. Such ResNets admit both infinite depth
and width limits, encoding residual blocks in a Repro-
ducing Kernel Hilbert Space (RKHS). In this limit,
we prove a local Polyak-Lojasiewicz inequality. Thus,
every critical point is a global minimizer and a local
convergence result of GD holds, retrieving the lazy
regime. In contrast with other mean-field studies, it
applies to both parametric and non-parametric cases
under an expressivity condition on the residuals. Our
analysis leads to a practical and quantified recipe:
starting from a universal RKHS, Random Fourier
Features are applied to obtain a finite dimensional
parameterization satisfying with high-probability our
expressivity condition.

1 Introduction
State of the art supervised learning methods are
based on deep neural networks, sometimes heavily
overeparameterized, which perfectly fit training data
or even noisy data while exhibiting good generaliza-

tion properties. Such a behaviour appears as a para-
dox and questions the established theory of “bias-
variance trade-off” [10]. That an overparameterized
model can fit data perfectly comes as no surprise but
this capability does not explain the observed gener-
alization properties. Towards a better understanding
of it, one first needs to understand the optimization
procedure in the parameter space that selects the
interpolation map. This question is tightly linked
with the parameterization of the space of maps that
are explored and state of the art parameterizations
have emerged in the past years. One key architec-
ture that is ubiquitous in deep learning are skip con-
nections, heavily used in Residual Neural Networks
(ResNets) [25] and it has led to state of the art re-
sults in supervised learning. ResNets actually allow
to consider a very large number of layers [58].

Continuous models Passing to the limit of in-
finite depth allows the connection with continuous
models (Neural ODE) for which theoretical methods
and new algorithms can be designed [12, 55]. Indeed,
the similarities between ResNet architectures and dis-
crete numerical schemes motivated the introduction
of a continuous neural ODE

żt = v(Wt, zt) ∀t ∈ [0, 1] , (1)

where W ∈ L2([0, 1] ,Rm) is the parameter of the
model and v : Rm×Rq → Rq is a residual transforma-
tion whose output is the residual term. These models
correspond to limiting models of a discrete ResNet
whose depth L tends to infinity [53]. Therefore, their
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study brings a theoretical framework for understand-
ing deep ResNet architectures, and more generally
very deep NNs [19, 20]. Moreover, their mathemat-
ical analysis is facilitated since it allows to leverage
a large body of works and tools from analysis and in
particular the theory of optimal control [45]. Con-
versely, methods from numerical analysis can bring
inspiration for designing new architectures and new
optimization algorithms [38].

RKHS parameterization Most often in the liter-
ature studying the training properties of ResNets, the
considered residual transformations are Multi-Layer
Perceptrons (MLP) [17, 2, 24]. Those consist in the
composition of several trained linear layers alterna-
tively composed with a non-linear activation func-
tion. A 2-layer MLP with width r reads:

v : ((W,U), z) 7→Wσ(Uz), (2)

where U ∈ Rr×q and W ∈ Rq×r are the parameters
for the “hidden” and the “visible” layer respectively
and σ : R→ R is a non-linear activation function ap-
plied component-wise. Popular activation functions
are for example the ReLU or the Swish function. Pro-
vided with these activations, MLPs enjoy a nice uni-
versal approximation property as shown in the semi-
nal work of Barron [7].

In contrast, we consider here a simplified setting
where the residual term is linear w.r.t. the parame-
ters while still being nonlinear w.r.t the inputs. Given
a feature map ϕ : Rq → Rr, we consider as space of
residuals the vector space:

V := {v : z 7→Wϕ(z)|W ∈ Rq×r}, (3)

where the matricesW ∈ Rq×r are the trained param-
eters. Compared to Eq. (2), this can be seen as an
MLP where the hidden layer is fixed by introducing
the feature map ϕ : z 7→ σ(U>z) for some feature
matrix U . As is standard, the gradient of some loss
L w.r.t. W is computed in the sense of the Frobenius
metric on the set of matrices:

∀W,W ′ ∈ Rq×r, 〈W,W ′〉 = Tr(W>W ′). (4)

Such an L2 penalization induces a metric structure
on the set V through the identification v ↔ W

in Eq. (3):

∀ v, v′ ∈ V, 〈v, v′〉V := 〈W,W ′〉. (5)

As a finite dimensional space of continuous maps, V
has the structure of Reproducing Kernel Hilbert Space
(RKHS). Moreover, as pointed out in [5], the space V
has a natural infinite width limit or mean field limit
which is an infinite dimensional RKHS.

In this paper, we are interested in understanding
the convergence properties of Gradient Descent (GD)
on a ResNet model for which the residual layers are
encoded in a – possibly infinite-dimensional – vector-
valued RKHS V . For V as in Eq. (3), we stress out
that, as the metric on V is induced by the one on
Rq×r, GD on V for this metric is strictly equivalent
to GD on Rq×r with the Frobenius metric. Our model
is defined as follows:

Definition 1 (RKHS-FlowResNet). Let V be a
RKHS of vector-fields over Rq and A ∈ Rq×d,
B ∈ Rd′×q be matrices. Then for v ∈ L2([0, 1] , V )
and a data input x ∈ Rd, the RKHS-FlowResNet’s
output is defined as:

F (v, x) := Bz1,

where z is the solution to the forward problem

żt =vt(zt) and z0 = Ax. (6)

The variable v will thereafter be called control param-
eter.

Remark 1. Note that the matrices A and B are fixed
and only the control parameter v is trained. However,
we argue that our approach can be simply adapted to
the case where B is trained, following for example the
proof of [42]. Training A seems more challenging as
the model is highly non-linear w.r.t. this parameter.

Considering such a simplified model comes with
shortcomings as well as potential benefits. The main
assumption that differs from standard ResNets is lin-
earity in the parameters of the residual blocks. As
a comparison, a 2-layer MLP is nonlinear w.r.t. its
parameters of the hidden layer. While it is admit-
tedly a simplified setting, the model of Definition 1
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still retains the effect of depth and the nonlinearity
w.r.t. the input. Indeed, considering V to be a Ran-
dom Features approximation (c.f. Eq. (29)) of some
universal RKHS, the residual blocks are as expressive
as a 2-layer MLP as both are dense in the space of
continuous functions. Moreover, due to composition
of these residual blocks the model’s output is still
highly non-linear w.r.t. parameters. Therefore, we
consider this model as a first step of study towards
the general case. In turn, this linearity in param-
eters naturally leads to an RKHS parameterization
which has two important benefits on the theoretical
side: (i) Flows of vector-fields as implemented by our
model in Eq. (6) have already been studied theoreti-
cally and for applications in image registration prob-
lems [57, 9, 43]. Under some regularity assumptions
on the considered RKHS V , one can show that the
model’s output corresponds to the invertible action of
a diffeomorphism by composition on the input [54].
This property was already used in [49] to implement
models of Normalizing Flows [29] with applications
in generative modeling. (ii) There is an important
literature in Machine Learning about Kernel meth-
ods [50]. In practice, various sub-sampling meth-
ods exist in order to approximate infinite-dimensional
RKHSs with finite-dimensional spaces generated by
Random Fourier Features (RFF) [46, 47]. Thereby,
leveraging results on the approximation bound for
RFF [52, 51], we show that the expressiveness prop-
erties of universal kernels, such as the Gaussian ker-
nel, can be efficiently recovered using residuals of the
form Eq. (3) with a finite number of neurons.

Supervised learning. We consider a map
F : H × Rd 7→ Rd′ for some Hilbert space of pa-
rameter H (e.g. the model of Definition 1 with
H = L2([0, 1] , V )) and a training dataset consisting
on a family of inputs (xi)1≤i≤N ∈ (Rd)N and target
outputs (yi)1≤i≤N ∈ (Rd′)N . Then for every param-
eter v ∈ H, we define the associated Empirical Risk
as:

L(v) :=
1

2N

∑
1≤i≤N

‖F (v, xi)− yi‖2. (7)

Remark 2. For simplicity we consider here the eu-

clidean square distance as a loss on the output space
Rd′ , but our results generalize to any smooth loss sat-
isfying a Polyak-Lojasiewicz inequality (c.f.[11]), e.g.
any smooth strongly convex loss.

Training the model F then amounts to finding a pa-
rameter v∗ ∈ arg minv∈H L(v). In order to perform
such an empirical risk minimization (ERM) task we
consider GD on v. For a small step size η, for some
initialization v0 ∈ H and for every discrete time step
k ∈ N, the training dynamic reads:

vk+1 = vk − η∇L(vk).

Note that we do not consider any additional regu-
larizing term on the loss. In a classical supervised
learning one would seek for a parameter minimizing
the “regularized” loss L(v) + λR(v), with λ > 0 a
constant and R a coercive regularization function.
However, we are here interested in the non regular-
ized setting, i.e. λ = 0 often used in practice. In
this case, the generalization property of the computed
map is argued to potentially come from the optimiza-
tion method that adequately shall select a good min-
imizer of the loss. This implicit regularization de-
pends on the choice of the optimization method [41].

2 Related works and contribu-
tions

Recently, several works have addressed the problem
of proving convergence of (stochastic) GD in the
training of NNs. In [33, 32, 18], the authors focus on
the training of “shallow” two layers fully connected
NNs and establish convergence of GD in an over-
parameterized setting where width of the interme-
diary layer scales polynomially with the size N of the
dataset. More recently, with the same problem setup,
[60] shows that the neurons of a teacher network are
recovered by a student network optimized with GD
as long as the width of the student network is higher
than the teacher’s one. Formally, their analysis is
similar to ours as the result holds if the loss at initial-
ization is already sufficiently low and the proof relies
on (local) Polyak-Lojasiewicz inequalities verified by
the loss landscape.
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Infinite depth. The works of [17, 2, 62, 31, 61, 34,
13, 42] extend those results to arbitrary deep NN in
the overparameterized setting. Specifically, the re-
sults in [17, 2, 34] apply to deep ResNets. The best
result seems to be achieved in [42], with convergence
as soon as the last layer has a width m = Ω(N3)
and at best with linear width. A common feature
for those works is to rely on the fact that, for a suf-
ficiently high number of parameters, the model can
be well approximated by a linear model correspond-
ing to its first order expansion around the initializa-
tion. In [16] this phenomenon, called “lazy regime”,
is attributed to an inappropriate scaling of the pa-
rameters. On the other hand, [35, 34] refer to this
phenomenon as “linear” or “kernel regime” and relate
it the constancy of the Neural Tangent Kernel (NTK)
introduced in [26]. However, in all those works the
width of intermediary layers has to depend on the
depth L of the network. Therefore, these results do
not apply to the training of the model in Eq. (1),
corresponding to the limit L→ +∞.

Infinite width. The other direction of over-
parameterization, analyzed in several works [40, 15,
39, 27, 37, 21, 44] is to consider the limit of infinitely
wide layers. In such a “mean-field” setting, the model
is parameterized by the distribution of the parame-
ters at each layer. In [15, 40, 39, 27] the training
dynamic is analyzed as a gradient flow in the Wasser-
stein space [3], showing that the only stationary dis-
tributions are global minimizers of the empirical risk.
In [21] a similar result is showed for deep NN with an
arbitrary number of infinitely wide layers. In [14, 1],
local linear convergence towards the global optimum
is shown for two layers NNs in a teacher-student setup
with regularized loss. Finally, [37] analyzes the con-
vergence of continuous ResNets with infinitely wide
residual layers and shows that every critical point is a
global minimizer of the empirical risk. We stress out
that these convergence results only apply to infinitely
wide NNs. It is not clear if this mean-field limit ex-
tends to the parametric setting of MLPs with the
Euclidean metric on their parameters. In contrast,
a RKHS structure naturally arises when considering
a linear parameterization of the residuals. Assump-

tion 1 and Assumption 2 can be satisfied both in a
parametric setting with a finite number of features
and in a mean-field setting limit where the residuals
are generated by a universal kernel.

Contributions. We show convergence results for
GD in the training of RKHS-FlowResNets (see Def-
inition 1). These correspond to infinitely deep con-
tinuous ResNets with linear parameterization of the
residuals. Our first main contribution, in Section 4,
shows that under some regularity and expressivity
asumptions on the residuals, the associated empiri-
cal risk satisfies a (local) Polyak-Lojasiewicz Prop-
erty 2. A consequence is Theorem 2, which states
global convergence of GD towards a global opti-
mum (zero training loss) under the condition that
the loss at initialization is already sufficiently low.
In the limit where the loss at initialization is arbi-
trarily small, we recover a linear regime as described
in [35, 34]. Our second contribution, in Section 5,
shows how this condition for global convergence can
be enforced using a first linear layer embedding data
into a sufficiently high dimensional space. There-
after, we show how the assumptions of Theorem 2,
can be satisfied for RKHSs generated by a finite
number of Random Features, with high probability
over the choice of these features. For any dataset
(xi, yi)1≤i≤N ∈ (Rd × Rd′)N , we conclude in Theo-
rem 3 to convergence of GD towards a global mini-
mum of Eq. (7) with high probability when the width
of the layers scales polynomially w.r.t. the size of the
dataset N and the inverse input data separation δ−1.

Notations In what follows ‖.‖ denotes the Eu-
clidean L2 norm for vectors and the Frobenius norm
for matrices. For matrices the spectral norm is de-
noted ‖.‖2, the smallest (resp. greatest) singular
value is denoted σmin (resp. σmax) and for symmet-
ric matrices the smallest (resp. greatest) eigenvalue
is denoted λmin (resp. λmax). Given some Hilbert
space H, the functional Hilbert space L2([0, 1] ,H) is
denoted L2(H) or L2 when there is no ambiguity. The
notation O (resp. Ω) means asymptotically inferior
(resp. superior) up to multiplicative factor.
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3 Analysis of convergence for
overparameterized models

In this section, we review methods for analyzing the
convergence of overparameterized machine learning
models based on [35, 34]. We refer to the appendix
for detailed proofs of the statements.

As presented above, we consider an optimiza-
tion over the variable v in some Hilbert space
H, with fixed input and output data, say
v 7→ F (v) := [F (v, xi)]i=1,...,N . Therefore, the em-
pirical risk is a function of the parameters v ∈ H.
We say that the model is overparameterized whenever
the dimension dim(H) of the parameter space is much
larger than the dimension of the output space of F (v),
here d′N . The RKHS-FlowResNet model defined F
in Definition 1 fall into this category as H is the in-
finite dimensional functional space L2([0, 1] , V ).

3.1 A (local) Polyak-Lojasiewicz
property

When dealing with overparameterized models, one
cannot expect the loss to be convex but one expects
the model to perfectly fit the data, that is to reach
the global minimum value of 0. In fact, for a suffi-
cient number of parameters, the loss landscape typi-
cally possesses a continuum of infinitely many global
minima and is non-convex in any neighbourhood of
a global minima [35]. One thus rather needs to rely
on a set of functional inequalities allowing to control
the decrease rate of the loss along GD [36, 11].

Definition 2 ((local) Polyak-Lojasiewicz property).
Let L : H → R+ be a differentiable function. We
say that L satisfies a (local) Polyak-Lojasiewicz (PL)
property if there exist positive continuous functions
m,M : R+ → R∗+ s.t. for every v ∈ H

2m(‖v‖)L(v) ≤ ‖∇L(v)‖2 ≤ 2M(‖v‖)L(v). (8)

Such functional inequalities have already shown to
be relevant for proving convergence guarantees in the
training of NNs [22]. A first consequence for a loss L
which satisfies the (local) PL property of Definition 2
is that it does not admit any spurious local minima

but only global minima. Also, if the training dynamic
is bounded, then m and M are uniformly lower- and
upper-bounded along the dynamic, implying that L
decreases at a linear rate. In most cases, m and M
are degenerate when ‖v‖ → +∞. When the dynamic
is not bounded, L can thus decrease to 0 slower than
at a linear rate or even converge towards a strictly
positive limit.

3.2 Local convergence result

Because of the degeneracy ofm andM , it is in general
not possible to conclude to an unconditional conver-
gence of GD towards a global minimizer of the em-
pirical risk. However, PL inequalities are sufficient
to prove convergence when the problem is not too
hard to solve, that is when the loss at initialization
is not too high. Moreover, when using gradient de-
scent stepping, one needs to make a supplementary
smoothness assumption on the empirical risk L. This
ensures that the loss decreases at each gradient step
for a sufficiently small step size.

Definition 3 (Smoothness, Definition 2 of [35]). Let
β ≥ 0 be a constant. We say that the function
L : Rm → R is β-smooth if for every v, v′ ∈ Rm:

‖L(v′)− L(v)−∇L(v)(v′ − v)‖ ≤ β

2
‖v′ − v‖2. (9)

The local PL property combined with this smooth-
ness assumption then gives a local convergence result
for the convergence of GD towards a global minimizer
of the empirical risk.

Theorem 1 (Theorem 6 of [35]). Let L : Rm → R+

be a loss function satisfying a local PL property with
local constants m and M . Let v0 ∈ Rm be some pa-
rameter initialization such that there exists a radius
R ≥ 0 s.t.

2
√

2

√
M(‖v0‖+R)

m(‖v0‖+R)

√
L(v0) ≤ R. (10)

Furthermore, assume that L is β-smooth within the
ball B(v0, R). Then for a step size η ≤ β−1, GD with
initialization v0 and step size η converges towards a

5



global minimizer of L with a linear convergence rate,
i.e. for every k ≥ 0:

L(vk) ≤ (1−m(‖v0‖+R)η)kL(v0). (11)

Moreover, the dynamic is bounded:

‖vk − v0‖ ≤ R, ∀k ≥ 0. (12)

4 Properties of RKHS-
FlowResNets

In this section we analyze the convergence of GD
in the training of the infinitely deep ResNet model
of Definition 1. Note that such a model is overpa-
rameterized in depth as the parameter space is the
infinite dimensional space L2([0, 1] , V ) and overpa-
rameterization can also come from width when the
RKHS is high (or even infinite) dimensional. There-
fore, our proof of convergence heavily relies on a PL
property verified by the empirical risk.

Recall that we consider the training of deep
ResNets with a linear parameterization of the resid-
uals. The set of residuals is as in Eq. (3) with the
metric of Eq. (5) induced by the Frobenius metric
(Eq. (4)). This provides V with a RKHS structure [4],
whose associated kernel is given for any z, z′ ∈ Rq by:

K(z, z′) := 〈ϕ(z), ϕ(z′)〉 Idq .

and whose associated feature map is given by ϕ.

Remark 3. The definition of 〈., .〉V in Eq. (5) re-
quires that Span({ϕ(z)|z ∈ Rq}) = Rr in order to
associate each v ∈ V to a unique W ∈ Rq×r. This is
satisfied by all the feature maps ϕ we consider in the
following.

Given a training dataset composed of input data
points (xi)1≤i≤N ∈ (Rd)N and of target data points
(yi)1≤i≤N ∈ (Rd′)N we are interested in the task of
minimizing the empirical risk of Eq. (7) by GD over v.
Analogously to back-propagation in discrete NNs ar-
chitectures, the gradient of L can be expressed thanks
to a backward equation derived by adjoint sensitivity
analysis [45].

Property 1. Let L be the empirical risk in Eq. (7)
associated to the RKHS-FlowResNet model with a
quadratic loss. Let K be the kernel function asso-
ciated to the RKHS V . Then L is differentiable on
L2([0, 1] , V ), with for every v ∈ L2([0, 1] , V ):

∇L(v) =

N∑
i=1

K(., zi)pi,

where for each index i ∈ J1, NK zi is the solution
of Eq. (6) with initial condition Axi and the adjoint
variable pi is the solution to the backward problem:

ṗit = −Dvt(zit)>pit and pi1 = − 1

N
B>(Bzi1 − yi).

(13)

This explicit formulation of the gradient is directly
used to prove the PL property.

4.1 PL property of RKHS-
FlowResNets

Following the line of proof sketched in Section 3, we
show how to derive PL inequalities of the form Eq. (8)
for the empirical loss associated to the RKHS-
FlowResNet model. In that purpose we make a few
assumptions about the RKHS V . The first one con-
cerns its regularity and allows to control the solutions
of Eqs. (6) and (13).

Assumption 1 ((strong) Admissibility). We say
that the RKHS V is (strongly) admissible if it is con-
tinuously embedded inW 2,∞(Rq,Rq). More precisely,
there exists a constant κ > 0 s.t.:

∀v ∈ V, ‖v‖+ ‖Dv‖2,∞ + ‖D2v‖2,∞ ≤ κ‖v‖V . (14)

We note this embedding V ↪→W 2,∞(Rq,Rq).

The embedding V ↪→ W 1,∞(Rq,Rq) is a natural
assumption in order to ensure the regularity of the
flow generated by the control parameter [54, 57] and
suffices to prove convergence of a continuous gradi-
ent flow on the parameter v. Assumption 1 is a bit
stronger because a supplementary smoothness result
on the loss landscape is necessary to prove conver-
gence of discrete GD (c.f. Definition 3). In practice, κ

6



can be computed for smooth kernels thanks to Prop-
erty 4. For example, the RKHS associated to the
Gaussian kernel k : r 7→ e−r

2/2 is (strongly) admissi-
ble with κ = 2 +

√
3.

The second assumption is related to the expres-
siveness of V and is a weaker form of the classical
universality property of RKHSs.

Assumption 2 (N -universality). Let K be the ker-
nel function associated to the RKHS V . For a family
of points (zi)1≤i≤N ∈ (Rq)N , we define the associated
kernel matrix as the block matrix:

K((zi)i) := (K(zi, zj))1≤i,j≤N .

We say that V is N -universal if for every family of
such two-by-two disjoint points (zi)1≤i≤N ∈ (Rq)N
the associated kernel matrix K is positive definite.
More precisely we assume:

Λ := sup
(zi)∈(Rq)N

λmax(K((zi)i)) < +∞ (15)

and for every δ > 0:

λ(δ−1) := inf
(zi)∈(Rq)N

mini6=j ‖zi−zj‖≥δ

λmin(K((zi)i)) > 0 . (16)

In particular, satisfying Assumption 2 requires
having V of dimension m ≥ N , but it can be satisfied
for finite dimensional RKHSs of dimension m ≤ Nq,
for example by considering a polynomial kernel, or by
RKHSs of dimension m ≥ poly(N, q) with high prob-
ability on the sampling of random features as shown
in Section 5. On the other hand, even though the
existence of λ follows from simple compactness ar-
guments, it seems to be hardly analytically tractable
even for classical kernels such as the Gaussian kernel.

Remark 4. For a RKHS V as in Eq. (3), the proper-
ties of V only depend on ϕ. An interesting example
is when ϕ : z 7→ σ(Uz) with σ an activation func-
tion applied component-wise and U a fixed feature
matrix. In Section 5 we show that, when considering
the complex activation σ : t 7→ e−ıt, both assumptions
can be satisfied with high probability. On the other
hand, Assumption 1 is not satisfied when considering
σ = ReLU due to its non-smoothness at 0.

Remark 5. Note that Λ could also be allowed to de-
pend on some parameters, such as max ‖zi‖. How-
ever, as it is a more critical aspect of our analy-
sis, we prefer to highlight the dependency of λ w.r.t.
mini6=j ‖zi − zj‖. For all the RKHSs studied in what
follows, we can always take Λ to be a constant de-
pending on N and q.

The following PL property is satisfied by the em-
pirical risk L.

Property 2 (RKHS-FlowResNets satisfy PL). As-
sume V satisfies Assumption 1 with κ and Assump-
tion 2 with λ and Λ. Let L be the empirical risk
in Eq. (7) associated to the RKHS-FlowResnet model
of Definition 1. Then L satisfies the PL inequalities
of Definition 2 with m and M given by:

M(R) =
1

N
σmax(B>)2Λe2κR, (17)

m(R) =
1

N
σmin(B>)2λ

(
σmin(A)−1δ−1eκR

)
e−2κR,

where δ := mini6=j ‖xi − xj‖ is the data separation.

Sketch of proof. Thanks to Assumption 1, we have
for every solution pi of Eq. (13) and for every
t ∈ [0, 1]:

e−2κ‖v‖L2 ‖pi1‖2 ≤ ‖pit‖2 ≤ e2κ‖v‖L2 ‖pi1‖2.

Moreover using the initial condition we have:

2σmin(B>)2

N
L(v) ≤

N∑
i=1

‖pi1‖2 ≤
2σmax(B>)2

N
L(v).

With similar arguments one finds that for every
t ∈ [0, 1] and every indices i, j ∈ J1, NK:

‖zit − z
j
t ‖ ≥ σmin(A)‖xi − xj‖e−κ‖v‖L2 ,

where zi is the solution of Eq. (6) with initial condi-
tion Axi.

Then denoting p̃t the vector of the stacked pit
and using properties of RKHSs, we have for every
t ∈ [0, 1]:

‖∇L(v)t‖2 =
∑

1≤i,j≤N
(pit)

>K(zit, z
j
t )p

j
t = 〈p̃t,Kp̃t〉,
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where K is the kernel matrix associated to the points
(zit)i. This last equality gives the result using As-
sumption 2 and considering the previously derived
estimates on pi and zi.

Note that the degeneracy of the bounding func-
tions M,m as R → +∞ readily appears in Eq. (17).
Thus one should not expect these bounds to imply
global convergence of GD without making any fur-
ther assumption. Indeed, cases where GD fails to
converge towards a global optimizer of the loss are
observed in [8], Section 6, with a setup correspond-
ing to the model of Definition 1 with V as in Eq. (3)
and ϕ = IdRq .

Also, note that the data separation δ plays an im-
portant role in Property 2 as it intervenes in the con-
ditioning of the kernel matrix. In what follows, we
always assume the data points to have a data sepa-
ration lower-bounded by δ > 0.

4.2 Convergence of RKHS-
FlowResNets

Thanks to the convergence analysis for overparame-
terized models detailed in Section 3, our main result
follows as a direct consequence of the previous prop-
erty.

Theorem 2. Let V satisfy Assumption 1 with
constant κ and Assumption 2 with λ,Λ. Let v0
be some initialization of the control parameter s.t.
‖v0‖L2 = R0 and assume there exists a positive ra-
dius R ≥ 0 with:
√

8σmax(B>)
√
NΛL(v0)e3κ(R+R0)

σmin(B>)2λ(σmin(A)−1δ−1eκ(R+R0))
≤ R . (18)

Then, for a sufficiently small step-size η > 0, GD
with step-size η converges towards a minimizer of the
training loss at a linear rate. More precisely, for ev-
ery k ≥ 0:

L(vk) ≤ (1− ηµ)kL(v0), (19)

with µ given by:

µ :=
1

N
σmin(B

>)2λ
(
σmin(A)

−1δ−1eκ(R+R0)
)
e−2κ(R+R0).

Moreover, the training dynamic stays bounded in the
ball of radius R: ‖vk − v0‖L2 ≤ R for all k.

Sketch of the proof. Following Theorem 2, it only re-
mains to show that the RKHS-FlowResNet model
is locally smooth. Consider two control parameters
v, v̄ ∈ L2([0, 1] , V ) and associated solutions zi, z̄i

and pi, p̄i of Eq. (6) and Eq. (13). Then using As-
sumption 1 one can derive estimates on zi − z̄i and
pi− p̄i. The result follows by controlling the quantity
‖∇L(v) − ∇L(v̄)‖L2 and by establishing a bound of
the form: ‖∇L(v)−∇L(v̄)‖L2 ≤ C‖v − v̄‖L2 .

As Theorem 1, Theorem 2 is a local convergence
result in which the condition in Eq. (18) expresses
a threshold between two kinds of behaviours: (i)
if L(v0) is sufficiently small, the training dynamic
converges towards a global minimizer. The limit-
ing behaviour is when the l.h.s. of Eq. (18) tends
to 0. Because of a regularizing effect of GD (i.e. that
‖vk − v0‖L2 ≤ R), the parameter stays in a ball of
arbitrary small radius R all along the training dy-
namic. In this limit, we recover a “linear” or “kernel”
regime where the model is well approximated by its
linearization at v0 [15, 34, 26]. (ii) If L(v0) is too
large, the result says nothing about the convergence
of the GD. However, it is still observed in practice
that the training dynamic often converges towards a
global minimizer of the loss [59]. Explaining this phe-
nomenon in a general setting remains a challenging
open question.

5 Enforcing global convergence
with high dimensional embed-
ding and finite width

As Theorem 2 is a local convergence result, it does
not allow to conclude to a general convergence be-
haviour of GD in the training of RKHS-FlowResNets.
In the following, we show how one can enforce the hy-
pothesis of Theorem 2 to be verified and prove two
global convergence results. The first one relies on in-
creasing the embedding dimension q in order to sat-
isfy Eq. (18) and applies in the case of infinite width,
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i.e. with residual layers in a universal RKHS. The
second result recovers global convergence in a finite
width regime, relying on a high number r of Random
Fourier Features and a high embedding dimension q
to satisfy Eq. (18).

For the sake of readability we only consider here the
case where V belongs to a restricted class of RKHSs
and refer to Appendix C.1 for more general results
and complete proofs. For some positive parameter
ν > 0 we consider the Matérn kernel k defined in [56]:

∀r ∈ R+, k(r) =
21−ν

Γ(ν)

(√
2ν

2π
r

)ν
Kν(

√
2ν

2π
r), (20)

where Γ is the Gamma function and Kν is the modi-
fied Bessel function of the second kind. Equivalently,
k can be defined by its frequency distribution over Rq
as:

∀x ∈ Rq, k(‖x‖) =

∫
Rq
eı〈x,ω〉µq(ω)dω, (21)

with µq(ω) = C(q, ν)

(
1 +
‖ω‖2

2ν

)−( q2+ν)
,

where C(q, ν) is some normalizing constant. For ev-
ery q ≥ 1, such a function is known to define a struc-
ture of vector-valued RKHS Vq over Rq [50, 56] corre-
sponding to the Sobolev space Hν+q/2(Rq,Rq). The
associated kernel is given for every z, z′ ∈ Rq by:

Kq(z, z
′) = k(‖z − z′‖) Idq .

Note that it is important for this RKHS to depend on
the ambient dimension q. In particular the Sobolev
space Hs(Rq,Rq) is a RKHS if and only if it has reg-
ularity s > q/2. Assuming ν > 2, µq further admits
up to 4 finite order moment [28] implying that k is
four times differentiable at 0. Then Vq satisfies As-
sumption 1 with some constant κ depending only on
ν and given by Property 4:

κ =
√
k(0) +

√
−k′′(0) +

√
k(4)(0)

= 1 +

√
ν

ν − 1
+

√
3ν2

(ν − 1)(ν − 2)
. (22)

Also, Vq satisfies Assumption 2 with λ and Λ depend-
ing on ν, q and N .

Note that with this choice of scaling for k and µq,
one recovers the Gaussian kernel k : r 7→ e−r

2/2 in
the limit ν → +∞ [56]. Thereafter we will con-
sider, ν ∈ (2,+∞], the case ν = +∞ referring to the
Gaussian kernel. We also assume for simplicity that
the data distribution is compactly supported, argu-
ing that the proofs can easily be adapted to milder
assumptions. In particular there exists some r0 ≥ 0
so that every input data x verifies ‖x‖ ≤ r0.

5.1 Global convergence with high-
dimensional embedding

We first show how Eq. (18) can be satisfied by consid-
ering a sufficiently high embedding dimension q and
appropriate embedding matrices A and B. Doing so,
the Euclidean distance between the data points, i.e.
the model’s loss, is preserved whereas the condition-
ing of the kernel matrix can be controlled.

In what follows, we consider for any q ≥ 1 the
matrices:

Aq := q−1/4(Idd, ..., Idd, 0)> ∈ Rq×d,

Bq := q1/4(Idd′ , 0...0) ∈ Rd
′×q,

where there are bq/dc copies of Idd in Aq. In partic-
ular we have:

σmin(Aq) = q−1/4
√
bq/dc,

σmin(B>q ) = σmax(B>q ) = q1/4

and BqAq ∈ Rd′×d is independent of q.

Proposition 1. Let ν ∈ (2,+∞]. There exists
some constant C ≥ 0 so that for any N ≥ 2, any
δ ∈ (0, 1] and any dataset (xi, yi)1≤i≤N ∈ (Rd′×Rd)N
with input data separation δ GD converges towards
a zero-training-loss optimum in the training of the
RKHS-FlowResNet model of Definition 1 with matri-
ces Aq, Bq, RKHS Vq and initialization v0 = 0 as
soon as:

q ≥ C
(
N4 + δ−4 log(N)4

)
. (23)

Sketch of the proof. We give the proof for ν < +∞.
First of all, note that, as is well-known, the mod-

ified Bessel function Kν and thus the Matérn kernel
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k as defined in Eq. (20) has exponential decay as r
tends to infinity (see for example [6, 30]). Therefore,
there exist constants Gν , Hν depending only on ν
such that for every r ≥ 0:

k(r) ≤ Gνe−H
−1
ν r. (24)

Then, using d2bq/dc2 ≥ q(q − 2d), considering:

q ≥ 2d+ d2
H4
ν log(2GνN)4

δ4e−4κR
(25)

is enough to ensure that:

q−1/4
√
bq/dcδe−κR ≥ Hν log(2GνN).

Then, by the bound in Eq. (24) for any point
cloud (zi)1≤i≤N ∈ (Rq)N with data separation
q−1/4

√
bq/dcδe−κR we have:

∀1 ≤ i < j ≤ N, |k(‖zi − zj‖)| ≤ 1

2N
.

Thus, the kernel matrix K = (k(‖zi − zj‖) Idq)i,j is
diagonally dominant with:

λmin(K) ≥ 1− N − 1

2N
≥ 1

2
,

and by definition of λ in Eq. (16):

λ(σmin(Aq)
−1δ−1eκR) ≥ 1

2
. (26)

Moreover, Λ ≤ N because k is bounded by 1.
Finally:

σmax(B>q )

σmin(B>q )2
= q−1/4, (27)

and also ‖BqAq‖2 is independent of q so that
L(0) = 1

N

∑N
i=1 ‖BqAqxi − yi‖2 ≤ C, for some con-

stant C independent of q, δ and N because the data
distribution has compact support. Putting Eq. (26)
and Eq. (37) into Eq. (18):

2
√

2σmax(B>q )
√
NΛL(0)e3κR

σmin(B>q )2λ(σmin(Aq)−1δ−1e−κR)
≤ 4
√

2Ce3κR
N

q1/4
.

Considering R > 0 is fixed (c.f. Remark 6), Theo-
rem 2 can be applied as soon as:

q ≥ 210C2e12κRR−4N4 (28)

and combining this bound with the one in Eq. (25)
gives the result.

Remark 6 (Choice of R). The proof of Proposi-
tion 1 holds for any fixed R > 0 whose choice impacts
the result through the constant C. There is a trade-
off between minimizing e4κR to have a better depen-
dency of q w.r.t. δ−1 log(N) in Eq. (25) and mini-
mizing R−1e3κR to have a better dependency w.r.t. N
in Eq. (28). However, in any case, optimizing w.r.t.
R only improves the result up to a constant factor.

As shown in Appendix C.1, Proposition 1 easily
generalizes while considering non-zero initializations
v0, as soon as these initializations scale as O(q−1/4)
w.r.t. q. For residuals of the form Eq. (3) with W
having i.i.d. Gaussian entries this amounts to add a
O(q−3/4) rescaling factor.

5.2 Global convergence with finite
width

In the preceding we showed that, in the case of an
RKHS defined by a Matérn kernel, convergence of
GD can be ensured by increasing the embedding di-
mension. However, for practical implementations,
the form of the residual in Eq. (3) forces us to con-
sider RKHSs defined by feature maps. A way to over-
come this difficulty and to benefit from the proper-
ties of a wide range of kernel functions is to con-
sider an approximation by Random Fourier Features
(RFF) [46, 47].

More precisely, given q ≥ 1, recall the definition of
the Matérn kernel k in terms of its frequency distri-
bution µq over Rq in Eq. (21) and for any sampling
ω1, ..., ωr

iid∼µq of size r, consider the feature map:

ϕ : z ∈ Rq 7→ 1√
r

(eı〈z,ω
j〉)1≤j≤r ∈ Cr. (29)

Remark 7 (Sampling). Note that µq identifies as
the density of a q-variate t-distribution with shape
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parameter 2ν [28]. Sampling over µq can be achieved
using that for Y ∼ N (0, Idq) and for u distributed
according to χ2

2ν , the chi-squared distribution with 2ν
degrees of freedom, Y/

√
u/2ν is distributed according

to µq.

In other words, considering the complex activa-
tion σ : t 7→ eıt applied component-wise and
U := (ω1| . . . |ωr) ∈ Rq×r the feature matrix, we have
ϕ(z) = 1√

r
σ(U>z). Recall, that such a feature map

defines a structure of RKHS:

V̂q := {Wϕ(.) | W ∈ Rq×r} ,

Such a V̂q can be viewed as a finite-dimensional ap-
proximation of the universal RKHS Vq as it is asso-
ciated to the kernel function K̂q(z, z

′) := k̂(z, z′) Idq,
with:

k̂(z, z′) := 〈ϕ(z), ϕ(z′)〉 =
1

r

r∑
j=1

eı〈z−z
′,ωj〉

r→+∞−−−−−→ k(‖z − z′‖),

where the convergence holds almost surely by the law
of large numbers.

Given any q ≥ 1, we show that, with high prob-
ability over the choice of features, V̂q recovers the
properties of admissibility and universality of Vq as
soon as r is sufficiently high w.r.t. q and N :

Proposition 2. Consider any q,N ≥ 2 and any
ε, τ, R > 0.

(i) Assume ν > 4. For r ≥ Ω(τq8), with proba-
bility greater than 1− τ−1, V̂q satisfies Assumption 1
with some κ̂ ≤ κ+ 1.

(ii) For r ≥ Ω(ε−2N2(q log(‖A‖2r0 + R) + τ)),
with probability greater than 1− e−τ , for any control
parameter v ∈ L2([0, 1] , V̂q) s.t. ‖v‖L2 ≤ R and any
time t ∈ [0, 1]:

λmin(K̂((zit)i)) ≥ λmin(K((zit)i))− ε,

where the (zi)i are the solutions to Eq. (6) and K̂, K
are the kernel matrices associated to k̂ and k respec-
tively.

Sketch of Proof. Proof of (i). First of all, note that
for ν > 4, µq admits up to 8th-order finite moments
and these can be bounded uniformly in q [28].

Let ϕ be the feature map of Eq. (29). Then for
every z ∈ Rq, ‖ϕ(z)‖ ≤ 1 so that for every v ∈ V̂q,
‖v‖∞ ≤ ‖W‖‖ϕ‖∞ ≤ ‖v‖V .

For the differential Dv we have for every z ∈ Rq:

Dϕ(z) =
1√
r

(
ωji e
−ı〈z,ωj〉

)
1≤i≤q
1≤j≤r

∈ Rr×q .

Summing on the index j gives by the law of large
numbers that Dϕ(z)∗Dϕ(z) = 1

r

∑r
j=1 ω

j(ωj)> con-
verges in probability to −k′′(0) Idq as r → +∞.
The convergence rate depends on q and can be con-
trolled by the Bienaymé-Chebyshev inequality, us-
ing that µq has finite 4th order moments. Finally,
for r sufficiently high w.r.t. q, τ and α, one has
‖Dv‖2,∞ = ‖WDϕ‖2,∞ ≤ (−k′′(0) + α)‖v‖V̂q , with
probability greater than 1− τ−1.

The same idea applies to bound ‖D2v‖2,∞, using
that µq has finite 8th-order moments. The result fol-
lows using that κ is given by Eq. (22).
Proof of (ii). For t ∈ [0, 1], we consider (zit)i

the solutions of of Eq. (6) for some control param-
eter v ∈ L2([0, 1] , V̂q) and we introduce the kernel
matrices:

K̂t = (K̂q(z
i
t, z

j
t ))1≤i,j≤N , Kt = (Kq(z

i
t, z

j
t ))1≤i,j≤N .

Using the first point, we know that if ‖v‖L2 ≤ R,
then ‖zit‖ ≤ ‖Axi‖+ (κ+ 1)R. Then, using Theorem
1 in [51], we have for every indices i, j and every
t ∈ [0, 1]:

P
(
|k̂(zit, z

j
t )− k(‖zit − z

j
t ‖)| ≥

h(q,R) +
√

2τ√
r

)
≤ e−τ ,

with h(q,R) = O(
√
q log(‖A‖2r0 +R)). Therefore,

choosing r ≥ Ω
(
ε−2N2(q log(‖A‖2r0 +R) + τ)

)
,

we have with probability greater than 1 − e−τ ,
λmin(K̂t) ≥ λmin (Kt)− ε, for any t ∈ [0, 1] .

Finally, combining the results of Proposition 1
and Proposition 2 we obtain a global convergence the-
orem for ResNets of finite width.
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Theorem 3 (Global convergence). Assume ν > 4.
There exists some constant C ≥ 0 such that,
for any N ≥ 2, any δ ∈ (0, 1], any dataset
(xi, yi) ∈ (Rd × Rd′)N with input data separation
δ and any τ > 0, GD initialized at v0 = 0 con-
verges with probability at least 1− τ−1 towards a zero
training loss optimum in the training of the RKHS-
FlowResNet model of Definition 1 with a feature map
ϕ such as in Eq. (29) as soon as:

q ≥ C
(
N4 + δ−4 log(N)4

)
, r ≥ Cτq8. (30)

Proof. Consider R = 1. Thanks to Proposition 1, we
can have q large enough so that in Eq. (18):

8
√

2σmax(B>)
√
NΛL(v0)e3(κ+1)

σmin(B>)2λ(σmin(A)−1δ−1e(κ+1))
≤ 1,

for some matrices B ∈ Rd′×q, A ∈ Rq×d and with
κ, λ and Λ associated to k. For the Matérn
kernel k in Eq. (20), this is achieved as soon as
q ≥ Ω(N4 + δ−4 log(N)4). Also, by the proof
of Proposition 1 we can have A such that:

λ(σmin(A)−1δ−1e(κ+1)) ≥ 1

2

Then, taking ε = 1
4 in Proposition 2, the

condition in Eq. (18) is satisfied by V̂q with
probability greater than 1 − τ−1 as soon as
r ≥ Ω(τq8 + τqN2 log(1 + ‖A‖2r0)). Recalling the
proof of Proposition 1 we have ‖A‖2 = q−1/4

√
bq/dc

and the dominant term is Ω(τq8).

Theorem 3 concludes that it suffices to have a net-
works width r ≥ Ω(τ(N32 + δ−32 log(N)32)) (i.e.
r ≥ poly(τ,N, δ−1)) in order to have convergence
of GD towards a global optimum with probability
greater than 1 − τ−1. Note that in order to obtain
this result, the choice of the matrices Aq, Bq in Propo-
sition 1 is not restrictive and the dependency of q and
r w.r.t. N and δ might be improved for other well-
chosen embedding matrices.

We show an illustration in Fig. 1. We chose to
perform experiences on small synthetic datasets and
with a Matérn kernel of finite parameter ν instead
of Gaussian kernels. This last choice is motivated by

the fact that we observed that Gaussian kernels led
to poorer performances. We observe an important
acceleration of GD when q and r increase simultane-
ously, starting from q = d. On the other hand, there
seems to be only a low impact of increasing q as soon
as q ≥ Nd. When q is fixed, a similar behaviour is
observed when increasing r. GD performs poorly for
r ≤ q and equally well for values of r above a certain
threshold.

6 Conclusion
In this paper, we have identified a relevant infi-
nite width limit (RKHS-FlowResNet) for a simplified
model of ResNet. We showed that GD converges lin-
early when training this model and that a network’s
width polynomial w.r.t. to the size of the dataset is
sufficient to maintain this property.

A natural extension of our result is to study the
convergence of GD when also training the hidden
layers of the residuals. A first step towards this
general case consists in studying the correspond-
ing mean field model where the residuals are pa-
rameterized by density distributions over the neu-
rons [15, 40, 39, 27, 37, 21] for each residual blocks.
Interestingly, such a parametrization of the residual
blocks is still linear in this measure and thus fits into
our framework of linear in parameters. However, it
would require a finer mathematical analysis to obtain
similar results.
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Figure 1: Evolution of the empirical risk along GD.
Each plot is an average over 12 batches. Each batch
consists of 10 points in dimension d = d′ = 2 with
x ∼ N (0, Id2) and y = −x + 0.2ε, ε ∼ N (0, Id2).
In (a) the dataset is embedded in a varying di-
mension q and we set r = 2q. In (b) the
dataset is embedded a fixed dimension q = 30
and a varying r is used. Vq is the Sobolev space
H(q+5)/2 approximated by RFFs and we used em-
bedding matrices Aq = (Idd, 0, ..., 0)> ∈ Rq×d and
Bq = (Idd′ , ..., Idd′) ∈ Rd′×q.
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A Proofs of Section 3
We give a proof of Theorem 1. This essentially follows
the proof given in [35].

Proof of Theorem 1. Assume the loss L satisfies Def-
inition 2 with M and m and that Eq. (10) is satisfied
at initialization v0 ∈ Rm. The proof proceeds by
induction over the gradient step k

Assume the convergence rate Eq. (11) and the reg-
ularization bound Eq. (12) is satisfied for every l ≤ k.
Then at step k + 1:

‖vk+1 − v0‖ = ‖η
k∑
l=0

∇L(vl)‖

≤ η
k∑
l=0

‖∇L(vl)‖

≤ η
k∑
l=0

√
2M(‖vl‖)L(vl).

Using the induction hypothesis and setting
µ = m(‖v0‖+R) we have:

‖vk+1 − v0‖ ≤ η
√

2M(‖v0‖+R)L(v0)

k∑
l=0

(1− ηµ)−l/2

≤ η
√

2M(‖v0‖+R)L(v0)(1−
√

1− ηµ)−1

≤ 2

µ

√
2M(‖v0‖+R)L(v0)

≤ R,

where the last inequality is Eq. (10). We thus recov-
ered the regularization bound Eq. (12) at step k+ 1.

Moreover, because vk+1 is located in B(v0, R) we
have thanks to the smoothness assumption:

L(vk+1) ≤ L(vk)− η‖∇L(vk)‖2 + η2
β

2
‖∇L(v)‖2

≤ L(vk)− η

2
‖∇L(vk)‖2,

because η ≤ β−1. Thus using the lower bound in the
PL inequality Eq. (8):

L(vk+1) ≤ L(vk)(1−m(‖v0‖+R)η),

which gives the convergence rate of Eq. (11) at step
k + 1 by induction on k.

B Proofs of Section 4

B.1 About the definition of RKHS-
FlowResNets

Before deriving proofs for the properties of our
RKHS-FlowResNet model, it is interesting to study
carefully the well-posedness of Definition 1. Indeed,
because the control parameter v is only integrable
in time and not continuous, the Cauchy-Lipschitz
theorem does not ensure that there exist solutions
to Eq. (6). Instead we rely on a weaker notion of so-
lution and use a result from Carathéodory (Section
I.5 in [23]).

Proposition 3. Let V be some RKHS satisfying As-
sumption 1 and v ∈ L2([0, 1] , V ) be some control
parameter. Then for every x ∈ Rd there exists a
unique solution z of Eq. (6) in the weak sense of ab-
solutely continuous functions. More precisely there
exists a unique z ∈ H1([0, 1] ,Rq) such that for every
t ∈ [0, 1]:

zt = Ax+

∫ t

0

vs(zs)ds . (31)

Proof. The map (t, z) ∈ [0, 1]×Rq 7→ vt(z) is measur-
able and by Assumption 1 we have for every t ∈ [0, 1]
and every z ∈ Rq:

‖vt(z)‖ ≤ κ‖vt‖V ,

whose upper-bound is integrable w.r.t. t ∈ [0, 1].
Then, applying Theorem 5.1 of [23] gives a unique
absolutely continuous solution z of Eq. (31). Apply-
ing Assumption 1 once again, we have that ż is square
integrable and thus z is in H1.

In the paper, every equality implying derivatives
has to be understood in the sense of weak derivatives
of H1 functions. In particular, this notion allows to
perform integration by parts, which is used in the
following proof of Property 1.
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Proof Property 1. Consider the optimization prob-
lem of minimizing the empirical risk of Eq. (7)
with F the RKHS-FlowResNet model of Definition 1
and a dataset (xi, yi)1≤i≤N ∈ (Rd × Rd′)N . In-
troducing for every index i ∈ J1, NK the variables
zi ∈ H1([0, 1] ,Rq) solutions of Eq. (6), this can be
viewed as an optimisation problem over ((zi)i, v) un-
der the constraint that Eq. (6) is satisfied:

min
(zi)i∈H1(Rq)N

v∈L2(V )

1

2N

N∑
i=1

‖Bzi1 − yi‖2

with ∀i ∈ J1, NK,
{

żit = vt(z
i
t) ∀t ∈ [0, 1]

zi0 = Axi.

Introducing the adjoint variables (pi)i ∈ H1(Rq)N ,
the Lagrangian of the optimization problem is defined
as:

L((zi), (P i), v) :=

N∑
i=1

( 1

2N
‖Bzi1 − yi‖

+

∫ 1

0

〈pit, żit − vt(zit)〉dt
)

=

N∑
i=1

( 1

2N
‖Bzi1 − yi‖+

[
〈pit, zit〉

]1
0

−
∫ 1

0

〈ṗit, zit〉dt−
∫ t

0

〈pit, vt(zit)〉dt
)
,

where the second equality is established by integra-
tion by parts. Therefore, the condition for optimality
over zi is equivalent to Eq. (13). For every index i:

∇ziL = 0⇔
{

ṗit = −Dvt(zit)pit
pi1 = − 1

NB
>(Bzi1 − yi),

which has to be understand in the sense of weak so-
lutions in H1.

The gradient of L is obtained by differentiating
over the v variable. Denoting δpz the linear form

v 7→ 〈v(z), p〉, we have:

∇L(v) = ∇vL((zi), (pi), v)

= −
N∑
i=1

K ∗ δp
i

zi

= −
N∑
i=1

K(., zi)pi,

with K the kernel function of the RKHS V and
K∗ : V ∗ → V the associated isometry1.

B.2 Proof of Property 2
We prove here that for any given dataset
(xi, yi)1≤i≤N ∈ (Rd × Rd′)N , the empirical risk L
associated to the RKHS-FlowResNet model satisfies
a (local) Polyak-Lojasiewicz property. As stated in
Property 2. The proof uses Assumption 1 to derive
estimates on the solutions of Eq. (6) and Eq. (13),
which we give in the following lemma:

Lemma 1. Let V satisfy Assumption 1 with constant
κ and let v ∈ L2([0, 1] , V ) be some control parameter.

(i) Let (zi)1≤i≤N be the solutions of Eq. (6) for
some data inputs (xi)1≤i≤N ∈ (Rd)N . Then for every
indices i, j ∈ J1, NK and every time t ∈ [0, 1]:

‖zi − zj‖ ≥ σmin(A)e−κ‖v‖L2 ‖xi − xj‖ . (32)

(ii) Let (pi)1≤i≤N be the solutions of Eq. (13)
associated to (zi)1≤i≤N with objective outputs
(yi)1≤i≤N ∈ (Rd′)N . Then for every i ∈ J1, NK and
every time t ∈ [0, 1]:

‖pit‖ ≥
σmin(B>)

N
e−κ‖v‖

2
L‖Bzi1 − yi‖ ,

‖pit‖ ≤
σmax(B>)

N
eκ‖v‖

2
L‖Bzi1 − yi‖ .

Proof of Lemma 1. Proof of (i) Let i, j ∈ J1, NK.
Assume by contradiction that for some time t ∈ [0, 1]
we have:

‖zit − z
j
t ‖ < e−κ‖v‖L2 ‖zi0 − z

j
0‖.

1The notation K∗ reminds of convolution which is the case
when the kernel is translation invariant.
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Then because zi and zj are absolutely continuous,
‖zi − zj‖2 is absolutely continuous and for any time
s ∈ [0, 1]:

‖zis − zjs‖2 = ‖zit − z
j
t ‖2 + 2

∫ s

t

〈vr(zir)− vr(zjr), zir − zjr〉dr

≤ ‖zit − z
j
t ‖2 + 2

∫ s

t

κ‖vr‖V ‖zir − zjr‖2dr,

where the inequality follows from
‖Dvr‖2,∞ ≤ κ‖vr‖V . Applying Grönwall’s lemma,
we have:

‖zis − zjs‖2 ≤ ‖zit − z
j
t ‖2e2κ‖v‖L2 ,

and by setting s = 0:

‖zi0 − z
j
0‖2 ≤ ‖zit − z

j
t ‖2e2κ‖v‖L2 < ‖zi0 − z

j
0‖,

which is a contradiction. Therefore for any time
t ∈ [0, 1]:

‖zit − z
j
t ‖ ≥ e−κ‖v‖L2 ‖zi0 − z

j
0‖,

and the result follows by considering the initial con-
dition zi0 = Axi.
Proof of (ii) Let i ∈ J1, NK be any index and let

pi be the solution of Eq. (13) with initial condition
pi1 = − 1

NB
>(Bzi1−yi). Then because pi is absolutely

continuous, ‖pi‖ is absolutely continuous and for any
time t ≤ s ∈ [0, 1]:

‖pit‖2 = ‖pi1‖2 − 2

∫ t

1

〈Dvs(zis)pis, pis〉ds,

so that using Assumption 1 we have:

‖pis‖2 ≤ ‖pit‖2 + 2

∫ s

t

κ‖vr‖V ‖pir‖2dr .

Using Grönwall’s lemma in the first inequality and
setting s = 0 we have:

‖pi1‖2 ≤ ‖pit‖2e2κ‖v‖L2 ,

and proceeding by contradiction (such as in (i)) we
have:

‖pi1‖2 ≥ ‖pit‖2e−2κ‖v‖L2 .

The result follows by considering the initial condition
on pi1.

Provided those estimates on zi and pi, it remains
to use Assumption 2 in order to conclude.

Proof of Property 2. Let v ∈ L2([0, 1] , V ) and con-
sider the form of the gradient of L given by Prop-
erty 1 with (zi)1≤i≤N the solutions of Eq. (6) and
(pi)1≤i≤N the solutions of Eq. (13). Let t ∈ [0, 1],
then by definition of the norm in RKHSs:

‖∇L(v)t‖2V =
∑

1≤i,j≤N
(pit)

>K(zit, z
j
t )p

j
t ,

where we recall that K is the kernel associated to V .
Noting p := (pit) ∈ RNq, the vector of the stacked
(pit)1≤i≤N , and K the kernel matrix associated to the
family of points (zit)i, we have:

‖∇L(v)t‖2V = 〈p,Kp〉 .

Then by Assumption 2, there exists a non-increasing
function λ and a constant Λ such that:

‖∇L(v)t‖2V ≤ Λ‖p‖2,
‖∇L(v)t‖2V ≥ λ( max

1≤i,j≤N
‖zit − z

j
t ‖−1)‖p‖2.

Using (i) in Lemma 1 we have:

λ( max
1≤i,j≤N

‖zit − z
j
t ‖−1) ≥ λ(σmin(A)−1δ−1eκ‖v‖L2 ),

where δ := min1≤i,j≤N ‖xi − xj‖ is the data separa-
tion. Finally the result follows by using (ii). More
precisely:

‖p‖2 =

N∑
i=1

‖pit‖2

≤ σmax(B>)2

N2
e2κ‖v‖L2

N∑
i=1

‖Bzi1 − yi‖2

= 2
σmax(B>)2

N
e2κ‖v‖L2L(v),

and in the same manner:

‖p‖2 ≥ 2
σmin(B>)2

N
e−2κ‖v‖L2L(v).
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B.3 Proof of Theorem 2

Theorem 2 is a direct consequence of Property 2. In
order to apply Theorem 1, it suffices to show that L
satisfies some smoothness assumption:

Property 3 (Smoothness of L). Let V be some
RKHS satisfying Assumption 1. Let L be the em-
pirical risk defined on L2([0, 1] , V ) and associated to
the RKHS-FlowResNet model. Then there exists a
continuous function C : R+ → R∗+ such that for
every R ≥ 0 and every v, v̄ ∈ L2([0, 1] , V ) with
‖v‖L2 , ‖v̄‖L2 ≤ R:

‖∇L(v)−∇L(v̄)‖L2 ≤ C(R)‖v − v̄‖L2 .

We note κ the constant associated to Assump-
tion 1. The proof of Property 3 relies on the following
lemma:

Lemma 2. Let v, v̄ ∈ L2([0, 1] , V ) be some con-
trol parameters and R ≥ 0 be some radius such that
‖v‖L2 , ‖v̄‖L2 ≤ R. Let (x, y) ∈ Rd×Rd′ be some pair
of data input / objective output.

(i) Let z, z̄ be solutions of Eq. (6) with parameter v
and v̄ respectively and with the same initial condition
Ax, then for any t ∈ [0, 1]:

‖zt − z̄t‖ ≤ κeκR‖v − v̄‖L2 .

(ii) Let p, p̄ be solutions of Eq. (13) with param-
eter v and v̄ respectively and with initial condition
1
NB

>(Bz1 − y) and 1
NB

>(Bz̄1 − y), then for any
t ∈ [0, 1]:

‖pt − p̄t‖ ≤
κe2κR‖B‖2

N
‖v−v̄‖L2

[
‖B‖2+‖B(z̄1−y)‖(1+ReκR)

]
.

Proof of Lemma 2. Proof of (i) For every time
t ∈ [0, 1] we have:

zt − z̄t =

∫ t

0

(
vs(zs)− v̄s(z̄s)

)
ds

=

∫ t

0

(
vs(zs)− vs(z̄s) + vs(z̄s)− v̄s(z̄s)

)
ds ,

and by triangle inequality:

‖zt − z̄t‖ ≤
∫ t

0

(
‖vs(zs)− vs(z̄s)‖+ ‖vs(z̄s)− v̄s(z̄s)‖

)
ds

≤
∫ t

0

κ‖vs‖V ‖‖zs − z̄s‖ds+

∫ t

0

κ‖vs − v̄s‖V ds ,

where we used Assumption 1 in the second inequality.
Therefore, by Grönwall’s lemma:

‖zt − z̄t‖ ≤ κeκ‖v‖L2

∫ t

0

‖vs − v̄s‖V ds

≤ κeκR‖v − v̄‖L2 .

Proof of (ii) For any t ∈ [0, 1] we have:

pt − p̄t =(p1 − p̄1)−
∫ t

1

(
Dvs(zs)

>ps −Dv̄s(z̄s)>p̄s
)
ds

=(p1 − p̄1)−
∫ t

1

Dvs(zs)
>(ps − p̄s)ds

−
∫ t

1

(
Dvs(zs)−Dvs(z̄s)

)>
p̄sds

−
∫ t

1

(
Dvs(z̄s)−Dv̄s(z̄s)

)>
p̄sds ,

and using the triangle inequality and Assumption 1:

‖pt − p̄t‖ ≤‖p1 − p̄1‖+

∫ 1

t

κ‖vs‖V ‖ps − p̄s‖ds

+

∫ 1

t

κ‖vs‖V ‖zs − z̄s‖‖p̄s‖ds

+

∫ 1

t

κ‖vs − v̄s‖V ‖p̄s‖ds.

Then, using Grönwall’s lemma backward in time
gives:

‖pt − p̄t‖ ≤‖p1 − p̄1‖eκ‖v‖L2

+ κeκ‖v‖L2

∫ 1

t

‖vs − v̄s‖V ‖p̄s‖ds

+ κeκ‖v‖L2

∫ 1

t

‖vs‖V ‖zs − z̄s‖‖p̄s‖ds.

On one hand, because of (i) we have for every
s ∈ [0, 1]:

‖zs − z̄s‖ ≤ κeκR‖v − v̄‖L2 ,
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and also:

‖p1 − p̄1‖ =
1

N
‖B>B(z1 − z̄1)‖

≤ ‖B‖
2
2

N
κeκR‖v − v̄‖L2 .

On the other hand, recalling (ii) of Lemma 1, for
every s ∈ [0, 1]:

‖p̄s‖ ≤
σmax(B>)

N
eκR‖Bz1 − y‖.

The result follows by putting these estimates in the
preceding inequality:

‖pt − p̄t‖ ≤
‖B‖22
N

κe2κR‖v − v̄‖L2

+
σmax(B>)

N
κe2κR‖B(z̄1 − y)‖‖v − v̄‖L2

+R
σmax(B>)

N
κ2e3κR‖B(z̄1 − y)‖‖v − v̄‖L2 .

Proof of Property 3. Let v, v̄ ∈ L2([0, 1] , V ) with
‖v‖L2 , ‖v̄‖L2 ≤ R. Then taking the same notation
as in Lemma 2, we have for any t ∈ [0, 1]:

∇L(v)t −∇L(v̄)t =

N∑
i=1

K(., zit)p
i
t −

N∑
i=1

K(.z̄it)p̄
i
t

=

N∑
i=1

K(., zit)(p
i
t − p̄it)

+

N∑
i=1

(K(., zit)−K(.z̄it))p̄
i
t,

and we can write ‖∇L(v)t − ∇L(v̄)t‖V ≤ T1 + T2
with:

T1 = ‖
N∑
i=1

K(., zit)(p
i
t − p̄it)‖V ,

T2 = ‖
N∑
i=1

(K(., zit)−K(.z̄it))p̄
i
t‖V .

First we consider deriving an upper bound on T1.
Note that by the definition of the norm in RKHSs
and by Assumption 2 we have:

T 2
1 =

∑
1≤i,j≤N

(pit − p̄it)>K(zit, z
j
t )(p

j
t − p̄

j
t )

≤ Λ

N∑
i=1

‖pit − p̄it‖2.

Therefore, using (ii) from Lemma 2 to bound ‖pit−p̄it‖
for every index i we get:

T 2
1 ≤ ΛC2

1‖v − v̄‖2L2 ,

with:

C2
1 =

N∑
i=1

κ2e4κR‖B‖22
N2

[
‖B‖2 + ‖B(z̄i1 − y)‖(1 +ReκR)

]2
≤

N∑
i=1

2κ2e4κR‖B‖22
N2

[
‖B‖22 + ‖B(z̄i1 − y)‖2(1 +ReκR)2

]
≤ 2κ2e4κR‖B‖42

N
+

4κ2e4κR‖B‖22
N

(1 +ReκR)2L(v̄),

where we recognised L(v̄) in the third line. By con-
tinuity of L we can define for every R ≥ 0:

L∗(R) := sup
‖v‖L2≤R

L(v).

And therefore:

C2
1 ≤

2κ2e4κR‖B‖42
N

+
4κ2e4κR‖B‖22

N
(1 +ReκR)2L∗(R)

=: C3(R)2.

We then consider deriving an upper-bound on T2.
By triangle inequality:

T2 ≤
N∑
i=1

‖(K(., zit)−K(., z̄it))p̄
i
t‖V .

Consider any α ∈ V , then for any index i ∈ J1, NK,
by the reproducing property:

〈(K(., zit)−K(., z̄it))p̄
i
t, α〉V = 〈α(zit)− α(z̄it), p̄

i
t〉

≤ κ‖α‖V ‖zit − z̄it‖‖p̄it‖,
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where we used the Cauchy-Schwarz inequality
and Assumption 1 applied to α. Therefore, by du-
ality:

‖(K(., zit)−K(., z̄it))p̄
i
t‖V ≤ κ‖zit − z̄it‖‖p̄it‖.

Using the estimates of Lemma 1 and Lemma 2 we
get:

‖(K(., zit)−K(., z̄it))p̄
i
t‖V

≤ κ2e2κR‖B‖2
N

‖Bz̄i1 − yi‖‖v − v̄‖L2 .

And finally, using Cauchy-Schwarz inequality and
recognizing L(v̄) we have:

T 2
2 ≤ N

N∑
i=1

‖(K(., zit)−K(., z̄it))p̄
i
t‖2V

≤ C2
2‖v − v̄‖2L2 ,

with:

C2
2 = 2κ4e4κR‖B‖22L(v̄)

≤ 2κ4e4κR‖B‖22L∗(R) =: C4(R)2.

Therefore we obtain the result by setting:

C(R) =
[
ΛC3(R)2 + C4(R)2

]1/2
.

Provided with Property 3, we can finish the proof
of Theorem 2.

Proof of Theorem 2. By Property 2, L satisfies the
PL inqualities of Definition 2 and the proof is a direct
corollary of Theorem 1. It only remains to show that
the smoothness condition of Definition 3 is verified.

Let v, v̄ ∈ L2([0, 1] , V ) such that ‖v‖L2 , ‖v̄‖L2 ≤ R
for some radius R ≥ 0. Then we have:

L(v̄) =L(v) +

∫ 1

0

∇L(v + t(v̄ − v)).(v̄ − v)dt

=L(v) +∇L(v).(v̄ − v)

+

∫ 1

0

[
∇L(v + t(v̄ − v))−∇L(v)

]
· (v̄ − v)dt.

Using Property 3, there exists some C(R) such that:

‖∇L(v + t(v̄ − v))−∇L(v)‖L2 ≤ tC(R)‖v̄ − v‖L2 .

This gives the inequality:

L(v̄) ≤ L(v) +∇L(v) · (v̄ − v) +
C(R)

2
‖v̄ − v‖2L2 ,

which is the desired result.

C Proofs of Section 5

The results in Section 5 show how the condition for
convergence in Eq. (18) can be enforced by consid-
ering suitable RKHSs of vector-fields in sufficiently
high dimension q. We give in Appendix C.3 exam-
ples of suitable kernels.

In the following, we assume that for every q ≥ 1 we
are provided with a function kq : R+ → R such that
the induced symmetric rotationally-invariant kernel
Kq defined by:

∀z, z′ ∈ Rq, Kq(z, z
′) = kq(‖z − z′‖) Idq, (33)

is a positive-definite kernel over Rq. Without loss of
generality, one can assume kq to be normalized, that
is kq(0) = 1. We note Vq the vector-valued RKHS
associated to Kq. The properties of Vq are then en-
tirely determined by kq. In particular, smoothness of
the kernel at 0 implies regularity of the vector-fields
in Vq:

Property 4 (Regularity of Vq). Let kq : R+ → R
be some function defining a positive symmetric ker-
nel Kq. If kq is 4 times differentiable at 0, with
k′q(0) = k

(3)
q (0) = 0. Then Vq satisfies Assumption 1

with constant κ =
√
kq(0) +

√
−k′′q (0) +

√
k
(4)
q (0).

As a consequence, if the derivatives of kq can be
bounded uniformly over q then Vq satisfies Assump-
tion 1 with some constant κ independent of q. This,
is the case for the Matérn kernel k defined in Eq. (20).

Proof. The proof proceeds by duality arguments. For
q ≥ 1, consider some v ∈ Vq. Then for any z ∈ Rq
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and any α ∈ Vq, by the reproducing properties of
RKHSs:

〈v(z), α〉 = 〈v,Kq(., z)α〉Vq
≤ ‖v‖Vq‖Kq(., z)α‖Vq
= ‖v‖Vq

(
〈α,Kq(z, z)α〉

)1/2
≤
√
kq(0)‖v‖Vq‖α‖.

Therefore, by duality ‖v(z)‖ ≤
√
kq(0)‖v‖Vq and

then by taking the supremum over z ∈ Rq:

‖v‖∞ ≤ kq(0)‖v‖Vq .

Then for any z ∈ Rq any α, β ∈ Rq and any h ∈ R+:

〈v(z + hα)− v(z), β〉
= 〈v, (Kq(., z + hα)−Kq(., z))β〉
≤ ‖v‖Vq‖(Kq(., z + hα)−Kq(., z))β‖Vq .

In the r.h.s we have using the Taylor’s expansion of
kq at 0.:

‖(Kq(., z + hα)−Kq(., z))β‖2Vq

=

(
β
−β

)>(
kq(0)Idq kq(h‖α‖)Idq

kq(h‖α‖)Idq k(0)Idq

)(
β
−β

)
=2‖β‖2(kq(0)− kq(h‖α‖))
=− ‖β‖2h2‖α‖2k′′q (0) + o(h2).

Taking the limit h→ 0:

〈Dv(z)α, β〉 = lim
h→0

h−1〈v(z + hα)− v(z), β〉

≤
√
−k′′q (0)‖v‖Vq‖α‖‖β‖,

and therefore ‖Dv(z)‖2 ≤
√
−k′′q (0)‖v‖Vq .

Finally, let us bound ‖D2v‖2,∞. For any z ∈ Rq
any α, β, γ ∈ Rq and any h, l ≥ 0 we have in the same
manner:

〈v(z + hβ + lα)− v(z + hβ)− v(z + lα) + v(z), γ〉

≤ ‖v‖Vq‖β‖‖α‖‖γ‖hl
√
k
(4)
q (0) + o(hl)

where the second line is obtained by Taylor expansion
of kq at 0. Therefore, passing to the limit h, l→ 0:

〈D2v(z)(α, β), γ〉
= lim
h,l→0

h−1l−1〈v(z + hβ + lα)

− v(z + hβ)− v(z + lα) + v(z), γ〉

≤
√
k
(4)
q (0)‖v‖Vq‖β‖‖α‖‖γ‖,

and therefore ‖D2v(z)‖2 ≤
√
k
(4)
q (0)‖v‖Vq .

Setting κ =
√
kq(0) +

√
−k′′q (0) +

√
k
(4)
q (0) we ob-

tain the result. Moreover, choosing appropriate v in
the above proof, inequalities become sharp and one
observes that the constant κ is optimal.

C.1 Enforcing convergence with high
dimensional embedding and uni-
versal kernels

Here we investigate the dependency of Eq. (18) w.r.t.
q, δ and N for the class of RKHS Vq and thereby
recover the proof of Proposition 1.

We make the following assumption concerning the
decay of kq at infinity:

Assumption 3 (Decay of kq). For every q ≥ 1,
kq(x) tends to 0 when x tends to infinity and we note
βq,N > 0 s.t.:

∀x ≥ βq,N , |kq(x)| ≤ 1

2N
.

Moreover for fixed N we assume that

βq,N = oq→+∞(q1/4).

Recall that for any q ≥ 1 we consider the matrices:

Aq := q−1/4(Idd, ..., Idd, 0)> ∈ Rq×d,

Bq := q1/4(Idd′ , 0...0) ∈ Rd
′×q,

where there are bq/dc copies of Idd in Aq. In partic-
ular we have:

σmin(Aq) = q−1/4
√
bq/dc ' q1/4,

σmin(B>q ) = σmax(B>q ) = q1/4
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and BqAq ∈ Rd′×d is independent of q. We also con-
sider for every q ≥ 1 some control parameter initial-
ization V 0

q ∈ L2(Vq) such that ‖v0q‖L2 ≤ R0q
−1/4

and recall that we assume the data distribution to be
compactly supported.

Proposition 4. Assume Assumption 3 is satisfied
and Vq satisfies Assumption 1 for every q ≥ 1
with constant κ independent of q. Then there ex-
ists some constant C ≥ 0 so that for any N ≥ 2, any
δ ∈ (0, 1] and any dataset (xi, yi)1≤i≤N ∈ (Rd′×Rd)N
with input data separation δ GD converges towards
a zero-training-loss optimum in the training of the
RLHS-FlowResNet model of Definition 1 with matri-
ces Aq, Bq, RKHS Vq and initialization v0q as soon
as:

q ≥ CN4, and q ≥ Cδ−4β4
q,N . (34)

Note that the second condition in Eq. (34) can al-
ways be ensured for large enough q thanks to As-
sumption 3. In the case of the Matérn kernel k de-
fined in Eq. (20), such an assumption is verified be-
cause it has exponential decay and it is independent
of q. Hence, Proposition 1 is a direct consequence
of Proposition 4.

Proof of Proposition 4. Let q ≥ 1. Using the fact
that d2bq/dc2 ≥ q(q − 2d), considering:

q ≥ 2d+ d2
β4
q,N

δ4e−4κ(R+R0)
(35)

is enough to ensure that:

q−1/4
√
bq/dcδe−κ(R+R0) ≥ βq,N .

Then, by Assumption 3 for any point cloud
(zi)1≤i≤N ∈ (Rq)N with data separation
q−1/4

√
bq/dcδe−κ(R+R0) we have:

∀1 ≤ i < j ≤ N, |kq(‖zi − zj‖)| ≤
1

2N
.

Thus, the kernel matrix K = (kq(‖zi − zj‖) Idq)i,j is
diagonally dominant with:

λmin(K) ≥ 1− N − 1

2N
≥ 1

2
,

and by definition of λ in Eq. (18):

λ(σmin(Aq)
−1δ−1eκ(R+R0)) ≥ 1

2
. (36)

Moreover, Λ ≤ N because kq is bounded by 1.
Let x ∈ B(0, r0) and assume z is a solution

of Eq. (6) for the control parameter v0q and with ini-
tial condition Aqx. We have at time t = 1:

z1 = Aqx+

∫ 1

0

(v0q )t(zt)dt,

so that by triangle inequality and Assumption 1:

‖z1 −Aqx‖ ≤ κ‖v0q‖L2 ,

and then because ‖v0q‖ ≤ R0q
−1/4 and the dataset is

compactly supported:

‖F (v0q , x)‖ = ‖Bqz1‖
≤ ‖BqAqx‖+ ‖Bq(z1 −Aqx)‖
≤ ‖BqAq‖2r0 + κR0,

with BqAq independent of q. Thus L(v0q ) ≤ C for
some constant C independent of q, N and δ.

Finally:

σmax(B>q )

σmin(B>q )2
= q−1/4, (37)

and putting Eq. (26) and Eq. (37) into the
l.h.s. Eq. (18) gives:

2
√

2σmax(B>q )
√
NΛL(0)e3κ(R+R0)

σmin(B>q )2λ(σmin(Aq)−1δ−1e−κ(R+R0))

≤ 4
√

2Ce3κ(R+R0)
N

q1/4
.

Considering R > 0 is fixed (c.f. Remark 6), Theo-
rem 2 can be applied as soon as:

q ≥ 210C2e12κ(R+R0)R−4N4 (38)

and combining this bound with the one in Eq. (35)
gives the result.
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C.2 Enforcing convergence with high
dimensional embedding en finite
dimensional kernels

We recover here the result of Proposition 2 for the
more general kernel kq. In particular notice that, as
an application of Bochner’s theorem [48], for every
q ≥ 1 there exists some probability measure µq over
Rq such that:

∀z ∈ Rq, kq(‖z‖) =

∫
Rq
eı〈z,ω〉dµq(ω). (39)

Then, such as in Eq. (29) for the Matérn kernel, for
any independent sampling ωj ∼ µq of size r one can
consider the feature map:

ϕ : z 7→
(
eı〈z,ω

j〉
)
1≤j≤r

∈ Cr. (40)

Such a feature map induces a structure of RKHS V̂q
which is the set of residuals of Eq. (3) with activation
ϕ. The associated kernel is K̂q : (z, z′) 7→ k̂q(z, z

′) Idq
with:

∀z, z′ ∈ Rq, k̂q(z, z′) := 〈ϕ(z), ϕ(z′)〉
r→+∞−−−−−→ kq(‖z − z′‖),

almost surely, by the law of large numbers.
We make the following assumption on µq:

Assumption 4 (Moments of µq). The measure µq
admits finite moments up to order 8:

Eµq

 8∏
j=1

∣∣ωij ∣∣
 <∞, ∀i1, ..., i8 ∈ J1, qK.

Moreover, we assume those moments are independent
of q.

Note that Assumption 4 implies regularity on the
function kq. Indeed by Fourier inversion theorem we
have for every r ∈ R+ and every θ ∈ Sd−1:

kq(r) = Eµq
[
eır〈θ,ω〉

]
.

By theorems of derivation under the integral kq is
8th-time differentiable on R+ and for 0 ≤ l ≤ 8:

k(l)q (r) = Eµq
[
(ı〈θ, ω〉)leır〈θ,ω〉

]
.

In particular, kq is four time differentiable at 0 and:

k′(0) = Eµq [ı〈θ, ω〉]
k(3)(0) = Eµq

[
−ı〈θ, ω〉3

]
Therefore, k′q(0) and k

(3)
q (0) are in ıR ∩ R = {0}

and Property 4 holds. Moreover, as the moments are
independent of q, the associated κ is also independent
of q.

Proposition 5. Consider any q,N ≥ 1 and any
ε, τ, R > 0.

(i) Assume Assumption 4 is satisfied. For
r ≥ Ω(τq8), with probability greater than 1 − τ−1,
V̂q satisfies Assumption 1 with some κ̂ ≤ κ+ 1.

(ii) For r ≥ Ω(ε−2N2(q log(‖A‖2r0 + R) + τ)),
with probability greater than 1− e−τ , for any control
parameter v ∈ L2([0, 1] , V̂q) s.t. ‖v‖L2 ≤ R and any
time t ∈ [0, 1]:

λmin(K̂((zit)i)) ≥ λmin(K((zit)i))− ε,

where the (zi)i are the solutions to Eq. (6) and K̂, K
are the kernel matrices associated to k̂ and k respec-
tively.

As Assumption 4 is satisfied for the Matérn kernel
k defined in Eq. (20) as soon as ν > 4, Proposition 2
is a direct consequence of Proposition 5.

Proof of Proposition 5. As the proof of (ii) already
holds in full generality it only remains to show that
(i) is true for general functions kq satisfying our as-
sumptions.
Proof of (i) We already saw that thanks to the

assumption on the moments of µq, the RKHS Vq as-
sociated to kq satisfies Assumption 1 with constant
κ.

Then we want to prove that for sufficiently high
r, the RKHS V̂q generated by the feature map ϕ
in Eq. (29), satisfies Assumption 1.
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Let v ∈ V̂q be of the form:

v : z 7→Wϕ(z)

for some W ∈ Rq×r. For z ∈ Rq, ‖ϕ(z)‖ = 1 and
thus:

‖v(z)‖ = ‖Wϕ(z)‖ ≤ ‖W‖ = ‖v‖V̂q ,

so that ‖v‖∞ ≤ ‖v‖V̂q .
Then Dv(z) = WDϕ(z) and by the law of large

number we have for any θ ∈ Sq−1:

‖Dϕ(z)θ‖2 =
1

r

r∑
j=1

∑
1≤k,l≤q

ωjkω
j
l θkθl

=
1

r

r∑
j=1

〈ωj , θ〉2

r→+∞−−−−−→ Eµq
[
〈ω, θ〉2

]
= −k′′q (0).

Because µq admits finite fourth order moments, the
rate of convergence can be controlled using Cheby-
shev’s inequality. For every indices k, l ∈ J1, qK:

P
( ∣∣∣∣∣∣1r

r∑
j=1

ωjkω
j
l − Eµq [ωkωl]

∣∣∣∣∣∣ ≥ α/q) ≤ q2Eµq
[
ω2
kω

2
l

]
α2r

.

For r ≥ Ω( q
4τ
α2 ) we have with probability greater than

1 − τ−1 that the above inequality is satisfied for ev-
ery indices k, l. Thus for every z ∈ Rq and every
θ ∈ Sq−1:∣∣‖Dϕ(z)θ‖2 + k′′q (0)

∣∣
≤

∑
1≤k,l≤q

|θkθl|
∣∣∣1
r

r∑
j=1

ωjkω
j
l − Eµq [ωkωl]

∣∣∣
≤

∑
1≤k,l≤q

|θkθl|
α

q
≤ α,

using Chauchy-Schwarz inequality in the last line.
We can thus conclude:

‖Dϕ‖22,∞ ≤ −k′′q (0) + α.

The same arguments holds for
D2v(z) = WD2ϕ(z). For any θ ∈ Sq−1 we

have:

D2ϕ(z)(θ, θ) =

 1√
r

∑
1≤k,l≤q

−eı〈z,ω
j〉ωjkω

j
l θkθl


1≤j≤r

.

Passing to the squared norm we get:

‖D2ϕ(z)(θ, θ)‖2

=
1

r

r∑
j=1

∑
1≤k,l,s,t≤q

ωjkω
j
l ω

j
sω

j
t θkθlθsθt

r→+∞−−−−−→
∑

1≤k,l,s,t≤q
Eµq [ωkωlωsωt] θkθlθsθt

=Eµq
[
〈ω, θ〉4

]
= k(4)q (0).

Then because µq admits 8th order moments, we can
control the convergence in probability by Cheby-
shev’s inequality. For r ≥ Ω( q

8τ
α2 ) we have with prob-

ability greater than 1− τ−1:

‖D2ϕ‖22,∞ ≤ k(4)q (0) + α.

Finally V̂q satisfies Assumption 1 with:

κ̂ ≤ (kq(0))1/2 + (−k′′q (0))1/2 + (k(4)q (0))1/2 + 1

for α sufficiently low.

Note that the assumption of finite 8th moments is
only needed to have a control of the convergence rate
of k̂q towards kq in probability. Following the proof
and by the law of large numbers, assuming finite 4th-
order moments is sufficient to have convergence al-
most surely. Also, we used the Chebyshev’s inequal-
ity in order to control the convergence rate. Making
stronger assumptions on the decay of µq, such as sub-
gaussianity for example, could have led to faster con-
vergence by using sharper concentration inequalities.

C.3 Example of appropriate kernels

We show here that the Matérn kernel of parameter
ν ∈ (8,+∞] satisfies Assumption 3 and Assump-
tion 4.
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Gaussian kernel The Gaussian kernel defined by
for some parameter σ > 0 by kq(r) = e−

σ2r2

2 . In this
case the frequency distribution µq is the multivariate
normal of variance σ and has a density which is given
for every ω ∈ Rq by:

µq(ω) =
1

(2πσ2)q/2
e−
‖ω‖2

2σ2 ,

This distribution admits finite moments of every or-
der which are independent of q. Also, kq is four times
differentiable at 0 and by Property 4 the associated
Vq is (strongly) admissible with κ = 2 +

√
3

Moreover Assumption 3 as one has |kq(x)| ≤ 1/2N
if:

x ≥ βq,N =
2

σ2

√
log(2N).

Matérn kernel Sobolev spaces Hs(Rq,Rq) which
are RKHSs as soon as s > q/2. Given some ν > 0, the
kernel kq associated to H(q/2+ν)(Rq,Rq) is indepen-
dent of q and is defined in Eq. (20). It is associated
with the multivariate t-distribution:

µq(ω) = C(q, ν)(1 +
‖ω‖2

2ν
)−(ν+q/2),

for some normalising constant C(q, ν). Therefore,
µq admits lth order moments as soon as ν ≥ l/2,
and those moments are bounded independently of q
(see [28] for the computation of moments). In partic-
ular, for ν > 2, kq is four times differentiable at 0 with
k′′(0) = ν/(ν − 1) and k(4)(0) = 3ν2/(ν − 1)(ν − 2).
Thus by Property 4, Vq is (strongly) admissible with:

κ = 1 +

√
ν

(ν − 1)
+

√
3ν2

(ν − 1)(ν − 2)
.

Because kq has exponential decay (see for exam-
ple [30]), there exist constants Hν , Gν such that:

|kq(r)| ≤ Gνe−H
−1
ν r

and Assumption 3 is satisfied with

βq,N = Hν log(2GνN).
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