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Abstract. The task of inferring the missing links in a graph based on
its current structure is referred to as link prediction. Link prediction
methods that are based on pairwise node similarity are well-established
approaches in the literature. They show good prediction performance in
many real-world graphs though they are heuristics and lack of univer-
sal applicability. On the other hand, the success of neural networks for
classification tasks in various domains leads researchers to study them in
graphs. When a neural network can operate directly on the graph, then
it is termed as the graph neural network (GNN). GNN is able to learn
hidden features from graphs which can be used for link prediction task in
graphs. Link predictions based on GNNs have gained much attention of
researchers due to their convincing high performance in many real-world
graphs. This appraisal paper studies some similarity and GNN-based
link prediction approaches in the domain of homogeneous graphs that
consists of a single type of (attributed)nodes and single type of pairwise
links. We evaluate the studied approaches against several benchmark
graphs with different properties from various domains.

Keywords: Neural network · Homogeneous graph · Graph labelling ·
Node embedding.

1 Introduction

One of the most interesting and long-standing problems in the field of graph
mining is link prediction that predicts the probability of a link between two
unconnected nodes based on available information in the current graph such as
node attributes or graph structure [1]. The prediction of missing or potential links
helps us toward the deep understanding of structure, evolution and functions
of real-world complex graphs [2]. Some applications of link prediction include
friend recommendation in social networks ([3]), product recommendation in e-
commerce [4], knowledge graph completion [5], and finding interactions between
proteins [6].

A large category of link prediction methods is based on some heuristics that
measure the proximity between nodes to predict whether they are likely to have
a link. Though these heuristics can predict links with high accuracy in many
graphs, they lack universal applicability to different kinds of graphs. For exam-
ple, the common neighbor heuristic assumes that two nodes are more likely to
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connect if they have many common neighbors. This assumption may be cor-
rect in social networks, but is shown to fail in protein-protein interaction (PPI)
networks where two proteins sharing many common neighbors are actually less
likely to interact [7]. In case of using these heuristics, it is required to man-
ually choose different heuristics for different graphs based on prior beliefs or
expensive trial and error process. On the other hand, learning-based link predic-
tion approaches are able to learn suitable heuristics from the graph itself. The
success of the neural network is well-known for machine learning task in many
real-world applications like image classification [8], speech recognition [9], video
processing [10], natural language processing [11]. The applications can represent
the data in Euclidean space and neural network is able to extract the hidden
features from the data space. However, the neural network can not be applied
directly into the graph domain due to two important challenges [12]. Firstly, a
graph contains unordered nodes and a variable number of neighbours for each
node. Secondly, the assumption of independence of data is no longer true for
graphs as each node is linked to some other nodes. The first attempt to study
the neural network in the graph domain was done in [14]. Then, Graph Neural
Networks (GNNs) has become a powerful tool for learning hidden features in
graphs. In the last decades, researchers have developed many GNN-based meth-
ods which are used for several tasks completion such as graph classification [15],
node classification [16], and link prediction [17].

In this paper, we first introduce the link prediction problem and highlight
similarity-based and GNN-based methods. Then, we choose a few approaches
from both link prediction categories to evaluate their performances on different
types of graphs, namely simple or homogeneous graphs and node-attributed
graphs. We compare their performance with respect to the prediction accuracy
and computational time.

2 Link Prediction: Problem and Approaches

Consider an undirected graph at a particular time t where nodes represent en-
tities and links represent the relationships between pair entities (or nodes). The
link prediction problem is defined as discovering or inferring a set of missing
links (existing but not observed) in the graph at time t+∆t. The problem can
be illustrated with a simple undirected graph in Fig. 1, where circles represent
nodes and lines represent links between pair of nodes. Black solid lines represent
observed links and red dashed lines represent missing links in the current graph.
Fig. 1a shows the snapshot of the graph at time t, where two missing links ex-
ist between node pairs (x, y) and (g, i). The link prediction problem aiming to
predict the appearance of these two missing links as observed links in the graph
in near future t+∆t, as illustrated in Fig. 1b.

2.1 Similarity-based Link Prediction

The similarity-based approach is the most commonly used approach for link
prediction which is developed based on the assumption that two nodes in a
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(a) Graph at time t (b) Graph at time t+∆t

Fig. 1: Illustration of link prediction problem

graph interact if they are similar. The definition of similarity is a crucial and
non-trivial task that varies from domain to domain even from the graph to graph
in the same domain [18]. As a result, numerous similarity-based approaches have
been included in the literature to predict links in small to large graphs. Some
similarity-based approaches use the local neighbourhood information to compute
similarity score are known as local similarity-based approach. Another category
of similarity-based approach is global approaches those use the global topological
information of graph. The computational complexity of global approaches makes
them unfeasible to be applied on large graphs as they use the global structural
information such as adjacency matrix [18]. For this reason, we are considering
only the local similarity-based approaches in the current study. We have studied
13 popular similarity-based approaches for link prediction. Table 1 summarizes
the approaches with the basic principle and similarity function.

These approaches except CCLP use node degree, common neighborhood or
links among common neighborhood information to compute similarity scores.
CCLP uses the clustering coefficient (CC) of each common neighbour to compute
the role of its to the similarity score. The clustering coefficient is defined as the
ratio of the number of triangles and the expected number of triangles passing
through a node. If tz is the number of triangles passing through node z and Γz is
the neighbourhood of z then the clustering coefficient (CCz) of node z is defined
as

CCz =
2× tz

|Γz| (|Γz| − 1)
(1)

Overall, these local similarity-based approaches except PA work well when the
graphs have a high number of common neighbours between a pair of nodes.
However, the SA, HDI and LLHN suffer from outlier when one of the two nodes
has no neighbour. In addition, some of the approaches like JA, SO, HPI suffer
from the outlier when both of the nodes have no neighbour.

2.2 Graph Neural Network(GNN)-based Link Prediction

Graph neural network (GNN) is an extension of the neural network to be applied
to graph data. A GNN computes the node representation based on the available
node information. It aggregates the information from its neighbours to find its fi-
nal representation and the representation is fed into a multi-layer neural network
for several downstream tasks like node classification, link prediction and graph
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Table 1: Summary of studied similarity-based approaches. The similarity func-
tion is defined to predict a link between two nodes x and y. Γx and Γx denote
the neighbour sets of nodes x and y respectively. rx,y denotes the link between
two nodes x, y.
Approach Principle Similarity-function
Adamic-Adar (AA)
[3]

Variation of CN where each com-
mon neighbour is logarithmically
penalized by its degree

SAA(x, y) =∑
z∈Γx∩Γy

1
log|Γz|

Common Neighbours
(CN) [19]

Two nodes are more likely to be
linked share more neighbours

SCN (x, y) = |Γx ∩ Γy|

Resource Allocation
(RA) [20]

Based on the resource allocation
process to further penalize the high
degree common neighbours by more
amount

SRA(x, y) =
∑

z∈Γx∩Γy
1
|Γz|

Preferential Attach-
ment (PA) [21]

Based on the rich-get-richer con-
cept where the link probability be-
tween two high degree nodes is
higher than two low degree nodes

SPA(x, y) = |Γx| × |Γy|

Jaccard Index(JA)
[22]

Normalization of CN where the
score is penalized for each non-
common neighbour

SJA(x, y) = |Γx∩Γy|
|Γx∪Γy|

Salton Index(SA)
[23]

Motivated by cosine similarity that
defines link probability based on co-
sine angle between adjacency vec-
tors for nodes pair

SSA(x, y) = |Γx∩Γy|√
|Γx|×|Γy|

Sørensen Index(SO)
[24]

Describing the overall proportion of
common neighbours from a local
perspective.

SSO(x, y) = 2×|Γx∩Γy|
|Γx|+|Γy|

Hub Promoted Index
(HPI) [25]

Promoting link formation between
high-degree nodes and hubs

SHPI(x, y) = |Γx∩Γy|
max(|Γx|,|Γy|)

Hub Depressed Index
(HDI) [25]

Promoting link formation between
low-degree nodes and hubs.

SHDI(x, y) = |Γx∩Γy|
min(|Γx|,|Γy|)

Local Leicht-Holme-
Newman (LLHN)
[26]

Utilizing both of real and expected
amount of common neighbours be-
tween a pair of nodes to define their
similarity.

SLLHN (x, y) = |Γx∩Γy|
|Γx|×|Γy|

Individual Attraction
(IA) [27]

Maximizing the likelihood of link
formation for highly interlinked
nodes pair.

SIA(x, y) =∑
z∈Γx∩Γy

|rz,Γx∩Γy|+2

|Γz|

Cannistrai–Alanis–
Ravai (CAR) [28]

Utilization of level-2 links along
with common neighbourhood infor-
mation in computing the pairwise
similarity score

SCAR(x, y) =∑
z∈Γx∩Γy 1 + |Γx∩Γy∩Γz|

2

Clustering
Coefficient-based
Link Prediction
(CCLP) [29]

Quantification of the contribution
of each common neighbour by uti-
lizing the local clustering coefficient
of the node.

SCCLP (x, y) =∑
z∈Γx∩Γy CCz



Comparative study of similarity-based and GNN-based link prediction 5

classification. Based on the architecture, GNNs are broadly categorized into five
categories: recurrent graph neural network (RecGNN), convolution graph neural
network (ConvGNN), graph auto-encoder (GAE), and spatial-temporal graph
neural network (STGNN) [12]. RecGNNs are the pioneers of GNNs those work
based on the assumption that the nodes constantly exchange the information
with the neighbours until a stable state is reached. Motivated by the convolu-
tion operation of the neural network in the image domain, ConvGNNs compute
the embedding of a node by aggregating its own information and neighbours
information. GAEs are the unsupervised version of GNN those encode the nodes
into a latent vector space and reconstruct the graph to learn the embedding.
STGNNs are used to learn the hidden features in a spatio-temporal graph based
on the spatial and temporal dependency with time. Recently, researchers have
studied the attention mechanism in RecGNN and ConvGNN to improve the
prediction performance by allowing them to focus on the most relevant parts of
the graph [13]. ConvGNNs has become popular in recent years due to its effi-
cient graph convolution operation [12, 30]. In this paper, we focus on the link
prediction approaches based on ConvGNN. A ConvGNN starts with defining
the neighbourhood Γvi of each node vi in the graph G(V,E) which is a crucial
task as it can affect the accuracy and computational time. Some popular neigh-
bourhood definitions include immediate neighbours, multi-hop neighbours [17,
31], sampling-based neighbours [32, 33]. The feature vector, xi of each node, vi
is then computed based on its attribute and structural information. The feature
vectors of nodes are fed into a stack of layers to learn the hidden features of the
graph. A simple ConvGNN update the node representation in each layer in the
following three basic steps [30, 34]

1. Computation of neural messages: The neural messages of each link for
next layer is computed based on the current representations of both end
nodes of the link. If hli and hlj are current representations of a nodes pair
(vi, vj), the message of the link is defined as

ml+1
ij = MSG(hli, h

l
j , rij) (2)

Here, l represents the current layer, rij ∈ E is the relation between the
nodes pair and MSG is the message computation function for the links.
Many GNN models use the link types [35] or link weight [36] for encoding
rij . The initial representations of nodes vi and vj are xi and xj respectively
(i.e. h1i = xi and h1j = xj).

2. Aggregating the neighbour information: The next operation of the
layer is to aggregate the neighbour messages ml

ij for node vi. An aggregation
function is defined as

M l+1
i = AGGR(ml+1

ij |vj ∈ Γvi) (3)

Here, Γvi is the set of neighbours of node vi and AGGR is the aggregation
function. Some popular aggregation functions exist in the literature such as
mean/max pooling [37], sort pooling [38], permutation invariant [39].
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3. Updating the node representation: In this step, the representation or
embedding of node vi in the next layer is updated based on the current
embedding, hli and the aggregated message, M l+1

i

hl+1
i = UPDATE(hli,M

l+1
i ) (4)

Here, the UPDATE function is a non-linear function like sigmoid, recified
linear unit(ReLU), hyperbolic tangent(TanH). The output embedding hl+1

i

is the input for next layer.

Each layer in the model follows these three steps and generates nodes embed-
ding. The embedding from the last layer is fed into a standard classifier such as
multilayer perception (MLP) with a softmax layer for downstream tasks. The
parameters of the classifier are optimized using optimizer like Adam, stochastic
gradient descent(SGD) along with loss functions such as cross-entropy, mean
absolute error(MAE), mean squared error(MSE) and backpropagation.

There exist many link prediction approaches based on ConvGNN in the lit-
erature. Most of them are applicable to homogeneous graphs and few of them
are applicable to heterogeneous graphs which consist of multiple types of nodes
and links, node and link attributes and multiple links between pairs of nodes.
We study two recent GNN-based link prediction approaches which are applica-
ble to homogeneous graphs only as our study is confined to those graphs. The
first one is WLNM (Weisfeiler-Lehman Neural Machine) that utilizes only the
structural information of nodes for the link prediction task. SEAL (Sub-graphs,
Embeddings and Attributes) is the second one that uses the structural, latent
and attribute information of node for the same task. The approaches are briefly
described below.

Weisfeiler-Lehman Neural Machine (WLNM) Based on the well-known
Weisfeiler-Lehman canonical labelling algorithm [40], Zhang &Chen developed
a link prediction approach for graph called Weisfeiler-Lehman Neural Machine
(WLNM) [32]. WLNM learns the structural features from the graph and uses in
prediction task. WLNM is a three steps link prediction approach that starts with
extracting sub-graphs, labelling and encoding the nodes and ends with training
and evaluating the neural network. Fig. 2 illustrates the training process of
WLNM with one existent link (A,B) and one non-existent link(c,d). The three
steps of WLNM link prediction approach are described as following.

1. Sub-graph extraction: WLNM starts with extracting the k-vertex neigh-
bouring sub-graph of a link called enclosing sub-graph. k is the user-defined
parameter that defines the size of sub-graph. For a given link, 1-hop neigh-
bours are added in the sub-graph, then 2-hop neighbours and so on until
the number of neighbours is greater or equal to k. If there are k’ nodes in
sub-graph such that k′ > k then k′ − k nodes with higher hop number are
removed sub-graph.

2. Node labelling and encoding: Weisfeiler-Lehman (WL) is a popular
graph labelling algorithm that uses the concept of signature string for each
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Fig. 2: Illustration of WLNM approach [32]

node to compute node labels [40]. Instead of using classical WL algorithm,
WLNM develops a hashing based color refinement process for faster node
labelling. If two nodes have still the same label, WLNM uses the naughty
node labelling algorithm to break the tie [41]. The nodes are sorted accord-
ing to the node label in increasing order and an upper triangular adjacency
matrix is computed.

3. Neural network training and evaluation: WLNM uses a fully connected
multi-layer perception (MLP) neural network to learn structural features
from the sub-graph. The output layer of the MLP is a softmax layer that
classifies the link into two classes (existent and non-existent). The upper
triangular adjacency matrix of the sub-graph is vertically fed into the MLP
to train and evaluate WLNM approach. The neural network is trained for
both of existent and non-existent links.

WLNM is a simple GNN-based link prediction approach which is able to learn the
link prediction heuristics from a graph. In contrast to similarity-based heuristics,
WLNM has universal applicability properties. However, WLNM truncates some
neighbours to limit the number of nodes in the sub-graph to a user-defined size.
The truncated neighbours may be informative for the prediction task.

Learning from Sub-graphs, Embeddings and Attributes (SEAL) Zhang
et al [17] developed a ConvGNN-based link prediction approach namely SEAL
to learn from latent and explicit features of nodes along with the structural infor-
mation of graph. Unlike WLNM, SEAL is able to handle neighbours of variable
size. SEAL replaces the fully-connected neural network in WLNM with a graph
neural network to learn the graph features efficiently. The overall architecture of
the approach is shown in Fig. 3. Like WLNM, SEAL also consists of three major
steps which are described as follows:

1. Sub-graph extraction and node labelling: Likewise WLNM, SEAL ap-
proach uses the concept of local sub-graph instead of the whole graph for
a link in prediction task. SEAL defines the sub-graph as the h-hop neigh-
bours of a link which is built by the union operation on the h-hop neighbours
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Fig. 3: Architecture of SEAL approach

of nodes of the link. For example, a 1-hop enclosing sub-graph contains all
first-order or immediate neighbours, a 2-hop enclosing sub-graph contains
all first-order and second-order neighbours. In Fig. 3, the sub-graph for link
(A,B) consists of 7 nodes(5 neighbours and 2 end nodes) and the sub-graph
for link (C,D) consists of 8 nodes(6 neighbours and 2 end nodes). The ap-
proach shows that setting a small h can still provide good prediction per-
formance. Then a unique label is assigned to each node of the sub-graph to
indicate its importance in the prediction task. SEAL designs a new node la-
belling algorithm namely DRNL (double-radius node labelling) based on the
topological distances of the node from both ends of the link in the sub-graph.

2. Node information matrix construction: The information matrix of a
node in SEAL is defined based on its structural label(structural feature),
embedding(latent feature) and attribute(explicit feature). One hot encod-
ing technique is applied to the labelled sub-graph to compute the struc-
tural vector of nodes. The structural feature vector of the node is then con-
catenated with the latent feature vector of the node. The latent feature is
the low-dimensional latent representation/embedding of a node which is ob-
tained by factorizing the adjacency matrix from the graph. SEAL uses the
Node2Vec [42] algorithms to learn the latent feature vector for each node
in sub-graph. The last part of the information vector of the node is an ex-
plicit feature vector which is computed based on the continuous or discrete
attributes of the node. One hot coding technique is used to find the explicit
feature vector of each node.

3. Neural network training and evaluation: The learned node informa-
tion matrix of the sub-graph is feed into a GNN called DGCNN (Deep
Graph Convolutional Neural Network) [38] to perform the link prediction
task. DGCNN consists of propagation-based convolution layer and aggrega-
tion layer to aggregate the neighbour’s information vector. DGCNN uses a
sort-pooling layer to unify the size of the representation of the sub-graph.

SEAL utilizes the available information in the graph to improve the prediction
performance. However, SEAL is limited to be applied on homogeneous graphs
though many real work graphs are heterogeneous graphs. Moreover, the use of
latent feature affects the computational time of SEAL.
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3 Experimental Design

3.1 Datasets Characteristics

We perform the comparative study of the above discussed similarity and GNN
based link prediction approaches in graphs from different domains. To evalu-
ate and describe the performance of the link prediction approaches, we choose
ten benchmark graphs from different areas: Ecoli [43], FB15K [44], NS [45],
PB [46],Power [47], Router [48], USAir [49], WN18 [50], YAGO3-10 [51], and
Yeast [52]. Ecoli and Yeast are two biological graphs those represent the biologi-
cal relations between operons in Escherichia Coli bacteria and protein-protein in-
teraction in yeast. PB (Political Blog) graph represents the network among polit-
ical blog pages in US where the blog pages are identified as nodes and hyperlinks
between the blog pages are identified as links of the graph. We consider the orig-
inal directed links as undirected links. Net Science (NS) graph represents a col-
laboration network of researchers who publish papers on network science. Power
is an electrical grid network of western US representing the network describing
high voltage transmission among generators, transformers and substations. The
Router graph represents the router-level internet where each router has an iden-
tifier and undirected links with other routers. The USAir graph represents the
network of the US air transportation system that consists of attributed nodes
(airports) and links between two airports. FB1K, WN18 and YAGO3-10 are sim-
plified knowledge graphs. The original FB15K is a Freebase Knowledge Graph
which was extracted from Wikidata and DBPedia. This knowledge graph con-
tains 540188 triples where each triple consists of identifiers of freebase entity with
a relationship name between them. WN18 is another knowledge graph that is a
large lexical graph of English. The last knowledge graph is YAGO3-10 that was
prepared at the Max Planck Institute for Computer Science in Saarbrucken in
2015. These knowledge graphs consist of subject-relationship type-object triples.
However, as most studied approaches are applicable to homogeneous graphs only,
we simplify these knowledge graphs by overlooking the types of relationships and
reducing multiple links to single links between nodes/entities. All of the graphs
are considered as undirected graphs. In this study, we are considering them as
large graphs instead of knowledge graphs.

We use the Gephi tool [53] to extract the topological statistics of the graphs.
The characteristics of the graph datasets are summarized in Table 2. Based on
the number of nodes, these graphs are categorized into small/medium graphs
with less or equal 10000 nodes and large graphs with more than 10000 nodes.

3.2 Construction of Train and Test sets

We follow a random sampling validation protocol to evaluate the performance
of the studied approaches [32, 54]. The train and test datasets are prepared from
a graph G(V, E), where V is the set of vertices and E is the set of existent
links. Two types of both training and test datasets are prepared from the graph.
The first training dataset is positive training dataset that contains randomly



10 M. K. Islam et al.

Table 2: Topological statistics of graph datasets: number of nodes(#Node),
links(#Link), average node degree (NDeg), total triangle(#Triangle), cluster-
ing coefficient (C.Coef), average path length (APL), network diameter (Diam)
and type of graph.

Graphs #Node #Link NDeg #Triangle C.Coef APL Diam Graph type

Ecoli 1805 42325 46.898 459809 0.350 2.714 10 Homogeneous

FB15K 14949 260183 44.222 565104 0.218 2.716 8 Homogeneous

NS 1461 2742 3.754 3764 0.878 5.823 17 Homogeneous

PB 1222 14407 23.579 49549 0.239 2.787 8 Homogeneous

Power 4941 6594 2.669 651 0.107 18.989 46 Homogeneous

Router 5022 6258 2.492 803 0.033 6.449 15 Homogeneous

USAir 332 2126 12.807 12181 0.749 2.738 6 Homogeneous,
node-attributed

WN18 40943 75769 3.709 5107 0.077 7.426 18 Homogeneous

YAGO3-10 113273 758225 18.046 225094 0.114 22.999 14 Homogeneous

Yeast 2375 11693 9.847 60689 0.388 5.096 15 Homogeneous

selected 90% observed links and an equal number of non-existent links form the
negative training dataset. The remaining 10% existent links form the positive
test dataset and an equal number of non-existent links form the negative test
dataset. At the same time, the graph connectivity of the training set and the
test set is guaranteed. We prepare five train and five test datasets for evaluating
the performance of the approaches.

For evaluating the performance of similarity-based approaches, the graph is
built from the positive training dataset whereas, for graph neural network-based
approaches, the graph is built from the original graph that contains both of pos-
itive train and test datasets. However, a link is temporarily removed from the
graph to train it to the GNN-based approaches or to predict its existence. The
approaches are evaluated on positive and negative test datasets. For WLNM,
we choose the neighbour size to 10 and for SEAL we choose the hop to 1 for
all graphs. The similarity scores of similarity-based approaches for test links
are computed based on the training graphs which contain only train links. The
performance of link prediction approach is quantified by defining two standard
evaluation metrics, precision and AUC (Area Under the Curve). All of the ap-
proaches are run on a Dell Latitude 5400 machine with 32GB primary memory
and core i7 (CPU 1.90GHz) processor.

3.3 Computation procedures for Precision and AUC

Precision describes the fraction of missing links that are accurately predicted as
existent link [55–57]. To compute the precision, all of the predicted links from
a test set are ranked in decreasing order of their scores. If Lr is the number of
existing links (in the positive test set) among the L-top ranked predicted links
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then the precision is defined as

Precision =
Lr

L
(5)

The precision is a measure of result relevance. The higher the precision indicates
the higher accuracy of the prediction approach. An ideal prediction approach
has a precision of 1.0 that means all the missing links are accurately predicted.
We set L to the number of existent links in the test set.

On the other hand, the metric AUC is measured to demonstrate the ability
of an approach in distinguishing between an existent and a non-existent link. It
is defined as the probability that a randomly chosen missing link has a higher
similarity score than a randomly chosen non-existent link [56]. Suppose, n exis-
tent and n non-existent links are chosen from positive and negative test sets. If
n1 is the number of existent links having a higher score than non-existent links
and n2 is the number of existent links having equal score as non-existent links
then AUC is defined as

AUC =
n1 + 0.5n2

n
(6)

An AUC of more than 0.5 indicates that the prediction index has a better effect
than choosing links randomly and vice versa. Generally, the degree to which AUC
exceeds 0.5 indicates how much good the prediction approach. We consider half
of the total links in the positive test set and negative test set to compute AUC.

4 Analysis of the Results

4.1 Comparison of Prediction Accuracy with Precision and AUC

The prediction approaches are evaluated in each of the five sets (train and test
set) of each graph and performance metrics (precision, AUC) are recorded. The
maximum and minimum similarity scores are computed from the top-L for each
test set of each graph. Table 3 shows the mean maximum(Max Score) and min-
imum similarity (Min Score) scores for each similarity-based in each graph. We
measure the precision in two different ways based on the top-L test links. Firstly,
we use Equation 5 as it is where Lr is the number of positive links in top-L test
links. However, the minimum similarity scores for many similarity-based ap-
proaches are very low (close to 0) that creates difficulty to make a separation
between some positive and negative test links. To overcome this problem, we
define a threshold when defining Lr. However, defining threshold to similarity-
based approaches is again a non-trivial task as the maximum and minimum
scores vary for different graphs and even for different test sets. To overcome this
problem, we define a threshold as the average of the maximum and minimum
score in top-L links. We compute the number of positive test links in top-L links
(as Lr) as those having similarity scores above the threshold. We compute the
threshold-based precision only for similarity-based approaches as GNN-based
approaches do learn the threshold. The corrected precision is shown in paren-
theses in Table 3. Each value of the table is the mean over the five test sets. The
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evaluation metrics precision and AUC for the studied approaches in the seven
small to medium-size graphs are tabulated in Table 3.

Table 3 shows that, overall, the similarity-based approaches give high preci-
sion (without defining threshold) and AUC values in well-connected (high clus-
tering coefficient, high node degree) graphs while GNN-based approaches show
good precision and AUC in all graphs. In the Ecoli graph, CCLP shows the high-
est precision (0.96) while the lowest precision(0.78) is recorded for the PA ap-
proach. The precisions of other similarity-based approaches are close to the high-
est precision score. The highest clustering coefficient contributes to the success
of CCLP in terms of precision in Ecoli. However, the precision of similarity-based
approaches drops drastically when computing precision based on the threshold
as many positive links with very low similarity scores (even 0) comparing to
the threshold. The precision of WLNM and SEAL approaches are lower than
the similarity-based approaches and they are 0.867 and 0.807 respectively. The
highest and lowest AUC values in Ecoli are found for SEAL and PA approaches
respectively. The AUC value of another GNN-based approach WLNM is also very
high and close to the highest AUC value. The high values of these two GNN-
based approaches state that they are highly efficient in distinguishing between
existent and non-existent links in Ecoli graph. Similar performance is found for
other well-connected graphs (NS, PB, USAir and Yeast). In NS graph, SEAL
performs with the best precision (0.96) and AUC (0.99) score and PA is the
worst approach which shows the lowest precision and AUC values of 0.69 and
0.66 respectively. The precision scores of other approaches lie between 0.8 to 0.9
while the AUC values are between 0.9 to 0.95. A remarkable precision(highest)
is found for HPI in NS graph while the precision scores of some similarity-based
approaches like AA, CN, PA, RA are still very low when applying the thresh-
old method. Overall, the AUC values of GNN-based approaches are higher than
the similarity-based approaches in NS graph. In PB graph, the highest pre-
cision score is recorded in similarity-based approaches RA, CAR and CCLP
whereas the highest AUC value is found for the GNN-based approach SEAL.
LLHN performs worst in PB concerning both metrics. The precision of other
approaches near or above 0.8. The high average node degree plays a role in most
of the similarity-based approaches in performing better than the GNN-based
approaches in terms of precision scores in PB graph. However, the precision of
similarity-based approaches drops to below 0.2 when applying the threshold in
computing precision. Similarity-based approaches shows very low precisions and
low AUCs in two sparse graphs, Power and Router whereas the GNN-based ap-
proaches are still able to provide high precisions and AUCs in both of the graphs.
In both of USAir and Yeast graphs, SEAL shows the best results with precision
of 0.94 and 0.89 and AUC of 0.96 and 0.98 respectively while the lowest preci-
sion and AUC values are recorded for WLNM and LLHN respectively. The use
of node attributes for SEAL in USAir during prediction task influences in the
improvement of the performance metrics. Overall, SEAL shows the highest AUC
values in all graphs. The use of latent feature along with structural feature is the
vital reason behind this success. Table 3 shows that GNN-based approaches pro-
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Table 3: AUC and Precision values with Max Scores and Min Scores in
small/medium graphs. Precision in () is computed based on threshold in top-
L links. Graph-wise highest/lowest metrics are indicated in bold fonts while
approach-wise highest/lowest metrics are shown in italic.
App. Metrics Ecoli NS PB Power Router USAir Yeast

AA
Precision 0.90(0.06) 0.87(0.15) 0.86(0.01)0.17(0.02) 0.07(0.01)0.92(0.16)0.83(0.06)
Max scor 32.84 5.83 33.41 3.04 5.60 16.69 23.71
Min scor 2.86 1.14 0.58 0.00 0.00 2.70 0.00
AUC 0.93 0.94 0.92 0.58 0.54 0.94 0.91

CN
Precision 0.91(0.07) 0.87(0.22) 0.86(0.02)0.17(0.04) 0.07(.004)0.92(0.23)0.83(0.06)
Max scor 153 11.0 119 29.0 15.0 51.0 90.33
Min scor 12.0 1.40 3.00 0.00 0.00 9.67 0.00
AUC 0.93 0.93 0.91 0.58 0.54 0.95 0.91

PA
Precision 0.78(0.05)0.69(0.02)0.83(0.01) 0.49(0.02) 0.41(0.01)0.85(0.13)0.79(0.06)
Max scor 65679 362.0 61052 53.0 2397 8298.7 10642
Min scor 3532 12.0 855.7 4.0 1.0 739.3 95.0
AUC 0.80 0.66 0.90 0.46 0.43 0.90 0.86

RA
Precision 0.91(0.03) 0.87(0.15) 0.86(0.01)0.17(0.03) 0.07(0.01)0.92(0.10)0.83(0.07)
Max scor 1.70 1.80 4.19 0.84 1.32 2.83 2.37
Min scor 0.19 0.40 0.03 0.00 0.00 0.32 0.00
AUC 0.94 0.94 0.92 0.58 0.54 0.94 0.91

JA
Precision 0.90(0.11)0.87(0.42) 0.79(0.07) 0.17(0.07) 0.07(0.01)0.88(0.18) 0.83(0.34)
Max scor 0.49 0.60 0.37 0.60 0.39 0.45 0.50
Min scor 0.10 0.09 0.04 0.00 0.00 0.17 0.00
AUC 0.94 0.92 0.87 0.58 0.53 0.92 0.91

SA
Precision 0.91(0.10)0.87(0.67) 0.80(0.06) 0.17(0.07) 0.07(0.01)0.90(0.15) 0.83(0.40)
Max scor 0.98 1.00 0.75 0.94 0.90 0.91 1.00
Min scor 0.22 0.51 0.11 0.11 0.00 0.41 0.00
AUC 0.94 0.94 0.87 0.57 0.54 0.91 0.90

SO
Precision 0.90(0.11)0.87(0.64) 0.79(0.07) 0.17(0.06) 0.07(0.01)0.88(0.18) 0.83(0.34)
Max scor 0.98 1.00 0.74 0.93 0.90 0.91 1.00
Min scor 0.19 0.46 0.07 0.00 0.00 0.34 0.00
AUC 0.94 0.94 0.87 0.57 0.54 0.90 0.91

HPI
Precision 0.90(0.20) 0.87(0.96)0.80(0.15) 0.17(0.13) 0.07(0.02)0.91(0.45)0.83(0.70)
Max scor 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Min scor 0.33 0.83 0.21 0.00 0.00 0.77 0.00
AUC 0.94 0.94 0.85 0.58 0.54 0.91 0.90

HDI
Precision 0.90(0.08)0.87(0.64) 0.79(0.05) 0.17(0.03) 0.07(0.01)0.88(0.18) 0.83(0.24)
Max scor 0.97 1.00 0.68 0.89 0.89 0.85 1.00
Min scor 0.14 0.33 0.05 0.00 0.00 0.24 0.00
AUC 0.94 0.94 0.86 0.58 0.53 0.90 0.91

LLHN
Precision 0.89(.001)0.87(0.13) 0.74(.001)0.17(0.03) 0.07(.003)0.87(0.03) 0.83(0.01)
Max scor 0.32 1.00 0.42 2.06 0.83 0.58 0.67
Min scor 0.00 0.10 0.00 0.00 0.00 0.01 0.00
AUC 0.91 0.93 0.76 0.58 0.53 0.77 0.90

IA
Precision 0.90(0.07) 0.87(0.27) 0.85(0.03) 0.17(0.12) 0.07(0.01)0.92(0.28)0.83(0.07)
Max scor 149.4 10.7 91.2 4.3 8.1 46.6 80.6
Min scor 12.5 2.6 3.5 0.0 0.0 11.2 0.0
AUC 0.93 0.93 0.91 0.58 0.54 0.93 0.91

CAR
Precision 0.91(0.04) 0.87(0.18) 0.86(0.02)0.17(0.03) 0.07(0.01)0.92(0.24)0.83(0.06)
Max scor 4833 46.0 1515.2 2.3 25.2 555 1831
Min scor 50.2 1.4 3.0 0.0 0.0 46.0 0.0
AUC 0.93 0.93 0.91 0.59 0.54 0.91 0.91

CCLP
Precision 0.96(0.06)0.73(0.21) 0.86(0.01)0.08(0.01)0.07(0.01)0.91(0.18) 0.82(0.06)
Max scor 30.6 8.0 27.0 1.2 1.1 21.1 39.2
Min scor 1.8 0.3 0.3 0.0 0.0 2.9 0.0
AUC 0.95 0.87 0.91 0.54 0.53 0.94 0.90

WLNM
Precision 0.87 0.84 0.78 0.84 0.89 0.85 0.87
AUC 0.93 0.95 0.93 0.76 0.92 0.86 0.86

SEAL
Precision 0.81 0.96 0.80 0.66 0.80 0.94 0.89
AUC 0.95 0.99 0.94 0.77 0.94 0.96 0.98
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vide high-performance metrics in all graphs while similarity-based approaches
perform well in some graphs.

The approaches are further evaluated in three large graphs FB15K, WN18
and YAGO3-10 and the results are presented in Table 4. We can see that some
similarity-based approaches (AA, CN, PA, RA, IA, CAR) show higher metric
values while others (JA, SA, SO, HDI, LLHN) show lower metric values than the
GNN-based approaches in FB15K graph. The highest precision score is found
for CN, IA, CAR approaches and the highest AUC value is found for SEAL.
LLHN is the worst performing approach concerning both of the metrics among
all approaches in FB15K graph. However, the precision drops to below 0.1 for
all similarity-based approaches when applying the threshold to similarity scores
with FB15K graph.

As shown in Table 2, WN18 is a sparse graph with low average node degree
(3.709) and clustering coefficient (0.077). This sparsity affects the performance
of similarity-based approaches as these approaches except PA highly depend on
the common neighbourhood information. The precision scores of all similarity-
based approaches are below 0.2 except PA that shows a comparatively good
precision score of 0.63. The precision further drops when applying the threshold
to similarity scores in top-L links. Compared to the similarity-based approaches,
GNN-based approaches show higher precision and AUC values in WN18 graph.
The highest precision and AUC values are recorded for WLNM and SEAL ap-
proaches respectively. In YAGO3-10 graph, PA performs surprisingly well with
precision and AUC values of 0.83 and 0.88 respectively. However, the highest pre-
cision and AUC values are found for the SEAL approach. Overall, GNN-based
approaches are more suitable across graphs from several domains with respect
to precision and AUC values.

From Tables 3 and 4, the node-degree based approach PA shows higher per-
formance comparing to other neighborhood based similarity approaches. The
highest precision of PA is found in USAir (0.92) and the lowest one in Router(0.41).
Similarity-based approaches based on the common neighborhood show impres-
sive performance in the graphs with high average node degree and clustering
coefficient. These approaches show very high precision of above or nearly 0.9
in two well connected Ecoli and USAir graphs. These approaches show very
low precision of less than 0.2 in two large graphs, WN18 and YAGO3-10. On
the other hand, the GNN-based approaches show very high precision and AUC
across all of the experimental graphs including small to large graphs.

4.2 Comparison of Computational Time

The performance is further described in terms of computational time. Every
approach is executed for each test set of each graph and their computational
times are recorded. The computational time for similarity-based heuristic is the
average time required per test link to compute the nodes similarity score. On the
other hand, the computational times for GNN-based prediction approaches are
the accumulated time for training the GNN and predicting the classes of links
(existence or non-existence) in test sets. Table 5 shows the mean computational
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Table 4: AUC and Precision values with Max Scores and Min Scores in large
graphs. Similar to Table 3

/

App. Metrics FB15K WN18 YAGO3-10

AA
Precision 0.77(0.0002) 0.13(0.0002) 0.15(0.0018)
Max Score 418.60 57.32 24.44
Min Score 0.12 0.00 0.00
AUC 0.82 0.56 0.48

CN
Precision 0.81(0.0003) 0.13(0.0004) 0.15(0.0012)
Max Score 1231.3 60.00 98.00
Min Score 1.00 0.00 0.00
AUC 0.80 0.57 0.48

PA
Precision 0.79(0.0003) 0.63(0.0006) 0.83(0.0006)
Max Score 9881842.3 10636.7 2426939
Min Score 942.67 6.33 109.00
AUC 0.88 0.64 0.88

RA
Precision 0.77(0.0003) 0.13(0.0002) 0.15(0.0011)
Max Score 72.06 20.67 5.16
Min Score 0.00 0.00 0.00
AUC 0.84 0.57 0.57

JA
Precision 0.64(0.0225) 0.13(0.0161) 0.15(0.0059)
Max Score 0.50 0.50 0.50
Min Score 0.01 0.00 0.00
AUC 0.68 0.56 0.46

SA
Precision 0.65(0.0236) 0.13(0.0218) 0.15(0.0068)
Max Score 1.00 1.00 1.00
Min Score 0.02 0.00 0.00
AUC 0.70 0.57 0.47

SO
Precision 0.64(0.0225) 0.13(0.0180) 0.15(0.0059)
Max Score 1.00 1.00 1.00
Min Score 0.01 0.00 0.00
AUC 0.69 0.57 0.46

HPI
Precision 0.69(0.0959) 0.13(0.0796) 0.15(0.0476)
Max Score 1.00 1.00 1.00
Min Score 0.05 0.00 0.00
AUC 0.75 0.56 0.47

HDI
Precision 0.64(0.0137) 0.13(0.0121) 0.15(0.0035)
Max Score 1.00 1.00 1.00
Min Score 0.01 0.00 0.00
AUC 0.68 0.57 0.46

LLHN
Precision 0.64(0.0008) 0.13(0.0046) 0.15(0.0003)
Max Score 0.28 1.00 1.00
Min Score 0.00 0.00 0.00
AUC 0.57 0.57 0.45

IA
Precision 0.81(0.0003) 0.13(0.0505) 0.15(0.0014)
Max Score 757.1 4.58 95.23
Min Score 2.00 0.00 0.00
AUC 0.80 0.57 0.47

CAR
Precision 0.81(0.0003) 0.13(0.0004) 0.15(0.0008)
Max Score 6906 60.00 1430
Min Score 1.00 0.00 0.00
AUC 0.80 0.57 0.48

CCLP
Precision 0.78(0.0015) 0.08(0.0006) 0.14(0.0013)
Max Score 51.74 1.67 20.77
Min Score 0.01 0.00 0.00
AUC 0.84 0.54 0.57

WLNM
Precision 0.67 0.84 0.68
AUC 0.68 0.79 0.72

SEAL
Precision 0.77 0.61 0.86
AUC 0.96 0.87 0.97
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time in milliseconds. From Table 5, it is seen that PA has the lowest mean

Table 5: Computational time (milliseconds). The graph-wise highest and lowest
mean computational time are indicated in bold fonts and approach-wise highest
and lowest mean computational time are indicated in italic.
Approach Ecoli FB15K NS PB Power Router USAir WN18 YAGO

3-10
Yeast

AA 221 495 71 106 73 74 15 288 910 107
JA 28 121 26 25 63 60 13 256 647 27
PA 28 120 21 23 61 58 12 251 642 26
RA 330 494 70 110 65 63 104 274 915 95
CN 30 120 24 24 59 56 14 249 629 25
SA 58 226 40 48 105 102 21 480 1310 48
SO 60 228 44 47 104 98 22 476 1298 49
HPI 87 236 63 70 149 142 33 493 1400 70
HDI 60 227 40 49 102 96 19 466 1367 47
LLHN 63 147 39 48 99 95 20 465 1370 47
IA 412 420 57 218 57 55 82 262 938 103
CAR 280 303 54 134 54 53 63 157 643 117
CCLP 409 654 108 280 157 152 257 492 1696 255
WLNM 612 837 170 453 257 245 153 541 1440 363
SEAL 886 1221 398 940 340 419 524 868 2713 403

computational time among the similarity-based approaches in half of the graph
sets as it requires a simple multiplication operation of degrees of two end nodes
in a link. The computational time for simple CN approaches are close to the
PA approaches in all approaches. Similarity approaches those quantify the role
of each neighbour or level-2 links such as JA, RA, IA require higher processing
time. The highest computational times are found for CCLP similarity-based ap-
proach in all graphs as CCLP explores level-3 links for computing the similarity
score. However, CAR requires the minimum computational time to predict links
in sparse graphs (Power, Router, WN18) as these graphs have very lower clus-
tering coefficient comparing to other graphs. The computational times of these
approaches are affected by the graph properties such as average node degree,
number of nodes and links, average clustering coefficient. For example, the com-
putational time of all similarity-based approaches in NS graph is more than in
USAir as NS is larger than USAir in terms of the number of nodes and link. The
computational time in PB graph is more than in NS approaches as PB has more
average node degree than NS though the number of nodes is higher in NS.
Compared to similarity-based approaches, the computational times of GNN-
based ones are higher as they learn the heuristics from the graph during the
training operation. Table 5 shows that the computational times for SEAL are
greater than WLNM in all graphs as SEAL utilizes the structural, latent and
explicit features of graph comparing whereas WLNM utilizes only the structural
features of the graph. One noticeable point is that the computational time of
WLNM is more in PB, NS graphs than USAir as USAir is the smallest graph
whereas SEAL reverses the case as it uses the node attributes in USAir. The high-
est computational time is recorded for SEAL among all the studied approaches.
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We also see that the computational times for GNN-based approaches grow by
more amount than the similarity-based approaches. For example, the minimum
computational time for PA in USAir grows by an amount of 629 milliseconds
in YAGO3-10 graph whereas for SEAL it grows by an amount of 2189 millisec-
onds. Overall, similarity-based approaches are more efficient than GNN-based
approaches concerning the computational time. Except for SEAL, the approach-
wise comparison in terms of computational time shows that all approaches show
the highest and lowest computational time in the largest experimental graph
(YAGO3-10) and smallest graph (USAir) respectively, as expected. SEAL shows
higher computational time in USAir than two sparse graphs (Router and Power)
as it uses the attribute features of USAir and also the latter graphs have low
average node degree.

5 Conclusion

In this paper, we study several link prediction approaches for homogeneous
graphs from similarity-based and GNN-based learning categories with their work-
ing principles and limitations. The approaches were evaluated against ten bench-
mark graphs with different properties from various domains. The precision of
similarity-based approaches was computed in two different ways to overcome
the difficulty of tuning the threshold for deciding the link existence based on the
similarity score.

The experimental results show the superiority of GNN-based approaches over
similarity-based ones with respect to the prediction performance across various
graphs. In contrast, compared to similarity-based approaches, these GNN-based
approaches are less suitable when the graphs need fast processing. The com-
putational time of GNN-based approaches is further affected when applied to
large graphs. In addition, the ’black box’ problem of conventional neural net-
works remains unsolved with GNNs where it is very difficult to retrace the in-
ternal process of GNN. This work could help a new user to study similarity and
GNN-based link prediction approaches and also the corresponding evaluation
protocols.

One perspective of this work is to achieve a good trade-off between prediction
accuracy and computational time by developing a GNN-based link approach in
a distributed and parallel environment. In addition, the approach is expected to
be applicable to the heterogeneous graphs such as knowledge graphs.
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