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Abstract: Randomized controlled trials (RCTs) are often considered the gold standard for estimating causal
effect, but they may lack external validity when the population eligible to the RCT is substantially different
from the target population. Having at hand a sample of the target population of interest allows us to
generalize the causal effect. Identifying the treatment effect in the target population requires covariates
to capture all treatment effect modifiers that are shifted between the two sets. Standard estimators then use
either weighting (IPSW), outcome modeling (G-formula), or combine the two in doubly robust approaches
(AIPSW). However, such covariates are often not available in both sets. In this article, after proving
L1-consistency of these three estimators, we compute the expected bias induced by a missing covariate,
assuming a Gaussian distribution, a continuous outcome, and a semi-parametric model. Under this setting,
we perform a sensitivity analysis for each missing covariate pattern and compute the sign of the expected
bias. We also show that there is no gain in linearly imputing a partially unobserved covariate. Finally, we
study the substitution of a missing covariate by a proxy. We illustrate all these results on simulations, as
well as semi-synthetic benchmarks using data from the Tennessee student/teacher achievement ratio
(STAR), and a real-world example from critical care medicine.
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1 Introduction

1.1 Context

Randomized controlled trials (RCTs) are often considered the gold standard for estimating causal effects [1]. Yet,
they may lack external validity, when the population eligible to the RCT is substantially different from the target
population of the intervention policy [2]. Indeed, if there are treatment effect modifiers with a different distribu-
tion in the target population than that in the trial, some form of adjustment of the causal effects measured on the
RCT is necessary to estimate the causal effect in the target population. Using covariates present in both RCT and
an observational sample of the target population, this target population average treatment effect (ATE) can be
identified and estimated with a variety of methods [3–15], reviewed in refs [16,17].
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In this context, two main approaches exist to estimate the target population ATE from an RCT. The
inverse probability of sampling weighting (IPSW) reweights the RCT sample so that it resembles the target
population with respect to the necessary covariates for generalization, while the G-formula models the
outcome, using the RCT sample, with and without treatment conditionally on the same covariates, and then
marginalizes the model to the target population of interest. These twomethods can be combined in a doubly
robust approach – augmented inverse probability of sampling weighting (AIPSW) – which enjoys better
statistical properties. These methods rely on covariates to capture the heterogeneity of the treatment and
the population distributional shift. But the datasets describing the RCT and the target population are
seldom acquired as part of a homogeneous effort, and as a result, they come with different covariates
[6,18–22]. Restricting the analysis to the covariates in common raises the risk of omitting an important
one leading to identifiability issues. Controlling biases due to unobserved covariates are of crucial impor-
tance for causal inference, where it is known as sensitivity analysis [23–25].

1.2 Prior work

The problem of missing covariates is central in causal inference as, in an observational study, one can never
prove that there is no hidden confounding. In that setting, sensitivity analysis strives to assess how far
confounding would affect the conclusion of a study (e.g., would the ATE be of a different sign with such a
hidden confounder). Such approaches date back to a study on the effect of smoking on lung cancer [23], and
have been further developed for both parametric [24–28] and semi-parametric situations [29,30]. Typically,
the analysis translates expert judgment into mathematical expression of how much the confounding affects
the treatment assignment and the outcome, and finally how much the estimated treatment effect is biased. In
practice, the expert must usually provide sensitivity parameters that reflect plausible properties of the missing
confounder. Classic sensitivity analysis, dedicated to ATE estimation from observational data, use as sensi-
tivity parameters the impact of the missing covariate on treatment assignment probability along with the
strength on the outcome of the missing confounder. However, given that these quantities are hardly directly
transposable when it comes to generalization, these approaches cannot be directly applied to estimate the
population treatment effect. These parameters have to be respectively replaced by the covariate shift and the
strength of a treatment effect modifier. Existing sensitivity analysismethods for generalization usually consider
a completely unobserved covariate. Ref. [31] rely on a logistic model for sampling probability and a linear
generative model of the outcome. Ref. [32] propose a sensitivity analysis assuming a model on the identifica-
tion bias of the conditional average treatment effect. Very recent works propose two other approaches: (i) Ref.
[33] rely on the IPSW estimator and bound the error on the density ratio and then derive the bias on the ATE
following the spirit of ref. [25]; (ii) Ref. [34] present a method with very few assumptions on the data
generative process leading to three sensitivity parameters, including the variance of the treatment effect.
As the analysis starts from two data sets, the missing covariate can also be partially observed in one of the two
data sets, which opens the door to new dedicated methods, in addition to sensitivity methods for totally
missing covariates. Following this observation, refs [35,36] handle the case where a covariate is present in the
RCT but not in the observational data set, and establish a sensitivity analysis under the hypothesis of a linear
generative model for the outcome. When the missing covariate is partially observed, practitioners sometimes
impute missing values based on other observed covariates, though this approach is poorly documented. For
example, [19] impute a partially observed covariate in a clinical study using a range of plausible distributions.
Imputation has also been used in the context of individual participant data in meta-analysis [37,38].

1.3 Contributions

In this work, we investigate the problem of a missing covariate that affects the identifiability of the target
population average treatment effect (ATE), a common situation when combining different data sources.
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This work comes after the identifiability assessment, that is, we consider that the necessary set of covariates
to generalize is known, but a necessary covariate is totally or partially missing. Section 2 recalls the context
along with the generic notations and assumptions used when coming to generalization. In Section 3, we
quantify the bias due to unobserved covariates under the assumption of a semi-parametric generative
process, considering a linear conditional average treatment effect (CATE) and under a transportability
assumption of links between covariates in both populations. This bias is not estimator specific and remains
valid for the IPSW, G-formula, and AIPSW estimators. We also prove that a linear imputation of a partially
missing covariate cannot replace a sensitivity analysis. As mentioned in Section 1, and unlike classic
sensitivity analysis, several missing data patterns can be observed: either totally missing or missing in
one of the two sets. Therefore, Section 3 provides sensitivity analysis frameworks for all the possible
missing data patterns, including the case of a proxy variable that would replace the missing one. These
results can be useful for users as they may be tempted to consider the intersection of common covariates
between the RCT and the observational data. We detail how the different patterns involve either one or two
sensitivity parameters. To give users an interpretable analysis, and due to the specificity of the sensitivity
parameters at hands, we propose an adaptation of sensitivity maps [24] that are commonly used to com-
municate sensitivity analysis results. Section 4 presents an extensive synthetic simulation analysis that
illustrates theoretical results along with a semi-synthetic data simulation using the Tennessee student/
teacher achievement ratio (STAR) experiment evaluating the effect of class size on children performance in
elementary schools [39]. Finally, Section 5 provides a real-world analysis to assess the effect of acid
tranexomic on the disability rating score (DRS) for trauma patients when a covariate is totally missing.

2 Problem setting: generalizing a causal effect

This section recalls the complete case context and identification assumptions. Any reader familiar with the
notations and willing to jump to the sensitivity analysis can directly go to Section 3.

2.1 Notations

Notations are grounded on the potential outcome framework [1]. We model each observation in the RCT or
observational population as described by a random tuple ( ( ) ( ) )X Y Y A S, 0 , 1 , ,i i i i i for { }∈ …i n1, , drawn from
a distribution � �( ( ) ( ) ) { }∈ × ×X Y Y A S, 0 , 1 , , 0, 1p 2 2, such that the observations are iid. For each observa-
tion, Xi is a p-dimensional vector of covariates, Ai denotes the binary treatment assignment (with =A 1i if
treated and =A 0i otherwise), ( )Y ai is the continuous outcome had the subject been given treatment a (for

{ }∈a 0, 1 ), and Si is a binary indicator for RCT eligibility (i.e., meet the RCT inclusion and exclusion criteria)
and willingness to participate if being invited to the trial ( =S 1i if eligible and =S 0i if not). Assuming
consistency of potential outcomes, and no interference between treated and nontreated subject (SUTVA
assumption), we denote by ( ) ( ) ( )= + −Y A Y A Y1 1 0i i i i i the observed outcome under treatment assign-
ment Ai.

Assuming the potential outcomes are integrable, we define the conditional average treatment effect
(CATE):

�� ( ) [ ( ) ( )∣ ]∀ ∈ = − =x τ x Y Y X x, 1 0 ,

and the population average treatment effect (ATE):

� �[ ( ) ( )] [ ( )]= − =τ Y Y τ X1 0 .

Unless explicitly stated, all expectations are taken with respect to all variables involved in the expression.
We model the patients belonging to an RCT sample of size n and in an observational data sample of size

374  Bénédicte Colnet et al.



m by +n m independent random tuples: { ( ) ( ) }
=

+X Y Y A S, 0 , 1 , , ,i i i i i i
n m

1 where the RCT samples = …i n1, ,
are identically distributed according to �( ( ) ( ) ∣ )=X Y Y A S S, 0 , 1 , , 1 , and the observational data
samples = + … +i n n m1, , are identically distributed according to �( ( ) ( ) )X Y Y A S, 0 , 1 , , . We also denote
� { }= … n1, , the index set of units observed in the RCT study, and � { }= + … +n n m1, , the index set of
units observed in the observational study.

For each RCT sample �∈i , we observe ( )=X A Y S, , , 1i i i i , while for observational data �∈i , we con-
sider the setting where we only observe the covariates Xi, which is a common case in practice. A typical data
set is presented in Figure 1.

Because the RCT sample and observational data do not follow the same covariate distribution, the ATE
τ is different from the RCT’s (or sample¹) average treatment effect τ1, which can be expressed as follows:

�[ ( ) ( )∣ ]≠ ≔ − =τ τ τ Y Y S, where 1 0 1 .1 1

This difference is the core of the lack of external validity introduced in the beginning of the work, but
formalized with a mathematical expressions². Throughout the article, we denote �( ) [ ( )∣ ]≔ =μ x Y a X xa the
conditional mean outcome under treatment { }∈a 0, 1 (also called responses surfaces). and ( ) ≔e x1
�( ∣ )= = =A X x S1 , 1 the propensity score in the RCT population. This function is imposed by the trial
characteristics and is usually a constant denoted by e1 (other cases include stratified RCT trials).

For notational clarity, estimators are indexed by the number of observations used for their computa-
tion. For instance, response surfaces can be estimated using controls and treated individuals in the RCT to
obtain, respectively, μ̂ n0, and μ̂ n1, . Similarly, we denote by τ̂n an estimator of τ depending only on the RCT

samples (e.g., the difference-in-means estimator), and by τ̂n m, an estimator computed using both datasets.

2.2 Identifiability (or causal) assumptions

The consistency of treatment assignment assumption ( ( ) ( ) ( )= + −Y AY A Y1 1 0 ) has already been introduced
in Section 2. To ensure the internal validity of the RCT, we need to assume randomization of treatment
assignment and positivity of trial treatment assignment.

Figure 1: Typical data structure, where a covariate would be available in the RCT, but not in the observational data set (left) or
the reverse situation (right). In this specific example, obs 1, 2{ }= (mis 3{ }= ), corresponds to common (resp. different) cov-
ariates in the two datasets.



1 Usually τ1 is also called the sample average treatment effect (SATE), when τ is named the population average treatment effect
(PATE) [5,17,21,40].
2 Wewould like to emphasize the fact that the target quantity is not�[ ( ) ( )∣ ]− =Y Y S1 0 0 , but �[ ( ) ( )]≔ −τ Y Y1 0 . This notation
highlights that the trial sample is a biased sample from a superpopulation, while the observational data are an unbiased sample
of this population. In other words, the target population contains individuals with =S 1 or =S 0. Note that the generalizability
problem tackled in this work – aiming to recover from a sampling bias – can also be equivalently seen as a transportability
problem with two separate populations and a common support. See ref. [16] for a discussion or ref. [33] for a similar sensitivity
analysis method, presented as a transportability problem.
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Assumption 1. (Treatment randomization within the RCT) { } ( ) ∣∀ ∈ ⊥⊥ =a Y a A S X0, 1 , 1, .

In some cases, the trial is said to be completely randomized, that is, { } ( ) ∣∀ ∈ ⊥⊥ =a Y a A S0, 1 , 1, thus
removing any potential stratification of the treatment assignment.

Assumption 2. (Positivity of trial treatment assignment) ∃ >η 01 , � ( )∀ ∈ ≤ ≤ −x η e x η, 11 1 1.

Under these two assumptions, along with the SUTVA assumption (see, e.g., [1]), the most classical
difference-in-means estimator is consistent for τ1. To generalize the RCT estimate to the target population,
three additional assumptions are required for the identification of the target population ATE τ.

Assumption 3. (Representativity of observational data) For all � �( )∈i X X, ~i , where � is the target
population distribution.

Then, a key assumption concerns the set of covariates that allows the identification of the target
population treatment effect. This implies a conditional independence relation being called the ignorability
assumption on trial participation or S-ignorability [3,5,8,11,20,21,36,41,42].

Assumption 4. (Ignorability assumption on trial participation – [5]) ( ) ( ) ∣− ⊥⊥Y Y S X1 0 .

Assumption 4 indicates that covariates X needed to generalize correspond to covariates being both
treatment effect modifiers and subject to a distributional shift between the RCT sample and the target
population. Different strategies have been proposed to assess whether a treatment effect is constant and
usually relies on marginal variance, CDFs, or quantiles comparison [43]. Other techniques are possible such
as comparing [ ∣ ]= =Y X A SVar , 1, 1obs to [ ∣ ]= =Y X A SVar , 0, 1obs , to assess whether an important treat-
ment effect modifier is missing. In our work, we assume that the user is aware of which variables are
treatment effect modifiers and subject to a distributional shift. We call these covariates as key covariates.

Assumption 5. (Positivity of trial participation – [5]) There exists a constant c such that for all x with
probability 1, �( ∣ )= = ≥ >S X x c1 0.

2.3 Estimation strategies

To transport the ATE, several methods exist: the G-formula [6,44,45], inverse propensity weighting score
(IPSW) [4,13,44], and the augmented IPSW (AIPSW) estimators. Note that other methods exist, such as
calibration [15,46]. For example, the G-formula estimator consists in modeling the expected values for each
potential outcome, conditional on the covariates.

Definition 1. (G-formula – [47]) The G-formula is denoted τ̂G n m, , , and defined as follows:

( ( ) ( ))∑= −

= +

+

τ
m

μ X μ Xˆ 1 ˆ ˆ ,G n m
i n

n m

n i n i, ,
1

1, 0, (1)

where ( )μ Xˆa n i, is an estimator of ( )μ Xa i obtained on the RCT sample. These intermediary estimates are called
nuisance components.

Beyond causal assumptions stated earlier, the behavior of the G-formula estimator strongly depends on
that of the surface response estimators μ̂a n, for { }∈a 0, 1 . To analyze the G-formula, we introduce following

assumptions on the consistency of the nuisance parameters μ̂ n0, and μ̂ n1, .
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Assumption 6. (Consistency of surface response estimators) Denote μ̂ n0, (respectively μ̂ n1, ) an estimator of
μ0 (respectively μ1). Let �n the RCT sample, so that

(H1-G) For { }∈a 0, 1 , � �[∣ ( ) ( )∣∣ ]− →μ X μ Xˆ 0a n a n
p

, when → ∞n ,

(H2-G) For { }∈a 0, 1 , there exist C N,1 1 so that for all ⩾n N1, almost surely, � �[ ( )∣ ] ⩽μ X Câ n n,
2

1.

Proposition 1. (Informal – L1-consistency of G-formula, IPSW, and AIPSW) Under causal assumptions
(Assumptions 1, 2, 3, 4, and 5) and Assumption 6, the G-formula is L1-consistent (asymptotically unbiased).
In appendix, we recall definitions of IPSW and AIPSW estimators and give the precise conditions under which
L1-consistency of those estimators is achieved.

Proofs and a more formal statement are presented in Sections A and B. The sensitivity analysis pre-
sented later holds for any L1-consistent estimator.

3 Impact of a missing key covariate for a linear CATE

3.1 Situation of interest: a missing covariate in one dataset

We study the common situation where both data sets (RCT and observational) contain a different subset of
the total covariates X . X can be decomposed as = ∪X X Xmis obs, where Xobs denotes the covariates that are
present in both data sets, the RCT and the observational study. Xmis denotes the covariates that are either
partially observed in one of the two data sets or totally unobserved in both data sets. We do not consider
(sporadic)missing data problems as in [48], but only cases where the covariate is totally observed or not per
data sources. We denote by obs (resp. mis) the index set of observed (resp. missing) covariates. An illus-
tration of a typical data set is presented in Figure 1, with an example of two missing data patterns.

In our context, due to (partially) unobserved covariates, estimators of the target population ATE may be
implemented on Xobs only. To make the notations clear, we add a subscript obs on any estimator applied on
the set Xobs rather than X . Such estimators may suffer from bias due to Assumption 4 violation, that is:

( ) ( ) ∣ ( ) ( ) ∣− ⊥⊥ − ⊥⊥Y Y S X Y Y S X1 0 but 1 0 ̸ .obs

We denote τ̂n m, ,obs any generalization estimator (G-formula, IPSW, AIPSW) applied on the covariate set
Xobs rather than X .

3.2 Expression of the missing covariate bias

3.2.1 Model and hypothesis

To analyze the effect of a missing covariate, we introduce a nonparametric generative model. In particular,
we focus on zero-mean additive-error representation, where the CATE depends linearly on X . We admit that
there exist �∈δ p, �∈

+σ , and a function �� →g : , such that:

�( ) ( )= + ⟨ ⟩ +Y g X A X δ ε ε σ, , where ~ 0, ,2 (2)

assuming ( ) ≔ ⟨ ⟩τ X X δ, . In appendix (see Section D), we prove why this assumption on the generative
model for Y does not come with a loss of generality.

Under this model, the average treatment effect (ATE) takes the following form:

� �[ ( ) ( )∣ ] ( ) ( ) [ ]∫ ∫= − = = ⟨ ⟩ =τ Y Y X x f x x δ x f x x δ X1 0 d , d .T
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Only variables that are both treatment effect modifier ( ≠δ 0j ) and subject to a distributional change
between the RCT and the target population are necessary to generalize the ATE. If some of these key
covariates are missing, the estimation of the target population ATE will be biased. Our goal here is to
express the bias of a missing variable on the transported ATE. But first, we have to specify a context in
which a certain permanence of the relationship between Xobs and Xmis in the two data sets holds. Therefore,
we introduce the transportability of covariate relationship assumption.

Assumption 7. (Transportability of covariate relationship) The distribution of X is Gaussian, that is,
�( )X μ Σ~ , , and transportability of Σ is true, that is, �∣ ( )=X S μ Σ1 ~ ,RCT .

This assumption, and in particular, the transportability of Σ , is of major importance for the sensitivity
analysis we develop below. Indeed, as soon as the correlation pattern changes in amplitude and sign
between the two populations, the sensitivity analysis can be invalidated. The plausibility of Assumption
7 can be partially assessed through a statistical test on Σobs,obs, for example, a Box’s M test [49], supported
with vizualizations [50]. A discussion can be found in the experimental study (Section 4) and in appendix
(Section G), showing that this assumption is plausible in many situations.

3.2.2 Main result

Theorem 1. Assume that Assumptions 1, 2, 3, 4, and 5 (identifiability) hold, along with Model (2) and (7)
(sensitivity model). Let B be the following quantity:

� � � �( [ ] [ ∣ ] ( [ ] [ ∣ ]))∑= − − = − − =

∈

−B δ X X S Σ Σ X X S1 1 ,
j

j j j j
mis

,obs obs,obs
1

obs obs (3)

where Σobs,obs is the submatrix of Σ composed of rows and columns corresponding to variables present in both data
sets. Similarly, Σj,obs is composed of the jth row of Σ and has columns corresponding to variables present in both
data sets. Consider a procedure τ̂n m, that estimates τ with no asymptotic bias (e.g., the G-formula introduced in
Definition 1 under Assumption 6). Let τ̂n m, ,obs be the same procedure but trained on observed data only. Then

�[ ] − =

→∞

τ τ Blim ˆ .
n m

n m
,

, ,obs (4)

Proof is given in appendix (see Section C).

3.2.2.1. Comment on L1-consistency

Theorem 1 is valid for any L1-consistent generalization estimator. In particular, we provide in appendix the
detailed assumptions (similar as Assumption 6) under which two other popular estimators, IPSW and
AIPSW, are asymptotically unbiased (see Section A). Note that most of the existing works on estimating
the target population causal effect focus on identification or establish consistency for parametric models or
oracle estimators which are not bona fide estimation procedures as they require knowledge of some
population data-generation mechanisms [4,5,13,21,45,51,52]. To our knowledge, no general L1-consistency
results for the G-formula, IPSW, and AIPSW procedures are available in a nonparametric case, when either
the CATE or the weights are estimated from the data without prior knowledge.

3.2.2.2. What if outcomes are also available in the observational sample?

Who can do more can do less; therefore, this outcome covariate could be dropped and the analysis con-
ducted without it. But alternative strategies exist. First, the outcome in the observational data – even if
present in only one of the treatment group – would allow to test for the presence or absence of a missing
treatment effect modifier [17] (see their Section 4.2), and therefore its strength. Moreover this would allow to
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rely on strategies to diminish the variance of the estimates [34]. Finally, the assumption of a linear CATE
could be reconsidered and softened, but we let this question to future work.

3.3 Sensitivity analysis

The above theoretical bias B (see equation (3)) can be used to translate expert judgments about the strength
of missing covariates, which corresponds to sensitivity analysis. In the rest of our work, we exemplify
Theorem 1 in scenarios for which there is a totally unobserved covariate (Section 3.3.1), a missing covariate
in RCT (Section 3.3.2.1), or a missing covariate in the observational sample (Section 3.3.2.1). Section 3.3.3
completes the previous sections presenting an adaptation to sensitivity maps. Finally, Section 3.3.4 details
the imputation case, and Section 3.3.5 presents the case of a proxy variable. All these methods rely on
different assumptions recalled in Table 1.

3.3.1 Sensitivity analysis when a key covariate is totally unobserved

When a covariate is totally unobserved, a common and natural assumption is to assume independence
between this covariate and the observed ones [24]. Although strong, this assumption allows us to estimate
the identification bias.

Corollary 1. (Sensitivity model) Assume that Model (2) holds, along with Assumptions 1, 2, 3, 4, 5, and 7.
Assume also that ⊥⊥X Xmis obs, ∣⊥⊥ =X X S 1mis obs . Consider a procedure τ̂n m, that estimates τ with no asymp-
totic bias. Let τ̂n m, ,obs be the same procedure but trained on observed data only. Then

�[ ] − = −

→∞

τ τ δ Δlim ˆ ,
n m

n m m
,

, ,obs mis

where � �[ ] [ ∣ ]= − =Δ X X S 1m mis mis .

Corollary 1 is a direct consequence of Theorem 1, particularized for the case where ⊥⊥X Xobs mis and
∣⊥⊥ =X X S 1obs mis . In this expression, Δm and δmis are called the sensitivity parameters. To estimate the bias

implied by an unobserved covariate, we have to determine how strongly Xmis is a treatment effect modifier
(through δmis), and how strongly it is linked to the trial inclusion (through the shift between the trial sample
and the target population � �[ ] [ ∣ ]= − =Δ X X S 1m mis mis ). Table 2 summarizes the similarities and differences
with approaches of [24,31] approaches, and our approach.

In the setting of Corollary 1, sensitivity analysis can be carried out using Procedure 1 described below .
To represent the bias magnitude as a function of the sensitivity parameters, we develop a graphical aid
adapted from sensitivity maps [24,30], see Section 3.3.3.

Table 1: Summary of the assumptions and results pointer for all the sensitivity methods according to the missing covariate
pattern when the generative outcome is semi-parametric with a linear CATE (2)

Missing covariate pattern Assumption(s) required Procedure’s label

Totally unobserved covariate X Xmis obs⊥⊥ 1
Partially observed in observational study Assumption 7 2
Partially observed in RCT No assumption 3
Proxy variable Assumptions 7 and 8 5

A sensitivity analysis to handle missing covariates  379



Procedure 1: A totally unobserved covariate

init : [ ]≔ …δmis ; // Define a range for plausible δmis values

init : [ ]≔ …Δm ; // Define a range for plausible Δm values

Compute all possible bias −δ Δmmis (see Lemma 1)
return Sensitivity map

A partially observed covariate could always be removed so that this sensitivity analysis could be
conducted for every missing data patterns (the variable being missing in the RCT or in the observational
data). However, dropping a partially observed covariate (i) is inefficient as it discards available information
and, (ii) amounts to considering the variable as totally unobserved, which, in turn, leads us to assume
independence between observed and unobserved covariates, a very strong hypothesis. Therefore, in the
following subsections, we propose methods that use the partially observed covariate – when available – to
improve the bias estimation.

3.3.2 Sensitivity analysis when a key covariate is partially observed

When partially available, we propose to use Xmis to have a better estimate of the bias. Unlike mentioned
earlier, this approach does not need the partially observed covariate to be independent of all other covari-
ates, but rather captures the dependencies from the data.

3.3.2.1. Observed in observational study
Suppose one key covariate Xmis is observed in the observational study, but not in the RCT. Under

Assumption 7, the asymptotic bias of any L1-consistent estimator τ̂n m, ,obs is derived in Theorem 1. The
quantitative bias is informative as it depends only on the regression coefficients δ and on the shift in
expectation between covariates. Indeed, the bias term can be decomposed as follows:

     � � � �⏟ ( [ ] [ ∣ ] ( [ ] [ ∣ ]) )= − − = − − =
−B δ X X S Σ Σ X X S1 1 .

X X Δ

mis

’s strength

mis mis

Shift of :

mis,obs obs,obs
1

obs obs

Can be estimated from the datammis mis

By using the observational study where the necessary covariates are all observed, one can estimate the
covariance term −Σ Σmis,obs obs,obs

1 together with the shift for the observed set of covariates. Unfortunately, the
remaining parameters δmis, corresponding to the coefficient of the missing covariates in the complete linear
model, and � �[ ] [ ∣ ]= − =Δ X X S 1m mis mis are not identifiable from the observed data. These two parameters
correspond respectively to the strength of the treatment effect modifier and the distributional shift of the
missing covariate. These two quantities are used as sensitivity parameters to estimate a plausible range of
the bias (see Procedure 2). Simulations illustrate how these sensitivity parameters can be used, along with
graphical visualization derived from sensitivity maps (see Section 4).

Table 2: Summary of the differences among [24]method, being a prototypical method for sensitivity analysis for observational
data and hidden counfounding, [31] method, and our method

[24] [31] Sensitivity model

Assumption on covariates X Xmis obs⊥⊥ X Xmis obs⊥⊥ X Xmis obs⊥⊥

Model on Y Linear model Linear model Linear CATE (2)
Other assumption Model on A (logit) Model on S (logit) —
First sensitivity parameter Strength on Y , using δmis Strength on Y , using δmis Strength on Y , using δmis
Second sensitivity
parameter

Strength on A (logit’s
coefficient)

Strength on S (logit’s
coefficient)

Δm: shift of Xmis
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Procedure 2: Observed in observational

init : [ ]≔ …δmis ; // Define a range for plausible δmis values

init : [ ]≔ …Δmis ; // Define a range for plausibleΔmisvalues

Estimate Σobs,obs, Σmis,obs, and �[ ]Xobs on the observational dataset;

Estimate �[ ∣ ]=X S 1obs on the RCT dataset;

Compute all possible biases for the predefined ranges of δmis and Δmis, according to Theorem 1.
return Sentivity map

3.3.2.1.1 Data-driven approach to determine sensitivity parameter. Note that guessing a good range for
the shift Δmis is probably easier than giving a range for the coefficients δmis. We propose a data-driven
method to estimate δmis. First, learn a linear model of Xmis from observed covariates Xobs on the observa-
tional data, then impute the missing covariate in the trial, and finally obtain δ̂mis with a Robinson procedure
on the imputed trial data [53–55]. The Robinson procedure is recalled in Appendix (see Section E). This
method is used in the semi-synthetic simulation (see Section 4.2).

3.3.2.1.2 Observed in the RCT. The method we propose here was already developed in refs [35,36], and we
briefly recall its principle in this section. Note that we extend this method by considering a semi-parametric model
(2), while they considered a completely linear model. For this missing covariate pattern, only one sensitivity
parameter is necessary. As the RCT is the complete data set, the regression coefficients δ of (2) can be estimated

for all the key covariates, leading to an estimate δ̂mis for the partially unobserved covariate. Refs [35,36] showed that:

 � �[ ] [ ]= ⟨ ⟩ + ⟨ ⟩τ δ X δ X, , .obs obs mis mis

Unknown
(5)

In this case, and as the influence of Xmis as a treatment effect modifier can be estimated from the data
through δ̂mis, only one sensitivity parameter is needed, namely, �[ ]Xmis . Therefore, we assume to be given a
range of plausible values for �[ ]Xmis , for example, according to a domain expert prior.

Note that δmis can be estimated following a Robinson procedure. This allows extending [36]’s work to
the semi-parametric case. Softening even more the parametric assumption where only Xmis is additive in the
CATE is a natural extension, but out of the scope of the present work.

Procedure 3: Observed in RCT

init : �[ ] [ ]≔ …Xmis ; // Define a range for plausible values of �[ ]Xmis

Estimate δ with the Robinson procedure, that is:
Run a nonparametric regression Y X~ on the RCT, and denote

�( ) [ ∣ ]= = =m x Y X x Sˆ , 1n the obtained estimator;

Define the transformed features ( )= −Y Y m X˜ ˆ n and ( ( ))= −Z A e X X˜ 1 .

Estimate δ̂ running the OLS regression on Y Z˜ ~ ˜ ;
Estimate �[ ]Xobs on the observational dataset;

Compute all possible biases for the range of �[ ]Xmis according to (5).
return Sensitivity map

3.3.3 Vizualization: sensitivity maps

From now on, each of the sensitivity method suppose to translate sensitivity parameter(s) and to compute
the range of bias associated. A last step is to communicate or visualize the range of biases, which is slightly
more complicated when there are two sensitivity parameters. Sensitivity map is a way to aid such
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judgement [24,30]. It consists in having a two-dimensional plot, each of the axis representing the sensitivity
parameter, and the solid curve is the set of sensitivity parameters that leads to an estimate that induces a
certain bias’ threshold. Here, we adapt this method to our settings with several changes. Because coeffi-
cients interpretation is hard, a typical practice is to translate a regression coefficient into a partial R2. For
example, ref. [24], a prototypical example, proposes to interpret the two parameters with partial R2. In our
case, a close quantity can be used:

�

�

[ ]

⎡⎣ ⎤⎦
∑

∈

R δ X
δ X

~
ˆ

,
j j j

2 mis mis

obs
(6)

where the denominator term is obtained when regressing Y on Xobs. If this R2 coefficient is close to 1, then
the missing covariate has a similar influence on Y compared to other covariates. On the contrary, if R2 is
close to 0, then the impact of Xmis onY as a treatment effect modifier is small compared to other covariates.
But in our case one of the sensitivity parameters is really palpable as it is the covariate shift Δm. We advocate
keeping the regression coefficient and shift as sensitivity parameter rather than a R2 to help practitioners as
it allows to keep the sign of the bias, which can be in favor of the treatment and help interpreting the
sensitivity analysis. Furthermore, even if postulating an hypothetical value of a coefficient is tricky, when
the covariate is partially observed, an imputation procedure can be proposed to have a grasp of the
coefficient’s true value.

In Figure 2, we present a glimpse of the simulation result, to introduce the principle of the sensitivity map,
with on the left the representation using R2 and on the right a representation keeping the raw sensitivity
parameters. In this plot, we consider the covariate X3 to be missing, so that we represent what would be the
bias if we missed X3. The associated sensitivity parameters are represented on each axis. In other words, the
sensitivity map shows how strong an unobserved key covariate would need to be to induce a bias that would
force to reconsider the conclusion of the study because the bias is above a certain threshold, which is
represented by the blue line. For example, in our simulation set-up, X3 is below the threshold as illustrated
in Figure 2. The threshold can be proposed by expert, and here, we proposed the absolute difference between
τ̂n m, ,obs and the RCT estimate τ̂1 as a natural quantity. In particular, we observe that keeping the sign of the
sensitivity parameter allows to be even more confident on the direction of the bias.

3.3.4 Partially observed covariates: imputation

Another practically appealing solution is to impute the partially observed covariate, based on the complete
data set (whether it is the RCT or the observational one) following Procedure 4. We analyze theoretically in

Figure 2: Sensitivity maps: X3 is supposed to be a missing covariate. (Left) Regular sensitivity map showing how strong an key
covariate would need to be to induce a bias of~6 in function of the two sensitivity parameters Δm and partialR2 when a covariate
is totally unobserved. (Right) The exact same simulation data are represented, while using rather δmis than the partial R2, and
superimposing the heatmap of the bias which allows to reveal the general landscape along with the sign of the bias.
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this section the bias of such procedure in Corollary 2 and show that there is no gain in linearly imputing the
partially observed covariate.

To ease the mathematical analysis, we focus on a G-formula estimator based on oracles quantities: the
best imputation function and the surface responses are assumed to be known. While these are not available
in practice, they can be approached with consistent estimates of the imputation functions and the surface
responses. The precise formulations of our oracle estimates are given in Definitions 2 and 3.

Definition 2. (Oracle estimator when covariate is missing in the observational data set) Assume that the RCT
is complete and that the observational sample contains one missing covariate Xmis. We assume that we know
(I) the true response surfaces μ1 and μ0.
(II) the true linear relation between Xmis as a function of Xobs.

Our oracle estimate ∞τ̂G m, , ,imp consists in applying the G-formula with the true response surfaces μ1 and μ0
(I) on the observational sample, in which the missing covariate has been imputed by the best (linear)
function (II).

Definition 3. (Oracle estimator when covariate is missing in the RCT data set) Assume that the observa-
tional sample is complete and that the RCT contains one missing covariate Xmis. We assume that we know

(I) the true linear relation between Xmis as a function of Xobs, which leads to the optimal imputation X̂mis,

(II) the conditional expectations, �[ ( )∣ ]=Y a X X S, ˆ , 1obs mis , for { }∈a 0, 1 .

Our oracle estimate ∞ ∞τ̂G, , ,imp consists in optimally imputing the missing variable Xmis in the RCT (I). Then,
the G-formula is applied to the observational sample, with the surface responses that have been perfectly
fitted on the completed RCT sample.

Corollary 2. (Oracle bias of imputation in a Gaussian setting) Assume that the CATE is linear (2) and that
Assumption 7 holds. Let B be the following quantity:

� � � �( [ ] [ ∣ ] ( [ ] [ ∣ ]))= − = − − =
−B δ X X S Σ Σ X X S1 1 .jmis mis mis ,obs obs,obs

1
obs obs

– Complete RCT. Assume that the RCT is complete and that the observational data set contains a missing
covariate Xmis. Consider the oracle estimator ∞τ̂G m, , ,imp in Definition 2. Then,

�[ ]− =

→∞

∞τ τ Blim ˆ
m

G m, , ,imp

– Complete Observational. Assume that the observational data set is complete and that the RCT contains a
missing covariate Xmis. Consider the oracle estimator ∞ ∞τ̂G, , ,imp in Definition 3. Then,

�[ ]− =∞ ∞τ τ BĜ, , ,imp

Derivations are detailed in appendix (see Subsection C.2). Corollary 2 highlights that there is no gain in
linearly imputing the missing covariate compared to dropping it. Simulations (Section F) show that the
average bias of a finite-sample imputation procedure is similar to the bias of ∞ ∞τ̂G, , ,obs.

Procedure 4: Linear imputation

Model Xmis a linear combination of Xobs on the complete data set;

Impute the missing covariate with X̂mis with the previous fitted model;

Compute τ̂ with the G-formula using the imputed data set ∪X X̂obs mis;

return τ̂
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3.3.5 Using a proxy variable in place of the missing covariate

Another solution is to use a so-called proxy variable. The impact of a proxy in the case of a linear model is
documented in econometrics [56–59]. An example of a proxy variable is the height of children as a proxy for
their age. Note that in this case, even if the age is present in one of the two datasets, only the children’s
height is kept in for this method.

Here, we propose a framework to handle a missing key covariate with a proxy variable and estimate the
bias reduction accounting for the additional noise brought by the proxy.

Assumption 8. (Proxy framework) Assume that ⊥⊥X Xmis obs, and that there exists a proxy variable, Xprox
such that

= +X X ηprox mis

where �[ ] =η 0, [ ] =η σVar prox
2 , and ( ) =η XCov , 0mis . In addition, we suppose that

[ ] [ ∣ ]= = =X X S σVar Var 1mis mis mis
2 .

Definition 4. Let τ̂G n m, , ,prox be the G-formula estimator, where Xmis is substituted by Xprox as detailed in
assumption 8.

Lemma 1. Assume that the generative linear model (2) holds, along with Assumption 7 and the proxy frame-
work (8). Then the asymptotic bias of τ̂G n m, , ,prox is:

� ⎜ ⎟[ ]
⎛

⎝

⎞

⎠

− = − −

+→∞

τ τ δ Δ σ
σ σ

lim ˆ 1 .
n m

G n m m
,

, , ,prox mis
mis
2

mis
2

prox
2

We denote δ̂prox the estimated coefficient for Xprox. Such an estimation can be obtained using a Robinson
procedure when regressing Y on the set ∪X Xobs prox.

Corollary 3. The asymptotic bias in Lemma 1 can be estimated using the following expression:

� � �[ ] [ ] [ ∣ ]( )− = − − =

→∞

τ τ δ X X S
σ
σ

lim ˆ ˆ 1 .
n m

G n m
,

, , ,prox prox prox prox
prox
2

mis
2

Proofs of Lemma 1 and Corollary 3 are detailed in Appendix (Proof C.3). Note that, as expected, the
average bias reduction strongly depends on the quality of the proxy. In the limit case, if σ ~ 0prox so that the
correlation between the proxy and the missing variable is one, then the bias is null. In general, if

≫σ σprox mis, then the proxy variable does not diminish the bias.
Finally, we propose a practical approach in Procedure 5. Note that it requires to have a range of possible

σprox values. We recommend to use the data set on which the proxy along with the partially unobserved
covariate are present, and to obtain an estimation of this quantity on this subset.

Procedure 5: Proxy variable

init : [ ]≔ …σprox ; // Define a range for plausibleσproxvalues

if Xmis is in RCT then

[ ]≔ … //

( )

Δ Δ
δ

σ

init : ; Define a range for plausible values
Estimate with the Robinson procedure see Procedure 3 for details ;
Compute all possible biases for the range of according to Lemma C.3 .

mis mis

mis

prox

else

� �[ ] [ ∣ ]

( )

=

δ
X X S

σ

Estimate with the Robinson procedure see Procedure 3 for details ;
Estimate and 1 ;
Compute all possible bias for range of according to Corollary 3 .

prox

prox prox

prox

return Biases’s range
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4 Synthetic and semi-synthetic simulations

More information on simulation settings can be found in Appendix, see Section F

4.1 Synthetic simulations

While results presented in Section 3 apply to any function g (see (2)), we choose g as a linear function to
illustrate our findings. All simulations are available on github³, and include nonlinear forms for g .

4.1.1 Simulations parameters

We use a similar simulation framework as in refs [15,16], where five covariates are generated independently,
except for X1 and X5 whose correlation is set at 0.8, except when explicitly mentioned. We simulate
marginals as �( )X ~ 1, 1j for all = …j 1, , 5. The trial selection process is defined using a logistic regression
model, such that:

{ ( ∣ )}= = + + ⋯+P S X β β X β Xlogit 1 .s s s,0 ,1 1 ,5 5 (7)

This selection process implies that the variance–covariance matrix in the RCT sample and in the target
population may be different depending on the (absolute) value of the coefficients βs. In our simulation set-
up, the overall variance–covariance structure is kept identical as visualized on Figure 3. The outcome is
generated according to a linear model, following Model 2, that is,

�( ) ( ) ( )= + + ⋯+ + + ⋯+ +Y a β β X β X a δ X δ X ε εwith ~ 0, 1 .0 1 1 5 5 1 1 5 5 (8)

In this simulation, we set ( )=β 5, 5, 5, 5, 5 , and other parameters as described in Table 3.
First, a sample of size 10,000 is drawn from the covariate distribution. From this sample, the selection

model (7) is applied, which leads to an RCT sample of size n ~ 2,800 . Then, the treatment is generated
according to a Bernoulli distribution with probability equal to =e 0.51 . Finally, the outcome is generated
according to (8). The observational sample is obtained by drawing a new sample of size =m 10,000 from

the covariate distribution. In this setting, the ATE equals �[ ]= ∑ = ∑ =
= =

τ δ X δ 50j j j j j1
5

1
5 . Besides, the sample

selection ( =S 1) in (7) is biased toward lower values of X1 (and indirectly X5) and higher values of X3. This
situation illustrates a case where ≠τ τ1 . Empirically, we obtain τ ~ 441 .

4.1.2 Illustration of Theorem 1

Figure 4 presents results of a simulation with 100 repetitions with no missing covariates (see none in the
figure), and the impact of missing covariate(s) when using the G-formula or the IPSW to generalize. The
theoretical bias from Theorem 1 is also represented.

The absence of covariates X X,2 4, and/or X5 does not affect ATE generalization because these covariates
are not simultaneously treatment effect modifiers and shifted (between the RCT sample and the target
population). In addition, the signs of the biases depend on the signs of the coefficients associated with
the missing variables, as highlighted by settings for which X1 and X3 are missing. As shown in Theorem 1,
variables acting on Y without being treatment effect modifiers and linked to trial inclusion can help to
reduce the bias, if correlated to a (partially-) unobserved key covariate. This is stressed out in our experi-
ment by comparing the settings for which X X,1 5 are missing and the one where only X1 is missing.



3 BenedicteColnet/unobserved-covariate.
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4.1.3 A totally unobserved covariate (from Section 3.3.1)

To illustrate this case, the missing covariate has to be supposed independent of all the others. Here, we
consider X3. Then, according to Lemma 1, the two sensitivity parameters δmis and the shift Δm can be used to
produce a sensitivity map for the bias on the transported ATE. Procedure 1 summarizes the different steps,
and the sensitivity map’s output result is presented in Figure 2.

4.1.4 A missing covariate in the RCT (from Section 3.3.2.1)

In this case, we need to specify ranges of values for the two sensitivity parameters δmis and Δm. The
experimental protocol is designed such that all covariates are successively partially missing in the RCT.
Because each missing variable implies a different landscape due to the dependence relation to other
covariates (as stated in Theorem 1), each variable requires a different heatmap (except if covariates are
all independent). Results are depicted in Figure 5. Figure 5 illustrates the benefit of Protocol 2 accounting for
other correlated covariates, and compared to a protocol assuming independent covariates. Indeed, X1 and
X2 are strong treatment effect modifiers (see Table 3, where =δ δ1 2), but X1 is correlated with other com-
pletely observed covariates, which allows to “lower” the bias if X1 is completely removed from the analysis
compared to a similar covariate that would be independent of all other covariates. This is highlighted with a
nonsymmetric bias landscape for X1 in Figure 5. As a consequence, for a same value of δmis value, a guessed
shift of =Δ 0.25mis allows to conclude on a lower bias on the map for X1, while it would not be the case for
covariate X2 (which is completely independent).

4.1.5 A missing covariate in the observational data (from Section 3.3.2.1)

In this case, we need to specify a range for the values of only one sensitivity parameter, namely, �[ ]Xmis (see
(5)). In our experimental protocol, we assume that X1 is missing and apply Procedure 3 . Results are
presented in Table 4.

Figure 3: Variance–covariance preservation in the simulation set-up highlighted with pairwise covariance ellipses for one
realization of the simulation (package heplots).

Table 3: Simulations parameters

Covariates X1 X2 X3 X4 X5

Treatment effect modifier Yes Yes Yes No No
Linked to trial inclusion Yes No Yes Yes No
δ δ 301 = δ 302 = δ −103 = δ 04 = δ 05 =

βs β −0.4s,1 = β 0s,2 = β −0.3s,3 = β −0.3s,4 = β 0s,5 =

X. 1⊥⊥ — X X2 1⊥⊥ X X3 1⊥⊥ X X4 1⊥⊥ X X̸5 1⊥⊥
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Simulations illustrating imputation (Corollary 2) and usage of a proxy (Lemma 1) are available in
appendix, in Section F.

4.1.6 Violation of Assumption 7

To assess the impact of a lack of transportability of the variance–covariance matrix (Assumption 7), we
propose to observe the effect of an increasing (in absolute value) coefficient involved in the sampling process
(equation (7)). We observe that the bigger the coefficient, the bigger the deviations from the theory, as expected.
To illustrate this phenomenon, we associate the logistic regression coefficient (the further away from the zero,
the more Assumption 7 is unvalidated) with the p-value of a Box-M test assessing if the variance covariance
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Figure 4: Illustration of Theorem 1: Simulation results for the linear model with missing covariate(s) when generalizing the
treatment effect using the G-formula (Definition 1) or IPSW (see Definition A1 in appendix) estimators on the set of observed
covariates. Missing covariate are indicated on the x-axis. The theoretical bias (orange dot) is obtained from Theorem 1.
Simulations are repeated 100 times.
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Figure 5: Simulations results when applying procedure 2: Heatmaps with a blue curve showing how strong an unobserved key
covariate would need to be to induce a bias of τ τ− ~ −61 in function of the two sensitivity parameters Δm and δmis when a
covariate is totally unobserved. Each heatmap illustrates a case where the covariate would be missing (indicated on the top of
the map), given all other covariates. The cross indicate the coordinate of true sensitivity parameters, in adequation with the
bias empirically observed in Figure 4. The bias landscape depends on the dependence of the covariate with other observed
covariates, as illustrated with an asymmetric heatmap when X1 is partially observed, due to the presence of X5.
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matrix from the two sources are different. Empirically, the bias is still well estimated by procedures described in
Section 3 even if the p-value is lower than 0.05. Results are available in Figures 6 and 7.

4.2 A semi-synthetic simulation: the STAR experiment

The semi-synthetic experiment is a mean to evaluate the methods on (semi) real data where neither the data
generation process nor the distribution of the covariates is under control.

4.2.1 Simulation details

We use the data from a randomized controlled trial, the STAR study. This RCT is a pioneering randomized
study from the domain of education [58], started in 1985, and designed to estimate the effects of smaller
classes in primary school, on the children’s grades. This experiment showed a strong payoff to smaller
classes [60]. In addition, the effect has been shown to be heterogeneous [39], where class sizes have a larger
effect for minority students and those on subsidized lunch. For our purposes, we focus on the same
subgroup of children, same treatment (small versus regular classes), and same outcome (average of all
grades at the end) as in ref. [61].

A total of 4,218 children are concerned by the treatment randomization, with treatment assignment at
first grade only. On the whole data, we estimated an average treatment effect of 12.80 additional points on
the grades (95% CI [10.41–15.2]) with the difference-in-means estimator. We consider this estimate as the
ground truth τ as it is the global RCT. Then, we generate a random sample of 500 children to serve as the
observational study. From the rest of the data, we sample a biased RCT according to a logistic regression
that defines probability for each class to be selected in the RCT, and using only the variable g1surban

informing on the neighborhood of the school, which can be considered as a proxy for the socioeconomic
status. The final selection is performed using a Bernoulli procedure, which leads to 563 children in the RCT.

Table 4: Simulations results when applying procedure 3: Results of the simulation considering X1 being partially observed in
the RCT, and using the sensitivity method of [35], but with a Robinson procedure to handle semi-parametric generative
functions. When varying the sensitivity parameters, the estimated ATE is close to the true ATE (τ 50= ) when the sensitivity
parameter is closer to the true one ( X 1mis�[ ] = ). The results are presented for 100 repetitions

Sensitivity parameter Xmis�[ ] 0.8 0.9 1.0 1.1 1.2

Empirical average τ̂G n m, , ,obs 44 47 50 53 56

Empirical standard deviation τ̂G n m, , ,obs 0.4 0.4 0.3 0.3 0.4

Figure 6: Empirical link between the logistic regression coefficient for sampling bias βs,1 and the p-value of a Box-M test. The
average p-value is computed by repeating 50 times the simulation. We recall that in Figure 4, β −0.4s,1 ≔ .
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The resulting RCT is such that τ̂1 is 4.85 (95% CI [−2.07–11.78]), which is underestimated. This is due to the
fact that that the selection is performed toward children that benefit less from the class size reduction
according to previous studies [39,60,61]. When generalizing the ATE with the G-formula on the full set of
covariates, estimating the nuisance components with a linear model, and estimating the confidence inter-
vals with a stratified bootstrap (1,000 repetitions), the target population ATE is recovered with an estimate
of 13.05 (95% CI [5.07–22.11]) Not including the covariate on which the selection is performed (g1surban)
leads to a biased generalized ATE of 5.87 (95% CI [−1.47–12.82]). These results are presented in Figure 8,
along with AIPSW estimates. The IPSW is not represented due to a too large variance.

4.2.2 Application of the sensitivity methods

We now successively consider two different missing covariate patterns to apply the methods presented in
Section 3.3.2.

4.2.2.1 Considering g1surban is missing in the observational study

[35]’s method (recalled in Section 3.3.2.1) can be applied, if we are given a set of plausible values for
�[ ]g1surban . Specifying the following range ] [2.1, 2.7 (containing the true value for �[ ]g1surban ) leads
to a range for the generalized ATE of ] [9.5, 16.7 . Recalling that the ground truth is 12.80 (95% CI[10.41–15.2]),
the estimated range has a good overlap with the ground truth. In other words, with this specification of the
range, a user would correctly conclude that without this key variable, the generalized ATE is probably
underestimated.

4.2.2.2 Considering g1surban is missing in the RCT

Figure 9 illustrates the method when the missing covariate is in the RCT data set (see Procedure 2).
This method relies on Assumption 7, which we test with a Box M-test on Σ (though in practice such a
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Figure 7: Impact of poor transportability of the variance–covariance matrix which is simulated with a decreasing coefficient
βs,1, responsible of the covariate shift between the RCT sample and the observational sample. The lower βs,1, the higher the
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test could only be performed on Σobs,obs). Including only numerical covariates would reject the null
hypothesis (p-value = 0.034). Note that beyond violating Assumption 7, some variables are categorical
(egrace and gender). Further discussions about violation of this assumption are available in Appendix
(Section G).

In this application, applying recommendations from Section 3.3.2.1 (see paragraph entitled Data-driven
approach to determine sensitivity parameter) allows us to obtain 1δ ~ 11g surban . We consider that the shift is
correctly given by domain expert, and so the true shift is taken with uncertainty corresponding to the 95%
confidence interval of a difference in mean. Finally, Figure 9 allows to conclude on a negative bias, that is,
�[ ] ≤τ τn̂ m, ,obs . Note that our method underestimates a bit the true bias, with an estimated bias of−6.4 when
the true bias is −7.08, delimited with the continue red curve on the top right.

5 Application on critical care data

A motivating application of our work is the generalization to a French target population – represented by
the Traumabase registry – of the CRASH-3 trial [62], evaluating tranexamic acide (TXA) to prevent death
from traumatic brain injury (TBI).

5.1 CRASH-3

A total of 175 hospitals in 29 different countries participated to the randomized and placebo-controlled trial,
called CRASH-3 [63], where adults with TBI suffering from intracranial bleeding were randomly

Ground truth

AIPSW
 (without g1surban)

G−formula 
 (without g1surban)

AIPSW
 (all covariates)

G−formula 
 (all covariates)

Biaised RCT

STAR RCT

0 5 10 15 20
Estimated ATE

Figure 8: Simulated STAR data: True target population ATE estimation using all the STAR’s RCT data is represented (difference-
in-means). This is highlighted with a red dashed line to represent the ground truth. The ATE estimate of a biased RCT
(difference-in-means) is also represented showing a lower treatment effect due to a covariate shift along the covariate
g1surban. Two estimators are used for the generalization, the G-formula (Definition 1) and the AIPSW (Definition A2); both
relying on linear or logistic models for the nuisance components. The generalized ATE is either estimated with all covariates
(blue) or with all covariates exceptg1surban (orange). The confidence intervals are estimated with a stratified bootstrap (1,000
repetitions). Similar results are obtained when nuisance components are estimated with random forest.
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administrated TXA [62]. The inclusion criteria of the trial are patients with a Glasgow Coma scale (GCS)⁴
score of 12 or lower or any intracranial bleeding on CT scan, and nomajor extracranial bleeding. The outcome
we consider in this application is the disability rating scale (DRS) after 28 days of injury in patients treated
within 3 hours of injury. Such an index is a composite ordinal indicator ranging from 0 to 29, the higher the
value, the stronger the disability. This outcome can be considered as a secondary outcome. This outcome has
some drawbacks in the sense that TXA diminishes the probability to die from TBI and therefore may increase
the number of high DRS values [64]. Therefore, to avoid a censoring or truncation due to death, we keep all
individuals and set the DRS score of deceased ones to 30. The difference-in-means estimator gives an ATE of
−0.29 with [95% CI −0.80 −0.21]), therefore not giving a significant evidence of an effect of TXA on DRS.

5.2 Traumabase

To improve decisions and patient care in emergency departments, the Traumabase group, comprising 23
French Trauma centers, collects detailed clinical data from the scene of the accident to the release from the
hospital. The resulting database, called the Traumabase, comprises 23,000 trauma admissions to date and
is continually updated. In this application, we consider only the patients suffering from TBI, along with
considering an imputed database. The Traumabase comprises a large number of missing values, and this is
why we used a multiple imputation via chained equations (MICE) [65] prior to applying our methodology.

5.3 Predicting the treatment effect on the Traumabase data

We want to generalize the treatment effect to the French patients – represented by the Traumabase data
base. Six covariates are present at baseline, with age, sex, time since injury, systolic blood pressure,
Glasgow Coma scale score (GCS), and pupil reaction. Sex is not considered in the final sensitivity analysis
as a noncontinuous covariate, and pupil reaction is considered as continuous ranging from 0 to 2. However,
an important treatment effect modifier is missing, that is, the time between treatment and the trauma. For
example, ref. [66] reveals a 10% reduction in treatment effectiveness for every 20 min increase in time to
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

4 The Glasgow Coma scale (GCS) is a neurological scale that aims to assess a person’s consciousness. The lower the score, the
higher the gravity of the trauma.
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treatment (TTT). In addition, TTT is probably shifted between the two populations. Therefore, this covariate
breaks Assumption 4 (ignorability on trial participation), and we propose to apply the methods developed
in Section 3.

5.4 Sensitivity analysis

The concatenated data set with the RCT and observational data contains 12,496 observations (with
=n 8,977 and =m 7,743 ). Considering a totally missing covariate, we apply Procedure 1. We assume

that time to treatment (TTT) is independent of all other variables, for example, the ones related to the
patient baseline characteristics (e.g., age) or to the severity of the trauma (e.g., the Glasgow score).
Clinicians support this assumption as the time to receive the treatment depends on the time for the rescuers
to come to the accident area, and not on the other patient characteristics. We first estimate the target
population treatment effect with the set of observed variables and the G-formula estimator, leading to an
estimated ATE τ̂n m, ,obs of −0.08 (95% CI [−0.50 −0.44]). The nuisance parameters are estimated using
random forests, and the confidence interval with nonparametric stratified bootstrap. As the omission of
the TTT variable could affect this conclusion, the sensitivity analysis gives insights on the potential bias. We
apply the method relative to a completely missing covariate (Section 3.3.1).

A common practice in sensitivity analysis is to use observed covariates as benchmark to guess the
impact of an unobserved covariates. For example, the Glasgow score is also suspected to be a treatment
effect modifier and is shifted between the two populations. We place it on a sensitivity map (Figure 10)
along with the true corresponding values for δ glasgow and Δ glasgow . As the Traumabase contain more indi-
viduals with a higher Glasgow score, a positive shift is reported. In addition, the higher the Glasgow score,
the higher the effect (low DRS), so that <δ 0glasgow . Finally, removing the Glasgow score from the analysis
would lead to >τ τˆ n mobs, , . The sensitivity map does not allow to conclude that this bias is big enough
compared to the confidence intervals previously mentioned for τ̂ n mobs, , . Is the TTT a stronger or more shifted
covariate than the Glasgow score? Previous publications have suggested a huge impact of TTT, and there-
fore, one could expect a bigger impact on the bias. In Figure 11, we represent a sensitivity map for TTT that
could be drawn by domain experts. Here, sensitivity parameters are guessed. For example, one can suspect
that treatment is given on average 20 minutes earlier in the Traumabase (e.g., interviewing nurses and
doctors in Trauma centers), and the coefficient δ TTT is inferred from a previous work on TXA. In Figure 11,
one can see that not observing TTT has a bigger impact on the bias than not observing the Glasgow score
(almost 10 times bigger), suggesting another conclusion: a positive and significant effect of TXA on the
Traumabase population, if the sensitivity parameters are correctly guessed. Also, as soon as there is a risk of
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a treatment given later than in the CRASH3 trial, this sensitivity map would help raising an alarm on a
negative effect on the Traumabase population.

6 Conclusion

In this work, we have studied sensitivity analyses for causal-effect generalization to assess the impact of a
partially unobserved confounder (either in the RCT or in the observational data set) on the ATE estimation.
In particular:
(1) To go beyond the common requirement that the unobserved confounder is independent from the

observed covariates, we instead assume that their covariance is transported (Assumption 7). Our
simulation study (4) shows that even with a slightly deformed covariance, the proposed sensitivity
analysis procedure gives useful estimates of the bias.

(2) Leveraging the high interpretability of our sensitivity parameter, our framework concludes on the sign
of the estimated bias. This sign is important as accepting a treatment effect highly depends on the
direction of the generalization shift. We integrate the aforementioned methods into the existing sensi-
tivity map visualization, using a heatmap to represent the sign of the estimated bias.

(3) Our procedures use a sensitivity parameter with a direct interpretation: the shift in expectation Δm of the
missing covariate between the RCT and the observational data. We hope that this will ease practical
applications of sensitivity analyses by domain experts.

Our proposal inherits limitations from the more standard sensitivity analysis methods with observa-
tional data, namely, the semi-parametric assumption of the outcome model along with an hypothesis on
covariate structures (Gaussian inputs). Therefore, future extensions of this work could explore ways to relax
either the parametric assumption or the distributional assumption to support more robust sensitivity
analyses. Another possible extension to a missing binary covariate could be deduced from this work, in
the case where this covariate is independent of the others in both populations.

Acknowledgments: We would like to acknowledge helpful discussions with Drs Marine Le Morvan, Daniel
Malinsky, and Shu Yang. We also would like to acknowledge the insights, discussions, and medical
expertise from the Traumabase group and physicians, in particular, Drs François-Xavier Ageron and
Tobias Gauss. In addition, none of the data analysis part could have been done without the help of Dr.
Ian Roberts and the CRASH-3 group, who shared with us the clinical trial data. Finally, we thank the
reviewers for their careful reading allowing to deeply improve this research work.

TTT

−0.01

0.00

0.01

0.02

−4
0

−3
0

−2
0

−1
0 0 10

Shift�(�mis)

In
flu

en
ce

�o
n�

Y�
(�

m
is
)

Bi
as

��
�̂ G

ob
s
�

� �

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 11: Sensitivity map for TTT: Intervals represent plausible parameters range, with a treatment given on average 10–30 min
earlier in the Traumabase, and an heterogeneous coefficient inspired from [66].

A sensitivity analysis to handle missing covariates  393



Funding information: Authors are all funded by their respective employer (Inria or École polytechnique).

Conflict of interest: Authors state no conflict of interest.

Data availability statement: The datasets generated and/or analysed are available in the [unobserved-
covariate] repository, https://github.com/BenedicteColnet/unobserved-covariate. The CRASH-3 and
Traumabase data sets are not available due to privacy reasons.

References

[1] Imbens GW, Rubin DB. Causal inference in statistics, social, and biomedical sciences. Cambridge UK: Cambridge
University Press; 2015.

[2] Rothwell PM. External validity of randomised controlled trials: “to whom do the results of this trial apply?”. The Lancet.
2005;365:82–93.

[3] Imbens G, Hotz J, Mortimer J. Predicting the efficacy of future training programs using past. J Econometrics.
2005;125(1–2):241–70.

[4] Cole SR, Stuart EA. Generalizing evidence from randomized clinical trials to target populations: The ACTG 320 trial. Am J
Epidemiol. 2010;172:107–15.

[5] Stuart EA, Cole SR, Bradshaw CP, Leaf PJ. The use of propensity scores to assess the generalizability of results from
randomized trials. J R Stat Soc A (Stat Soc). 2011;174:369–86.

[6] Pearl J, Bareinboim E. Transportability of causal and statistical relations: A formal approach. Proc AAAI Confer Artif
Intelligence. 2011 Aug;25(1). Available from: https://www.semanticscholar.org/paper/Transportability-of-Causal-and-
Statistical-A-Formal-Pearl-Bareinboim/09bc36898974d5d41936d698426880d0f9ed29f5.

[7] Bareinboim E, Pearl J. A general algorithm for deciding transportability of experimental results. J Causal Inference.
2013;1(1):107–34.

[8] Tipton E. Improving generalizations from experiments using propensity score subclassification: assumptions, properties,
and contexts. J Educ Behav Stat. 2013;38:239–66.

[9] Bareinboim E, Tian J, Pearl J. Recovering from selection bias in causal and statistical inference. Proceedings of the AAAI
Conference on Artificial Intelligence; 2014. Vol. 28(1). https://doi.org/10.1609/aaai.v28i1.9074.

[10] Pearl J, Bareinboim E. External validity: From Do-Calculus to transportability across populations. Stat Sci.
2014;29(4):579–95. doi: 10.1214/14-STS486.

[11] Kern H, Stuart E, Hill J, Green D. Assessing methods for generalizing experimental impact estimates to target populations.
J Res Educ Effectiveness. 2016 01;9:1–25.

[12] Bareinboim E, Pearl J. Causal inference and the data-fusion problem. Proce National Academy Sci. 2016;113(27):7345–52.
Available from: https://www.pnas.org/content/113/27/7345.

[13] Buchanan AL, Hudgens MG, Cole SR, Mollan KR, Sax PE, Daar ES, et al. Generalizing evidence from randomized trials using
inverse probability of sampling weights. J R Stat Soc A (Stat Soc). 2018;181:1193–209.

[14] Stuart EA, Ackerman B, Westreich D. Generalizability of randomized trial results to target populations: design and analysis
possibilities. Res Social Work Practice. 2018;28(5):532–7.

[15] Dong L, Yang S, Wang X, Zeng D, Cai J. Integrative analysis of randomized clinical trials with real world evidence studies.
2020. arXiv: http://arXiv.org/abs/arXiv:200301242.

[16] Colnet B, Mayer I, Chen G, Dieng A, Li R, Varoquaux G, et al. Causal inference methods for combining randomized trials
and observational studies: a review; 2020.

[17] Degtiar I, Rose S. A review of generalizability and transportability. Annual Review of Statistics and Its Application. 2021.
[18] Susukida R, Crum R, Stuart E, Ebnesajjad C, Mojtabai R. Assessing sample representativeness in randomized control

trials: application to the national institute of drug abuse clinical trials network. Addiction. 2016 01;111:1226–34.
[19] Lesko CR, Cole SR, Hall HI, Westreich D, Miller WC, Eron JJ, et al. The effect of antiretroviral therapy on all-cause mortality,

generalized to persons diagnosed with HIV in the USA, 2009-1. Int J Epidemiol. 2016 01;45(1):140–50. doi: 10.1093/ije/
dyv352.

[20] Stuart EA, Rhodes A. Generalizing treatment effect estimates from sample to population: a case study in the difficulties of
finding sufficient data. Eval Rev. 2017;41(4):357–88.

[21] Egami N, Hartman E. Covariate selection for generalizing experimental results: application to a large-scale development
program in Uganda. J R Stat Soc A (Stat Soc). 2021;184(4):1524–48.

[22] Li F, Buchanan AL, Cole SR. Generalizing trial evidence to target populations in non-nested designs: applications to AIDS
clinical trials. J R Stat Soc Ser C Appl Stat. 2022;71:669–97.

394  Bénédicte Colnet et al.

https://github.com/BenedicteColnet/unobserved-covariate
https://www.semanticscholar.org/paper/Transportability-of-Causal-and-Statistical-A-Formal-Pearl-Bareinboim/09bc36898974d5d41936d698426880d0f9ed29f5
https://www.semanticscholar.org/paper/Transportability-of-Causal-and-Statistical-A-Formal-Pearl-Bareinboim/09bc36898974d5d41936d698426880d0f9ed29f5
https://doi.org/10.1609/aaai.v28i1.9074
https://doi.org/10.1214/14-STS486
https://www.pnas.org/content/113/27/7345
http://arXiv.org/abs/arXiv:200301242
https://doi.org/10.1093/ije/dyv352
https://doi.org/10.1093/ije/dyv352


[23] Cornfield J, Haenszel W, Hammond EC, Lilienfeld AM, Shimkin MB, Wynder EL. Smoking and lung cancer: recent evidence
and a discussion of some questions. J Natl Cancer Inst. 1959 01;22(1):173–203. doi: 10.1093/jnci/22.1.173.

[24] Imbens G. Sensitivity to exogeneity assumptions in program evaluation. Am Econ Rev. 2003;93:126–32.
[25] Rosenbaum P. Sensitivity analysis in observational studies. Wiley StatsRef: Statistics Reference Online, vol. 4; 2005.
[26] Dorie V, Harada M, Carnegie N, Hill J. A flexible, interpretable framework for assessing sensitivity to unmeasured con-

founding. Stat Medicine. 2016 Sep;35(20):3453–70.
[27] Ichino A, Nannicini T, Mealli F. From temporary help jobs to permanent employment: what can we learn from matching

estimators and their sensitivity? J Appl Econom. 2008 04;23:305–27.
[28] Cinelli C, Hazlett C. Making sense of sensitivity: extending omitted variable bias. J R Stat Soc B. 2020

February;82(1):39–67. Available from: https://ideas.repec.org/a/bla/jorssb/v82y2020i1p39-67.html.
[29] Franks A, D’Amour A, Feller A. Flexible sensitivity analysis for observational studies without observable implications. J Am

Stat Assoc. 2019;115(532):1–38.
[30] Veitch V, Zaveri A. Sense and sensitivity analysis: simple post-hoc analysis of bias due to unobserved confounding. Part of

Advances in Neural Information Processing Systems 33 (NeurIPS 2020). 2020.
[31] Andrews I, Oster E. A simple approximation for evaluating external validity bias. Econ Lett. 2019;178:58–62. Available

from: https://www.sciencedirect.com/science/article/pii/S0165176519300655.
[32] Dahabreh IJ, Robins JM, Haneuse SJPA, Saeed I, Robertson SE, Stuart EA, et al. Sensitivity analysis using bias functions for

studies extending inferences from a randomized trial to a target population. In Sarah R, Jon S, Elizabeth S, Miguel H (Eds.).
Extending inferences from a randomized trial to a new target population: Extending inferences from a trial to a new target
population. Statistics in Medicine. 39. 2019. doi: 10.1002/sim.8426.2019.

[33] Nie X, Imbens G, Wager S. Covariate balancing sensitivity analysis for extrapolating randomized trials across loca-
tions; 2021.

[34] Huang M, Egami N, Hartman E, Miratrix L. Leveraging population outcomes to improve the generalization of experimental
results; 2021.

[35] Nguyen TQ, Ebnesajjad C, Cole SR, Stuart EA. Sensitivity analysis for an unobserved moderator in RCT-to-target-popu-
lation generalization of treatment effects. Ann Appl Stat. 2017;11(1):225–47.

[36] Nguyen T, Ackerman B, Schmid I, Cole S, Stuart E. Sensitivity analyses for effect modifiers not observed in the target
population when generalizing treatment effects from a randomized controlled trial: assumptions, models, effect scales,
data scenarios, and implementation details. Plos One. 2018 12;13:e0208795.

[37] Resche-Rigon M, White I, Bartlett J, Peters SAE, Thompson S. Multiple imputation for handling systematically missing
confounders in meta-analysis of individual participant data. Stat Med. 2013 07;32:4890–905.

[38] Jolani S, Debray T, Koffijberg H, van Buuren S, Moons K. Imputation of systematically missing predictors in an individual
participant data meta-analysis: a generalized approach using MICE. Stat Med. 2015;34(11):1841–63.

[39] Krueger AB. Experimental estimates of education production functions. Quarterly J Econ. 1999;114(2):497–532. Available
from: https://ideas.repec.org/a/oup/qjecon/v114y1999i2p497-532.html.

[40] Miratrix LW, Sekhon JS, Theodoridis AG, Campos LF. Worth weighting? How to think about and use weights in survey
experiments. Political Analysis. 2018;26(3):275–91. doi: 10.1017/pan.2018.1.

[41] Hartman E, Grieve R, Ramsahai R, Sekhon JS. From sample average treatment effect to population average treatment effect
on the treated: combining experimental with observational studies to estimate population treatment effects. J R Stat Soc A
(Stat Soc). 2015;178(3):757–78. Available from: https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/rssa.12094.

[42] Pearl J. Generalizing experimental findings. J Causal Infer. 2015;3(2):259–66. doi: 10.1515/jci-2015-0025.
[43] Ding P, Feller A, Miratrix L. Randomization inference for treatment effect variation. J R Stat Soc B. 2016 June;78(3):655–71.

https://ideas.repec.org/a/bla/jorssb/v78y2016i3p655-671.html.
[44] Lesko CR, Buchanan AL, Westreich D, Edwards JK, Hudgens MG, Cole SR. Generalizing study results: a potential outcomes

perspective. Epidemiology. 2017;28:553–61.
[45] Dahabreh IJ, Robins JM, Haneuse SJ, Hernán MA. Generalizing causal inferences from randomized trials: counterfactual

and graphical identification; 2019. arXiv: http://arXiv.org/abs/arXiv:190610792.
[46] Chattopadhyay A, Cohn ER, Zubizarreta JR. One-step weighting to generalize and transport treatment effect estimates to a

target population; 2022. https://arxiv.org/abs/2203.08701.
[47] Dahabreh IJ, Robertson SE, Tchetgen EJT, Stuart EA, Hernán MA. Generalizing causal inferences from individuals in

randomized trials to all trial-eligible individuals. Biometrics. 2019;75:685–94. https://onlinelibrary.wiley.com/doi/abs/
10.1111/biom.13009.

[48] Mayer I, Josse J, Group T. Generalizing treatment effects with incomplete covariates; 2021. Available from: https://arxiv.
org/abs/2104.12639.

[49] Box GEP. A general distribution theory for a class of likelihood criteria. Biometrika. 1949 12;36(3–4):317–46. doi: 10.1093/
biomet/36.3-4.317.

[50] Friendly M, Sigal M. Visualizing tests for equality of covariance matrices. Am Statist. 2020;74(2):144–55. doi: 10.1080/
00031305.2018.1497537.

[51] Lunceford JK, Davidian M. Stratification and weighting via the propensity score in estimation of causal treatment effects: a
comparative study. Statistics in medicine. 2004;23:2937–60.

A sensitivity analysis to handle missing covariates  395

https://doi.org/10.1093/jnci/22.1.173
https://ideas.repec.org/a/bla/jorssb/v82y2020i1p39-67.html
https://www.sciencedirect.com/science/article/pii/S0165176519300655
https://doi.org/10.1002/sim.8426
https://ideas.repec.org/a/oup/qjecon/v114y1999i2p497-532.html
https://doi.org/10.1017/pan.2018.1
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/rssa.12094
https://doi.org/10.1515/jci-2015-0025
https://ideas.repec.org/a/bla/jorssb/v78y2016i3p655-671.html
http://arXiv.org/abs/arXiv:190610792
https://arxiv.org/abs/2203.08701
https://onlinelibrary.wiley.com/doi/abs/10.1111/biom.13009
https://onlinelibrary.wiley.com/doi/abs/10.1111/biom.13009
https://arxiv.org/abs/2104.12639
https://arxiv.org/abs/2104.12639
https://doi.org/10.1093/biomet/36.3-4.317
https://doi.org/10.1093/biomet/36.3-4.317
https://doi.org/10.1080/00031305.2018.1497537
https://doi.org/10.1080/00031305.2018.1497537


[52] Correa J, Tian J, Bareinboim E. Generalized adjustment under confounding and selection biases. Proceedings of the AAAI
Conference on Artificial Intelligence; 2018. Vol. 32(1). https://ojs.aaai.org/index.php/AAAI/article/view/12125.

[53] Robinson P. Root-N-consistent semiparametric regression. Econometrica. 1988;56(4):931–54. https://EconPapers.repec.
org/RePEc:ecm:emetrp:v:56:y:1988:i:4:p:931-54.

[54] Wager S. STATS 361: Causal inference. 2020. https://web.stanford.edu/∽swager/teaching.html.
[55] Nie X, Wager S. Quasi-Oracle estimation of heterogeneous treatment effects. Biometrika. 2020 09;108:299 319.
[56] Chen X, Hong H, Tamer E. Measurement error models with auxiliary data. Rev Econ Studies. 2005 02;72:343–66.
[57] Chen X, Hong H, Nekipelov D. Measurement error models; 2007. https://www.semanticscholar.org/paper/

MEASUREMENT-ERROR-MODELS-Chen-Hong/543cc793a1d900e138fa9b132fae7dd8b65dad3d.
[58] Angrist JD, Pischke JS. Mostly harmless econometrics: an empiricistas companion. Economics Books, Princeton University

Press; 2009.
[59] Wooldridge JM. Introductory econometrics: a modern approach (4th ed., international student ed.). Nelson

Education; 2009.
[60] Finn JD, Achilles CM. Answers and questions about class size: a statewide experiment. Am Educ Res J. 1990;27(3):557–77.

doi: 10.3102/00028312027003557.
[61] Kallus N, Puli AM, Shalit U. Removing hidden confounding by experimental grounding. In Advances in Neural Information

Processing Systems; 2018. p. 10888–97.
[62] CRASH-3. Effects of tranexamic acid on death, disability, vascular occlusive events and other morbidities in patients with

acute traumatic brain injury (CRASH-3): a randomised, placebo-controlled trial. The Lancet. 2019;394(10210):1713–23.
doi: 10.1016/S0140-6736(19)32233-0.

[63] Dewan Y, Komolafe E, Mejìa-Mantilla J, Perel P, Roberts I, Shakur-Still H. CRASH-3: Tranexamic acid for the treatment of
significant traumatic brain injury: study protocol for an international randomized, double-blind, placebo-controlled trial.
Trials. 2012 06;13:87.

[64] Brenner A, Arribas M, Cuzick J, Jairath V, Stanworth S, Ker K, et al. Outcome measures in clinical trials of treatments for
acute severe haemorrhage. Trials. 2018;19:533.

[65] van Buuren S. Flexible imputation of missing data. Second Edition. Boca Raton, FL: Chapman and Hall/CRC; 2018. https://
stefvanbuuren.name/fimd/.

[66] Mansukhani R, Frimley L, Shakur-Still H, Sharples L, Roberts I. Accuracy of time to treatment estimates in the CRASH-3
clinical trial: impact on the trial results. Trials. 2020 07;21:1–8.

[67] Kennedy EH. Semiparametric theory and empirical processes in causal inference. In He H, Wu P, Chen D (Eds.), Statistical
causal inferences and their applications in public health research. New York: Springer. 2016:141–67. doi: 10.1007/978-3-
319-41259-7 8 (arxiv:1510.04740).

[68] Dahabreh IJ, Robertson SE, Steingrimsson JA, Stuart EA, Hernán MA. Extending inferences from a randomized trial to a new
target population. Stat Med. 2020;39(14):1999–2014.

[69] Chernozhukov V, Chetverikov D, Demirer M, Duflo E, Hansen C, Newey W, et al. Double/debiased machine learning for
treatment and structural parameters. Econom J. 2018;21(1):C1–C68. https://doi.org/10.1111/ectj.12097.

[70] Ross SM. A first course in probability. 5th ed. Upper Saddle River, N.J.: Prentice Hall; 1998.
[71] Gao Z, Hastie T. Estimating heterogeneous treatment effects for general responses; 2021. https://arxiv.org/abs/2103.

04277.

396  Bénédicte Colnet et al.

https://ojs.aaai.org/index.php/AAAI/article/view/12125
https://EconPapers.repec.org/RePEc:ecm:emetrp:v:56:y:1988:i:4:p:931-54
https://EconPapers.repec.org/RePEc:ecm:emetrp:v:56:y:1988:i:4:p:931-54
https://web.stanford.edu/&#x223d;swager/teaching.html
https://www.semanticscholar.org/paper/MEASUREMENT-ERROR-MODELS-Chen-Hong/543cc793a1d900e138fa9b132fae7dd8b65dad3d
https://www.semanticscholar.org/paper/MEASUREMENT-ERROR-MODELS-Chen-Hong/543cc793a1d900e138fa9b132fae7dd8b65dad3d
https://doi.org/10.3102/00028312027003557
https://doi.org/10.1016/S0140-6736(19)32233-0
https://stefvanbuuren.name/fimd/
https://stefvanbuuren.name/fimd/
https://doi.org/10.1007/978-3-319-41259-7
https://doi.org/10.1007/978-3-319-41259-7
https://doi.org/10.1111/ectj.12097
https://arxiv.org/abs/2103.04277
https://arxiv.org/abs/2103.04277


Appendix

A Estimators of the target population ATE

In this section, we grant assumptions presented in Section 2.1 and study the asymptotic behavior – and in
particular, the L1-consistency – of three estimators: the G-formula, the IPSW, and the AIPSW.

A.1 G-formula

The G-formula procedure and its consistency assumption are detailed in the core text, see Section 3, and in
particular, Definition 1 and Assumption 6. Here, we present the theorem for consistency.

Theorem A1. (G-formula consistency) Consider the G-formula estimator in Definition 1 along with Assump-
tions 1, 2, 3, 4, 5 (identifiability), and Assumption 6 (consistency), then the G-formula estimator converges
toward τ in L1 norm,

⟶

→∞

τ τˆ .G n m
L

n m
, ,

,

1

A.2 IPSW

Another approach, called inverse propensity weighting score (IPSW), consists in weighting the RCT sample
so that is ressembles the target population distribution.

Definition A1. (Inverse propensity weighting score – IPSW – [5,13]) The IPSW estimator is denoted τ̂ n mIPSW, , ,
and defined as follows:

⎜ ⎟

( )
⎛

⎝ ( ) ( )
⎞

⎠
∑= −

−

−
=

τ
n

n
m
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α X

A
e X

A
e X

ˆ 1
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1
1

,n m
i

n
i

n m i

i

i

i

i
IPSW, ,

1 , 1 1
(A1)

where α̂n m, is an estimate of the odd ratio of the indicatrix of being in the RCT:

� � �

� � �
( )

( ∣ )

( ∣ )
=

∈ ∃ ∈ ∪ =

∈ ∃ ∈ ∪ =

α x P i i X x
P i i X x

,
,

.i

i

This intermediary quantity to estimate, ( )α . , is called a nuisance component.

Similar to the G-formula, we introduce here an assumption on the behavior of the nuisance component
α to carry out the mathematical analysis of the IPSW.

Assumption A1. (Consistency assumptions – IPSW) Denoting by
( )

n
mα xˆn m,

the estimated weights on the set of
observed covariates X , the following conditions hold,

– (H1-IPSW) �∣ ∣
( )

( )

( )
− = ⟶∈

∣ =

εsup 0x
n

mα x
f x

f x n m
a s

ˆ ,
. .

n m

X

X S, 1
, when → ∞n m, ,

– (H2-IPSW) for all n m, large enough �[ ]εn m,
2 exists and �[ ] ⟶ε 0n m

a s
,

2 . .
, when → ∞n m, ,

– (H3-IPSW) Y is square integrable.

Theorem A2. (IPSW consistency) Consider the IPSW estimator in Definition A1 along with Assumptions
1, 2, 3, 4, 5 (identifiability), and A1 (consistency). Then, τ̂ n mIPSW, , converges toward τ in L1 norm,
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⟶

→∞

τ τˆ .n m
L

n m
IPSW, ,

,

1

Theorem A2 establishes the consistency of IPSW in a more general framework than that of [4,5,7, 13,21],
assuming neither oracle estimator nor parametric assumptions on ( )α . .

A.3 AIPSW

The model for the expectation of the outcomes among randomized individuals (used in the G-estimator in
Definition 1) and the model for the probability of trial participation (used in IPSW estimator in Definition A1)
can be combined to form an augmented IPSW estimator (AIPSW) that has a doubly robust statistical
property.

Definition A2. (Augmented IPSW - AIPSW – [45]) The AIPSW estimator is denoted τ̂ n mAIPSW, , , and defined as
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m n

n i n iAIPSW, ,
1 ,

1,

1

0,

1 1
1, 0,

Recently, it has been shown that the AIPSW estimator can be derived from the influence function of the
parameter τ [45]. Under additional conditions on the rate of convergence of the nuisance parameters, it is
possible to obtain asymptotic normality results⁵. As in this work we only require L1-consistency for the
sensitivity analysis to hold, we therefore do not detail asymptotic normality conditions.

To prove AIPSW consistency, we make the following assumptions on the nuisance parameters.

Assumption A2. (Consistency assumptions - AIPSW) The nuisance parameters are bounded, and more
particularly:
– (H1-AIPSW) There exists a function α0 bounded from above and below (from zero), satisfying

� ( ) ( )
− =

→∞
∈

n
mα x α x

lim sup
ˆ

1 0,
m n x n m, , 0

– (H2-AIPSW) There exist two bounded functions �� →ξ ξ, :1 0 , such that { }∀ ∈a 0, 1 ,

�

∣ ( ) ( )∣− =

→+∞
∈

ξ x μ xlim sup ˆ 0.
n x

a a n,

Theorem A3. (AIPSW consistency) Consider the AIPSW estimator in Definition A2, along with Assumptions
1, 2, 3, 4, 5 hold (identifiability), and Assumption A2 (consistency). Considering that estimated surface
responses ( )μ̂ .a n, where { }∈a 0, 1 are obtained following a cross-fitting estimation, then if Assumption 6 or

Assumption A1 also holds, then τ̂ n mAIPSW, , converges toward τ in L1 norm,

⟶

→∞

τ τˆ .n m
L

n m
AIPSW, ,

,

1

B L1-convergence of G-formula, IPSW, and AIPSW

This appendix contains the proofs of theorems given in Section A. We recall that this work completes and
details existing theoretical work performed by ref. [13] on IPSW (but focused on a so-called nested-trial



5 A primer for semiparametric theory can be found in ref. [67].
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design and assuming parametric model for the weights) and from [68] developing results within the semi-
parametric theory.

B.1 L1-convergence of G-formula

This section contains the proof of Theorem A1, which assumes Assumption 6. For the state of clarity, we
recall here Assumption 6. Denoting ( )μ̂ .n0, and ( )μ̂ .n1, estimators of ( )μ .0 and ( )μ .1 respectively, and �n the
RCT sample, so that

– (H1-G) For { }∈a 0, 1 , � �[∣ ( ) ( )∣∣ ]− →μ X μ Xˆ 0a n a n
p

, when → ∞n ,

– (H2-G) For { }∈a 0, 1 , there exist C N,1 1 so that for all ⩾n N1, almost surely, � �[ ( )∣ ] ⩽μ X Câ n n,
2

1.

Proof of TheoremA1. In this proof, we largely rely on a oracle estimator
∞

∗τ̂G m, , (built with the true response
surfaces), defined as follows:

( ) ( )∑= −
∞

∗

= +

+

τ
m

μ X μ Xˆ 1 .G m
i n

n m

i i, ,
1

1 0

The central idea of this proof is to compare the actual G-formula τ̂G n m, , – on which the nuisance
parameters are estimated on the RCT data – with the oracle.

B.1.1 L1-convergence of the surface responses
For the proof, we will require that the estimated surface responses ( )μ̂ .n1, and ( )μ̂ .n0, converge toward

the true ones in L1. This is implied by assumptions (H1-G) and (H2-G). Indeed, for all >n 0 and all { }∈a 0, 1 ,
thanks to the triangle inequality and linearity of expectation, we have

     � � � � �� � � �[∣ ( ) ( )∣∣ ] [∣ ( )∣∣ ] [∣ ( )∣∣ ] [∣ ( )∣∣ ] [∣ ( )∣]

( ) ( )

− ≤ + = +

∗ ∗∗

μ X μ X μ X μ X μ X μ Xˆ ˆ ˆ .a n a n a n n a n a n n a, , ,

First, note that the quantity ( )∗ is upper bounded thanks to assumption (H2-G), using Jensen’s
inequality. Also note that the quantity ( )∗∗ is upper bounded because the potential outcomes are integr-
ables, that is, �[∣ ( )∣]Y 1 and �[∣ ( )∣]Y 0 exist (see Section 2.1).

Therefore, � �[∣ ( ) ( )∣∣ ]−μ X μ Xˆa n a n, is upper bounded. Consequently, using (H2-G) and a generalization
of the dominated convergence theorem, one has

� � � �[∣ ( ) ( )∣] [ [∣ ( ) ( )∣∣ ]]− = − ⟶

→∞

μ X μ X μ X μ Xˆ ˆ 0,a n a a n a n
n, ,

which implies

{ } ( ) ( )∀ ∈ ⟶
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a μ X μ X0, 1 , ˆ .a n
L

n a,

1

L1-convergence of τ̂G n m, , toward τ
For all >m n, 0,
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1, 0, 1 0

1
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Therefore, taking the expectation of the absolute value on both sides, and using the triangle inequality
and the fact that observations are iid,
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Note that this last inequality can be obtained because different observations are used to ( )i build the
estimated surface responses μ̂a n, (for { }∈a 0, 1 ) and ( )ii to evaluate these estimators. Indeed, the proof
would be muchmore complex if the sumwas taken over the n observations used to fit the models. Due to the
L1-convergence of each of the surface response when → ∞n (see the first part of the proof), we have

�[∣ ∣]− =

→∞

∞

∗τ τlim ˆ ˆ 0.
n

G n m G m, , , ,

In other words,

∀ ⟶

→∞
∞

∗m τ τ, ˆ ˆ .G n m
L

n G m, , , ,

1

(A2)

This equality is true for any m and intuitively can be understood as the fitted response surfaces ( )μ̂ .a n,
can be very close to the true ones as soon as n is large enough. Then, the G-formula estimator, no matter the
size of the observational data set, is close to the oracle one in L1. Hence, one can deduce a result on the
difference between τ and the G-formula,

� � �[∣ ∣] [∣ ∣] [∣ ∣]− ≤ − + −
∞

∗

∞

∗τ τ τ τ τ τˆ ˆ ˆ ˆ .G n m G n m G m G m, , , , , , , ,

According to the weak law of large number, we have

⟶
∞

∗

→∞

τ τˆ .G m
L

m, ,

1

Combining this result with equation (A2), we have

⟶

→∞

τ τˆ ,G n m
L

n m
, ,

,

1

which concludes the proof. □

B.2 L1-convergence of IPSW

This section provides the proof of Theorem A2, and for the sake of clarity, we recall Assumption A1.
Denoting

( )

n
mα xˆn m,

, the estimated weights on the set of covariates X , the following conditions hold,

– (H1-IPSW) � ( )

( )

( )
− = ⟶ → ∞∈

∣ =

ε n msup 0, when ,x
n

mα x
f x

f x n m
a s
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. .
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X

X S, 1
,

– (H2-IPSW) we have for all n m, large enough �[ ]εn m,
2 exists and �[ ] ⟶ → ∞ε n m0, when ,n m

a s
,

2 . .
,

– (H3-IPSW) Y is square integrable.

Proof of Theorem A2. First, we consider an oracle estimator ∗τ̂ nIPSW, that is based on the true ratio ( )

( )∣ =
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,

that is,
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Note that [21] also considers such an estimator and document its consistency (see their appendix). Indeed,
assuming the finite variance ofY , the strong law of large numbers (also called Kolmogorov’s law) allows us
to state that:
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Now, we need to prove that this result also holds for the estimate τ̂ n mIPSW, , where the weights are
estimated from the data. To this aim, we first use the triangle inequality comparing τ̂ n mIPSW, , with the oracle
IPSW:
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Taking the expectation on the previous inequality gives,
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Therefore, using (H2-IPSW),

�[∣ ∣]− → → ∞
∗τ τ n mˆ ˆ 0, as , .n m nIPSW, , IPSW, (A4)

Finally, note that

� � �[∣ ∣] [∣ ∣] [∣ ∣]− ≤ − + −
∗ ∗τ τ τ τ τ τˆ ˆ ˆ ˆ .n m n m n nIPSW, , IPSW, , IPSW, IPSW,

The second right-hand side term tends to be zero by the weak law of large numbers (same reasoning as for
the G-formula) and the first term tends to zero using (A4), which leads to

⟶

→∞

τ τˆ . □n m
L

n m
IPSW, ,

,

1

B.3 L1 convergence of AIPSW

The proof of Theorem A3 is based on Assumption A2 and either Assumption 6 or Assumption A1. Therefore
the proof contains two parts. For clarity, we recall here Assumption A2:
– (H1-AIPSW) There exists a function α0 bounded from above and below (from zero), satisfying
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– (H2-AIPSW) There exist two bounded functions �� →ξ ξ, :1 0 , such that { }∀ ∈a 0, 1 ,
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Proof of Theorem A3. Note that the cross-fitting procedure supposes to divide the data into K evenly sized
folds, where K is typically set to 5 or 10 (e.g., see [69]). Let ( )k . be a mapping from the sample indices

= …i n1, , to the K evenly sized data folds, and fit ( )μ̂ .n0, and ( )μ̂ .n1, with cross-fitting over the K folds using

methods tuned for optimal predictive accuracy. For { }∈ …i n1, , , ( )( )−μ̂ .n
k i

0, and ( )( )−μ̂ .n
k i

1, denote response

surfaces fitted on all folds except the ( )k i th. Let us also denote by ( )μ̂ .n0, and ( )μ̂ .n1, , the surface responses
estimated using the whole data set.

First case – Assumption 6
Grant Assumption 6. Here, we show that, due to this assumption, surface responses are consistently

estimated. Recall that the AIPSW estimator τ̂ n mAIPSW, , is defined as follows:
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Note that τ̂ n mAIPSW, , is composed of three terms, where the last Cm n, corresponds to the G-formula τ̂G n m, , .
Now, considering �[∣ ∣]−τ τˆ n mAIPSW, , , and using the triangle inequality and linearity of the expectation,
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Because Assumption 6 holds and according to Theorem A1, we have
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Regarding An m, ,1, we have
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which tends to zero according to (H1-AIPSW). Regarding An m, ,2, by the weak law of large numbers,
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which tends to zero according to Assumption 6. Therefore
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Using equations (A6) and (A7) in (A5) along with the L1-convergence of the G-formula toward τ allows us to
conclude that
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Grant Assumption A1. Here, we show that, due to this assumption, weights are consistently estimated.

Note that the AIPSW estimate can be rewritten as follows:

⎜ ⎟

⎜ ⎟

⎜ ⎟

( )
⎛

⎝ ( )

( )

( )
⎞

⎠

⎛

⎝ ( )

( )

( )

⎞

⎠

⎛

⎝
⎜

( )

( )

⎞

⎠
⎟

⎛

⎝ ( )

( )

( )

⎞

⎠

⎛

⎝
⎜

( ) ( )

( )

⎞

⎠
⎟

( )

( )

⎛

⎝
⎜

( )

( )

( ) ( )

( )

⎞

⎠
⎟

( ( ) ( ))

( )

( )

( ) ( )

∑

∑

∑

∑

∑

= −
−

−

− −

+ −

−

−

− −

−

−

+ −

=

=
∣ =

−

=
∣ =

−

=
∣ =

− −

= +

+

τ
n

n
mα X

A Y
e X

A Y
e X

D

n
n

mα X
f X

f X
A μ X

e X
E

n
n

mα X
f X

f X
A μ X

e X
F

n
f X

f X
A μ X

e X
A μ X

e X
G

m
μ X μ X C

ˆ 1
ˆ

1
1

1
ˆ

ˆ

1
ˆ

1 ˆ
1

1 ˆ 1 ˆ
1

1 ˆ ˆ . .

n m
i

n

n m i

i i

i

i i

i
n m

i

n

n m i

X i

X S i

i n
k i

i

i
n m

i

n

n m i

X i

X S i

i n
k i

i

i
n m

i

n
X i

X S i

i n
k i

i

i

i n
k i

i

i
n

i n

m n

n i n i n m

AIPSW, ,
1 , 1 1

,

1 , 1

1,

1
,

1 , 1

0,

1
,

1 1

1,

1

0,

1

1
1, 0, ,

Again, using the expectation and the triangle inequality, one has,

� � � � �[∣ ∣] [∣ ∣] [∣ ∣] [∣ ∣] [∣ ∣]− ≤ − + + + +τ τ D τ E F G Cˆ .n m n m n m n m n n mAIPSW, , , , , , (A8)

Note that the term Dn m, corresponds to the IPSW estimator (Definition A1). According to Assumption A1 and
Theorem A2, �[∣ ∣]−D τn m, converges to 0 as → ∞n m, . Now, we study the convergence of each of the
remaining terms in equation (A8).

B.3.1 Considering En m, and Fn m,
Let us now consider the term En m, . First, note that, according to Assumption A2 (H2-AIPSW), the

estimated surface responses are uniformly bounded for n large enough, that is, there exists >μ 0M such
that, for all { }∈a 0, 1 , for all n large enough,
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The reasoning is the same for the term Fn m, , which also converges uniformly toward 0 when → ∞n m, .

B.3.2 Considering Gn and Cn m,

By Assumption (H2-AIPSW), for all >ε 0, for all n large enough, for all �∈x ,
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Hence, by the law of large numbers,
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We can apply the same reasoning for the term Gn, by taking into account the fact that it uses a cross-
fitting strategy. By Assumption A2 (H2-AIPSW), for all >ε 0, for all n large enough, for all �∈x , for
all { }∈ …i n1, , ,
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Besides, by the law of large numbers,
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Consequently, as mentioned earlier,
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which concludes the proof. □

C Proofs for the missing covariate setting

This section gathers proofs related to the case where key covariates (treatment effect modifiers with distribu-
tional shift) are missing. In particular, this appendix contains the proofs of results presented in Section 3.

C.1 Proof of Theorem 1

Proof. Theorem 1 is essentially a statement about the observed distribution. One can first derived what is
the partial identification of τ under the observed distribution τobs, that is,
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As the covariates X are assumed to be a Gaussian vector distributed as �( )μ Σ, , and considering the
assumption on the variance–covariance matrix (Assumption 7), one can have an explicit expression of the
conditional expectation [70].
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Therefore, plugging this expression into τobs and comparing it to τ,
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Note that the last row is only a different way to write the scalar product into a sum.
Then, any L1-consistent estimator hatτn m, ,obs of τ on the observed set of covariates will follow
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C.2 Imputation

This part contains the proof of Corollary 2.

Proof. This proof is divided into two parts, depending on the missing covariate pattern. □
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C.2.1 Consider the RCT as the complete dataset

We assume that the linear link between the missing covariate Xmis and the observed one Xobs in the trial
population is known, so is the true response surfaces ( )μ .1 and ( )μ .0 . We consider the estimator ∞τ̂G m, , ,imp
based on the two previous oracles quantities. We denote by … #c c, , obs0 the coefficients linking Xobs and Xmis
in the trial, so that, on the event =S 1,

∑= + +

∈

X c c X ε,
j

j jmis 0
obs

(A9)

where ε is a Gaussian noise satisfying �[ ∣ ] =ε X 0obs almost surely. Since we assume that the true link
between Xmis and Xobs is known (i.e., we know the coefficients …c c, , d0 ), the imputation of the missing
covariate on the observational sample writes

∑≔ +

∈

X c c Xˆ .
j

j jmis 0
obs

(A10)

We denote X̃ the imputed data set composed of the observed covariates and the imputed one in the
observational sample. The expectation of the oracle estimator ∞τ̂G m, , ,imp is defined as follows:
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Because of the finite variance of Xobs and X̂mis, the law of large numbers allows to state that:
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Due to Assumption 7, the distribution of the vector X is Gaussian in both populations, and one can use
the conditional expectation for a multivariate gaussian law to write the conditional expectation in the trial
population, that is,
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Combining (A9) and (A11), one can obtain:
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Now, we can compute,
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This last result allows to conclude that,
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Finally, as �[ ]= ∑
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p
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which concludes this part of the proof.

C.2.2 Consider the observational data as the complete data set

We assume here that the true relations between Xmis and Xobs is known, and the true response model is also
known. We denote by ∞ ∞τG, , ,imp the estimator based on these two quantities.

More precisely, we denote by … #c c, , obs0 the coefficients linking Xobs and Xmis in the observational
population, so that
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X c c X ε,
j

j jmis 0
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(A13)

where ε is a Gaussian noise satisfying �[ ∣ ] =ε X 0obs almost surely.
As the estimator is an oracle, the relation in (A13) is used to impute the missing covariate in the

observational sample, so that
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(A14)

We denote X̃ the imputed data set composed of the observed covariates and the imputed one in the trial

population. Note that the X̂mis is a linear combination of Xobs in the trial population and thus a measurable
function of Xobs. This property is used below and labelled as (A14). As ∞ ∞τG, , ,imp is an oracle, one have:
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which concludes this part of the proof.

C.3 Proxy variable

Proof of Lemma 1. Recall that we denote τ̂G n m, , ,prox the G-formula estimator using Xprox instead of Xmis in the
G-formula. The derivations of τ̂G n m, , ,prox give:
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The framework of the proxy variable (8) allows to have an expression of the conditional expectation of
Xmis [70]:
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since � �[ ∣ ] [ ∣ ]= = =X S X S1 1prox mis and � �[ ] [ ]=X Xprox mis . Recalling that �[ ]= ∑τ δ Xj j , the final form of the
bias of τ̂G n m, , ,prox can be obtained as follows:

� � � ⎜ ⎟[ ] ( [ ] [ ∣ ])
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− = − = −

+

τ τ δ X X S σ
σ σ
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2
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Proof of Corollary 3. Note that the final expression of the bias obtained in the previous proof cannot be
estimated in all missing covariate patterns. For example, if Xmis is partially observed in the RCT, then an
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estimate of δmis can be computed, and therefore, the bias can be estimated. But in all other missing
covariate pattern, a temptation is to estimate δprox from the regression of Y against ( )=X X X,obs prox with
an OLS procedure. Ref. [59] details the infinite sample estimate of such a coefficient:

�[ ] =

+→∞

δ δ σ
σ σ

lim ˆ .
n m,

prox mis
mis
2

mis
2

prox
2

Note that the quantity
+

σ
σ σ

mis
2

mis
2

prox
2 is always lower than 1; therefore, if ≥δ 1mis , then δ̂prox underestimates δmis.

This phenomenon is called the attenuation bias. This point is documented by ref. [59], and is due to
heteroscedasticity in the plug-in regression:

[ ] [ ]= + − = − ≠X ε X η ε δ η δ σCov , Cov , 0.ηprox mis mis mis
2

This asymptotic estimate can be plugged-in into the previous bias estimation:

� � �[ ] ( [ ] [ ∣ ])− = − =τ τ δ X X S
σ
σ

ˆ ˆ 1 . □G n m, , ,prox prox prox prox
prox
2

mis
2

D Toward a semi-parametric model

This section completes Model 2 and justifies why this the assumption of a linear CATE is somewhat natural
when considering a continuous outcome Y .

For a continuous outcome Y , the outcome model can be written with two terms, a baseline and the
CATE. Indeed, when focusing on zero-mean additive-error representations leads to assume that the poten-
tial outcomes are generated according to:

( ) ( )= +Y A μ A X ε, ,A (A15)

for some function ��({ } )∈ × →μ L 0, 12 and a noise εA satisfying �[ ∣ ] =ε X 0A almost surely.

Lemma A1. Assume that the nonparametric generative model of equation (A15) holds, then there exists a
function �� →g : such that

�( ) ( ) ( ) ( ) [ ( ) ( )∣ ]= + + ≔ −Y A g X A τ X ε where τ X Y Y X, 1 0 .A (A16)

Lemma A1 follows from rewriting equation (A15), accounting for the fact that A is binary and �∈Y .
Such a decomposition is often used in the literature [55]. This model allows to have a simpler expression of
the treatment effect without any additional assumptions due to the discrete nature of A. In other words, this
model enables placing independent functional form on the CATE ( )τ X , sometimes relying on the idea that
the CATE is smoother, while the baseline response can be more complex [71]. In the context of the sensi-
tivity analysis, this model has the interest of highlighting treatment effect modifier variables, such as
variables that intervene in the CATE ( )τ X .

E Robinson procedure

This appendix recall the so-called Robinson procedure that aims at estimating the CATE coefficients δ in a
semi-parametric equation such as (2). This method was developed by [53] and has been further extended
[69,54,55]. Such a procedure is called a R-learner, where the R denotes Robinson or Residuals. We recall the
procedure,
(1) Run a nonparametric regressionsY X~ using a parametric or non parametric method. The best method

can be chosen with a cross-validation procedure. We denote �( ) [ ∣ ]= =m x Y X xˆ n the estimator obtained.
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(2) Define the transformed features ( )= −Y Y m X˜ ˆ n and ( ( ))= −Z A e X X˜ 1 , using the previous procedure m̂n.

(3) Estimate δ̂n running the OLS regression on the transformed features Y Z˜ ~ ˜ .

If the nonparametric regressions of ( )m x satisfies �[( ( ) ( )) ] ( )− =
∕

m X m X oˆ P n
2 11

2 1 4 , then the procedure to

estimate δ is n -consistent and asymptotically normal,

�( ) ( ) [ ] [ ] [ ]͠ ͠ ͠− ⇒ =
− −n δ δ V V Z Z Y Zˆ 0, , Var Var ˜ Var .R R

1 1

See refs [54,69] for details.

F Synthetic simulation – extension

This section completes the synthetic simulation presented in Section 4.

F.1 Simulation parameters

Parameters chosen highlight different covariate roles and strength importance. In this setting, covariates X1,
X2, and X3 are the so-called treatment effect modifiers due to a nonzero δ coefficients, and X1, X3, and X4 are
shifted from the RCT sample and the target population distribution due to a nonzero βs coefficient.
Therefore, covariates X1 and X3 are necessary to generalize the treatment effect in both groups. Because
in the simulation X2 and X4 are independent, the set X1 and X3 is also sufficient to generalize. Only X2 has the

Table A1: Coefficients estimated in the simulation: Simulation with X1 as the missing covariate repeated 100 times, means of
estimated coefficients for X5 and bias on ATE using the Robinson procedure

ρX X,1 5 δ δ− ˆ5 5 τ τ− ˆg
obs

0.05 −6.34 8.24
0.5 −16.78 6.35
0.95 −28.56 0.93
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Figure A1: Simulations results when imputing (procedure 4): Results when imputing X1 with a linear model fitted on the
complete data set (either the RCT or the observational). All the missing covariate patterns are simulated using either the G-
formula or the IPSW estimators. The impact of the correlation between X1 and X5 is investigated. Each simulation is repeated
100 times. All procedures have a similar bias as the procedure ignoring the partially missing covariate (totally.missing), so
that a linear imputation (procedure 4) improves neither the bias nor the variance.
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same marginal distribution in the RCT sample and in the observational study. Note the amplitude and sign
of different coefficients used, along with dependence between variables allows to illustrate several phe-
nomena. For example X3 is less shifted in between the two samples compared to X1 because ∣ ∣ ∣ ∣≤β βs s,1 ,3 .

F.2 Additional comments on Figure 4

Note that depending on the correlation strength between X1 and X5, the missing of X1 can lead to different
coefficients estimations when using the G-formula estimation, and different bias on the ATE. Table A1
illustrates this situation, where the higher the correlation, the higher the error on the coefficients estima-
tions, but the lower the bias on the ATE when only X1 is missing.

F.3 Imputation

When a covariate is partially observed, at temptation is to impute the missing part with a model learned on
the complete part as detailed in procedure 4. Section 3 illustrates Corollary 2, as it shows that linear
imputation does not diminish the bias compared to a case where the generalization is performed using
only the restricted set of observed covariates. In Figure A1, we simulated all the missing covariate patterns
(in RCT or in observational) considering X1 is partially missing, with varying correlation strength between X5
and X1, and fitting a linear imputation model. Imputation does not lead to a lower bias than totally removing
the partially observed covariate. Therefore, in case of a partially missing covariate, we advocate running a
sensitivity analysis rather than a linear imputation.

−8

−4

0

0 1 2 3 4

�prox
2

Bi
as

Bias if totally missing covariate Simulations Theory

Figure A2: Simulation results for proxy variable (procedure 5) Simulation when a key covariate is replaced by a proxy following
the proxy-framework (see Assumption 8). The theoretical bias (1) is represented along with the empirical values obtained when
generalizing the ATE with the plugged-in G-formula estimator.

Figure A3: Pairwise data ellipses for the STAR data, centered at the origin. This view allows to compare the variances and
covariances for all pairs of variables.
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F.4 Proxy variable

Finally and to illustrate Lemma 1, the simulation is extended to replace X1 by a proxy variable, generated
following (8)with a varyingσprox. The generalized ATE is estimated with the G-formula. The experiments are
repeated 20 times per σprox values. Results are presented in Figure A2. Whenever σprox is small compared to
σmis (which is equal to one in this simulation), therefore the bias is small.

G Homogeneity of the variance–covariance matrix

Recall that Assumption 7 states that the covariance matrices in both data sets are identical. This assumption,
which may appear to be very restrictive, can be partially tested on the set of observed covariates. In this section,
we present such a test [Box’s M-test 49], which illustrates the validity of Assumption 7 on some particular data
set. Taking one step further, we study the impact of Assumption 7 violation on the resulting estimate.

G.1 Statistical test and visualizations

Ref. [50] presents available tests to assess if covariance matrices from two data sample are equal. Despite its
sensitivity to violation, Box’s M-test [49] can be used test the equality. In particular, the package heplots

contains the tests and visualizations in R. The command line to perform the test is detailed below.

library(heplots)

boxM(data[,c("X1","X2","X3","X4")], group = data$S)

Even if we cannot bring a general rule to know if the covariance matrices are equal, we can display
some examples in which Assumption 7 holds. For instance, [50] report that the skull data is an example of
a real data set with multiple sources where there are substantial differences among the means of groups,
but little evidence for heterogeneity of their covariance matrices.

G.1.1 Semi-synthetic experiment: STAR

While doing the semi-synthetic experiment on the STAR data set, the Box M-test rejects the null hypothesis
when considering only numerical covariates (age, g1freelunch, gkfreelunch, and g1surban)with a p-value

Figure A4: Pairwise data ellipses for the CRASH-3 and Traumabase data, centered at the origin. CRASH-3 data are in blue and
Traumabase data in red. This view allows to compare the variances and covariances for all pairs of variables. While the mean
are really different in the two sources, the variances and covariances are not so different.
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of 0.022. This indicates that the preservation of the variance–covariance structure between the two simu-
lated sources does not hold. To help support conclusions, one can visualize how the variance covariance
matrix vary in between the two sources, as presented in Figure A3, supporting that the changes in the
variance–covariance are not very strong.

G.1.2 Traumabase and CRASH-3

Note that this part’s purpose is only to illustrate the principle as the application performed in Section 5
relies on the independence between the time to treatment and all other covariates, and not Assumption 7.

One can inspect how far the variance and covariance change in between the two sources. Pairwise data
ellipses are presented in Figure A4 for CRASH-3 and Traumabase patients, suggesting rather strong differ-
ence in the variance–covariance matrix. As expected Box M-test largely rejects the null hypothesis.

It is interesting to note that in some cases the variance covariance matrix is identical in between two
populations. For example, we tested whether the two major trauma centers in France present heterogeneity
in the variance–covariance matrix, and the Box M test does not reject the null hypothesis.

(a) (b)
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Figure A5: Effect of a different variance–covariance matrix on the ATE estimation, where heterogeneity between the two
variance–covariance matrix is introduced as presented in (a) and (b). (c) The impact on the estimated average treatment effect
(ATE). Situations A and B result in a similar statistics when using a Box-M test, but leads to very different impact on the bias
estimation as visible on (c). The simulations are repeated 50 times, with a similar outcome generative model as in (8), and
n 1,000= andm 10,000= . (a) Situation A – Centered pairwise data ellipses. (b) Situation B – Centered pairwise data ellipses.
(c) ATE estimation in the two situations where τ̂G,obs is estimated considering X1 is missing and denoted ATE.uncomplete, while
the bias B is estimated following Theorem 1 giving ATE.corrected (τ Bˆ ˆG,obs + ).
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G.2 Extension of the simulations

Simulations presented in Section 4 can be extended to illustrate empirically the consequences of a poorly
specified Assumption 7. Suppose X1 is the unobserved covariate and that the variance–covariance matrix is
not the same in the randomized population ( =S 1) as in the target population. But the heterogeneities in
between the two sources can be different in their nature, affecting covariates depending or not from X1. We
can imagine two situations, a situation (A) where the link in between X1 and X5 is different in the two
sources, and another situation (B) where the link in between X2 and X3 is not the same. The situation is
illustrated in Figure A5(a) and (b) with pairwise data ellipses. Note that with =n 1,000 and =m 10,000 , a
Box-M test largely rejects the null hypothesis with a similar statistic value for both situations. When
computing the bias according to Theorem 1 and repeating the experiment 50 times, empirical evidence is
made that the localization of the heterogeneity impacts or not the bias computation. As presented in Figure
A5(c), situation A affects the bias computation, when situation B keeps the bias estimation valid.

G.3 Recommendations

Our current recommendations when considering the Assumption 7 is, first, to visualize the heterogeneity of
variance–covariance matrix with pairwise data ellipses on Σobs,obs. A statistical test such as a Box-M test can
be applied on Σobs,obs. We also want to emphasize that a statistical test depends on the size of the data
sample, when what really matters in this assumption for the sensitivity analysis to be valid is the perma-
nence of covariance structure of the missing covariates with the strongly correlated observed covariates.
Simulations presented in Figure A5 is somehow an empirical pathological case where the variance–covar-
iance matrix are equivalently different when considering a statistical test, but leads to different conse-
quences on the validity of Theorem 1, and therefore the sensitivity analysis.

G.4 Comment about the notations

The notations used in this work is inherited from the generalization literature and reflects the idea of a
plausibility to be sampled from a target superpopulation. The point of view of two population with support
inclusion is equivalent for our purpose. Still, thinking to the problem of a sampling bias, then Assumption 7
imposes unusual restrictions for ( ∣ )=P X S 0 , that is a subpopulation of the target population. As we do not
do any inference on that population and as it has no practical interpretation, we do not discuss this in
this work.
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