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Critical-Time Analysis of Cyber-Physical Systems subject to Actuator
Attacks and Faults

Arthur Perodou, Christophe Combastel and Ali Zolghadri, Senior Member, IEEE

Abstract— A novel quantitative criterion, namely critical
time, is investigated to characterize the degree of resilience
of controlled cyber-physical systems. Resilience is defined as
system’s ability to contain the maximal impact of anomalies and
recover to a nominal mode. Anomalies are understood as any
kind of attack or fault that leads to abnormal behavior of the
controlled system. The critical time is the maximal time-horizon
for which a system is considered to be safe after the occurrence
of an anomaly. An increase of critical time will leave more time
for defense mechanisms, including human operators, to detect
and mitigate anomalies. While most of the literature focuses
on the impact part of resilience, this criterion is tied with the
recovery part. In this work, it is shown how the computation
of the critical time can be done for discrete-time LTI models.
To achieve this, sufficient conditions in the form of iterative
LMI-based algorithms are established. A numerical example is
provided to illustrate the theoretical results.

Keywords: resilience, cyber-physical systems, security,
quadratic constraints.

I. INTRODUCTION

An open challenge in cyber-physical systems (CPS)
security is to find an appropriate trade-off between the
desired security level and the satisfaction of a performance
level of practical interest. In the last decade, the System
and Control community has developed numerous methods
to address this issue [1], [2]. A relevant concept that has
emerged is resilience. Resilience is the system’s ability to
contain the maximal impact of anomalies and recover to a
nominal mode [1], [3], [4], where an anomaly is understood
here as any difference between the behaviors of a system
and a suitable operating model, resulting for instance from
an attack or a fault.

There exist several criteria to quantify the resilience of a
system [1], [2]. For instances, the anomalies effect on the cost
function of an optimal control problem is considered in [4];
in [5], the attacks are additionally constrained to be stealthy;
in [6], the maximum perturbation on the state trajectory
is evaluated for stealthy attacks with minimum resources.
While these works focus on the impact part of the concept
of resilience, additional resilient metrics tied to the recovery
part are proposed in [7], such as the required time to recover
to normal operation, but no explicit computing methods are
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provided. In this work, we investigate and compute a new
resilience criterion, namely critical time.

The critical time is the maximal time-horizon for which
a system is considered to be safe after the occurrence of
an anomaly, that is the system is not in a critical state and
is still able to recover to a normal mode. The underlying
motivation is that an increase of critical time allows more
time for defense mechanisms, including human operators,
to detect and mitigate anomalies. In particular, this criterion
covers the detection and reconfiguration delays classically
used in the fault-management literature [8], [9].

In this paper, the critical time will be computed for any
actuator anomaly that is allowed by the physical limitations
of the actuators. This includes for instance deny-of-service
(DoS) or false-data injection attacks on actuators. To achieve
this, we will take advantage from the framework of quadratic
constraints (QC). This framework has led to numerous meth-
ods for system analysis [10], [11], [12] and synthesis [13],
[14], [15]. However, to the best of our knowledge, no analog
problems to critical time computation were considered using
QCs. An important benefit of the QC framework is its special
link with linear matrix inequality (LMI) optimization [16].

The contribution of this paper is considered to be twofold:
(i) Firstly, a new criterion for evaluating the resilience of
a system is proposed and (ii) Secondly, the critical-time
computation problem is tackled for a discrete-time linear
time-invariant (LTI) system under actuator anomalies subject
to actuator limitations. By using the QC framework, it is
shown that this leads to solve iterative algorithms involving
LMI feasibility problems.

The paper is organized as follows. First, brief reminders
on QCs are provided in Section II. In Section III, the
critical-time computation problems, with pre-specified or
free initial state, are explicitly formulated. In Section IV
and Section V, it is then shown how the computation of
the critical time can be done for discrete-time LTI models.
Finally, an illustrative example is provided in Section VI,
while Section VII provides some concluding remarks.

II. PRELIMINARIES

A. Notations

Lower (upper) case letters are used for vectors (matrices).
N denotes the set of natural numbers, Z the set of integers,
Jk1, k2K the integers between, and including, k1 and k2,
Rn×m the set of real-valued matrices of size n×m and Dn
the set of diagonal real-valued matrices of size n × n. For
the sake of brevity, zJk1,k2K :=

[
z′k1 . . . z′k2

]′
is used. In

and 0n×m are respectively the identity matrix of Rn×n and



the zero matrix of Rn×m. The subscripts are omitted when
obvious from the context. X ′ stands for transpose of X while
M > (resp. ≥) 0 denotes positive (semi-) definiteness.
trace(M) is the sum of the diagonal elements of M and
diag(M) is their concatenation in a column vector. The
sign ⊗ represents the Kronecker product. Bold characters
denote either explicit decision variables in a design problem
or optimization variables in an optimization problem.

B. Background

In this work, constraint sets will be defined using QCs.
Definition 1 (Quadratic constraint):

A vector z ∈ Rn is said to satisfy a quadratic constraint φ,

with φ = φ′ ∈ R(n+1)×(n+1), if
[
z
1

]′
φ

[
z
1

]
≥ 0 holds.

Define φ :=

[
Q s
s′ r

]
, where Q = Q′ ∈ Rn×n, s ∈ Rn×1

and r ∈ R. Notice that if Q ≤ 0, the set of all vectors
z ∈ Rn that satisfy the previous QC is convex. In particular,
the resulting set is inside an ellipsoid if Q < 0 and in a
halfspace if Q = 0. Finally, observe the following lemma.

Lemma 1:
Let z ∈ R be a real scalar. Then:

z ∈ [zmin, zmax] ⇔
[
z
1

]′ [−1 zc
zc z2r − z2c

] [
z
1

]
≥ 0

where zc := (zmin + zmax) /2 and zr := (zmax − zmin) /2.
An important result in the QC framework is the so-called

S-procedure.
Lemma 2 (S-procedure for quadratic constraints [17]):

Consider the following quadratic functions: ∀z ∈ Rn,

σq(z) =

[
z
1

]′ [
Qq sq
s′q rq

] [
z
1

]
, q = 0, 1, . . . , N

where Qq = Q′q ∈ Rn×n, sq ∈ Rn×1 and rq ∈ R.
Then (ii)⇒ (i).
(i) The constraint σ0(z) ≥ 0 holds for all z ∈ Rn such that

σq(z) ≥ 0, q = 1, . . . , N .
(ii) There exist τq ≥ 0, q = 1, . . . , N , such that[

Q0 s0
s′0 r0

]
−

N∑
q=1

τq

[
Qq sq
s′q rq

]
≥ 0

III. PROBLEM STATEMENT

A. Critical-time definition

Consider a controlled cyber-physical system subject to
general anomalies modeled as:{

xk+1 = Axk +Buk + E1kαk +D1kdk

yk = Cxk + E2kαk +D2kdk

where xk ∈ Rn, uk ∈ Rm, and yk ∈ Rl are respectively
the state, the control input and the measured output signals
evaluated at time k. The anomaly αk ∈ Rmα stands for either
attacks or faults. The vector dk ∈ Rw models additive noise
or unknown disturbance, and may include model uncertain-
ties. In a similar fashion to [8], this linear time-varying model
covers actuator, sensor and component anomalies.

Moreover, assume that the signals u, α and d are con-
strained by Su ⊆ Rm, Sα ⊆ Rmα and Sd ⊆ Rw such that:

∀k ∈ Z, uk ∈ Su αk ∈ Sα dk ∈ Sd

In addition, assume that a safety set Ss, that is a set of
states x for which the system is considered to be safe, is
provided. The safety set Ss may be derived from physical
constraints or the validity domain of a linearized model.
Finally, without loss of generality, assume that the anomalies
appear from initial time k = 0.

Definition 2 (Critical-time):
The critical time kc is the maximal time-horizon kf such that,
after the occurrence of an anomaly, the system is safe over
the time-window I(kf ) := J0, kf K. Using previous notations:

kc = max {kf |∀k ∈ I(kf ),∀uk ∈ Su,∀αk ∈ Sα,∀dk ∈ Sd,
xk ∈ Ss}

There are several expected benefits from availability of
the critical-time criterion. First, one can evaluate the time
that can be allowed for defense mechanisms. Moreover, by
considering all states that additionally satisfy some perfor-
mance criteria Sp ⊆ Ss, one may improve the resilience
of the system by driving it to the state that has the maxi-
mum critical-time, while guaranteeing a performance level.
Finally, it is expected to provide a relevant trade-off between
anomalies with opposite impacts, as for instance in the case
of DoS attacks and attacks by upper saturation.

In the sequel, two problems are formulated and solved: 1)
the computation of the critical-time for a system in a given
state x0 and 2) the computation of the critical-time when the
initial state x0 is to be selected among a set of admissible
states that satisfy some performance constraints Sp.

B. Problem formulation

This paper focusing on actuator anomalies, mα = m and

∀k ∈ Z, E1k = B D1k = D E2k = 0 D2k = 0

are considered, where D ∈ Rn×w is a known matrix.
Then, by defining the contaminated input ua := u + α, the
controlled system under actuator anomalies is described as:

(Σ) :

{
xk+1 = Axk +Buak +Ddk

yk = Cxk
(1)

In addition, due to physical limitations, such as saturation or
slew rate, assume that the abnormal input ua is constrained
by a given set Sa ⊆ Rm as follows: ∀k ∈ N, uak ∈ Sa.

Remark 1: Under previous assumptions, a significant
class of anomalies are considered, such as actuator additive
faults, DoS attacks or attacks by saturation. By considering
the augmented system of (Σ) interconnected with a controller
by a communication network, this may also include abnormal
control inputs, resulting for instance from measurement
falsification, or from direct attacks on the controller.



Moreover, assume that the sets Sp, Ss, Sa and Sd are
defined using multiple quadratic constraints such as:

Sp := ∩nph=1{x0 ∈ Rn, σph(x0) ≥ 0} (2)
Ss := ∩nsi=1{x ∈ Rn, σsi(x) ≥ 0} (3)

Sa := ∩naj=1

{
ua ∈ Rm, σaj (ua) ≥ 0

}
(4)

Sd := ∩ndg=1

{
d ∈ Rw, σdg (d) ≥ 0

}
(5)

where

σph(x0) :=

[
Cx0

1

]′ [
Qph sph
s′ph rph

] [
Cx0

1

]
σsi(x) :=

[
x
1

]′ [
Qsi ssi
s′si rsi

] [
x
1

]
σaj (ua) :=

[
ua
1

]′ [
Qaj saj
s′aj raj

] [
ua
1

]
σdg (d) :=

[
d
1

]′ [
Qdg sdg
s′dg rdg

] [
d
1

]
The problem of computing the critical-time of a system

for a given initial state x0 is now explicitly formulated.
Problem 1 (Critical-time computation for a given x0):

GIVEN

• a system (Σ) modeled by (1) with initial state x0 ∈ Rn,
• a safety set Ss defined by (3),
• an abnormal input set Sa defined by (4),
• a disturbance set Sd defined by (5),

FIND the maximal time-index kf such that system (1) is safe
over the time-window Ikf = J0,kf K for all abnormal inputs
of Sa and disturbances of Sd:

max
kf∈N

kf

subject to ∀k ∈ J0,kf K, ∀uak ∈ Rm, ∀dk ∈ Rw,

∀i = 1, . . . , ns, σsi(xk) ≥ 0 (6)
∀j = 1, . . . , na, σaj (uak) ≥ 0 (7)
∀g = 1, . . . , nd, σdg (dk) ≥ 0 (8)

hold.
A second interesting problem is the computation of the

critical-time of a system for which the initial state x0 is
not specified but assumed to belong to the performance
domain Sp. The resulting state may then be used as a target
state for resilient control.

Problem 2 (System critical-time computation):
GIVEN Ss, Sa and Sd as in Problem 1 and
• a system (Σ) modeled by (1),
• a performance set Sp defined by (2)

FIND x0 ∈ Sp that maximizes the time index kf such that
the system (1) is safe over the time-window Ikf = J0,kf K
for all abnormal inputs of Sa and disturbances of Sd:

max
x0∈Rn, kf∈N

kf

subject to ∀k ∈ J0,kf K, ∀uak ∈ Rm, ∀dk ∈ Rw, (6)− (8),

∀h = 1, . . . , np, σph(x0) ≥ 0 (9)

hold.

IV. CRITICAL-TIME COMPUTATION WITH SPECIFIED x0

In this section, Problem 1 is tackled. To achieve this, the
sub-problem of checking if the state xkf is into the safety
set Ss, over all abnormal inputs of Sa and disturbances
of Sd, for a fixed time-index kf is first considered. Then,
an algorithm is proposed to find the maximum kf , providing
an under-estimate of the critical time kc: kf ≤ kc.

A. Fixed time-index kf
Assume that x0 ∈ Rn is given and kf ∈ N is fixed. Define

Pk and Gk as: P0 = 0, G0 = 0 and for all k ≥ 1,

Pk =
[
Ak−1B . . . AB B

]
Gk =

[
Ak−1D . . . AD D

]
Using the recursive equation of (1), xkf is computed as:

xkf = Akfx0 + PkfuaJ0,kf−1K +Gkf dJ0,kf−1K (10)

This property enables to solve an alternative version of
Problem 1, with fixed kf , as shown in next lemma.

Lemma 3:
Let (Σ) be a system defined by (1) with a given state x0.
Consider the associate sets Ss, Sa and Sd given by (3)-(5).
Assume that the time-index kf ∈ N is fixed.
Then (i)⇒ (ii).
(i) ∀i = 1, . . . , ns, ∀j = 1, . . . , na, ∀g = 1, . . . , nd,
∃Ti,j ∈ Dkf ≥ 0, ∃Θi,g ∈ Dkf ≥ 0,

N ′kf

[
Qsi ssi +QsiA

kfx0
(ssi +QsiA

kfx0)′ rsi + 2s′siA
kfx0

]
Nkf

−
na∑
j=1

 Ti,j ⊗Qaj 0 diag (Ti,j)⊗ saj
0 0 0

diag (Ti,j)
′ ⊗ s′aj 0 trace(Ti,jraj )


−

nd∑
g=1

0 0 0
0 Θi,g ⊗Qdg diag (Θi,g)⊗ sdg
0 diag (Θi,g)

′ ⊗ s′dg trace(Θi,grdg )


+

0 0 0
0 0 0
0 0 (Akfx0)′QsiA

kfx0

 ≥ 0 (11)

where Nk :=

[
Pk Gk 0
0 0 1

]
.

(ii) The system (Σ) with initial state x0 is safe at time kf for
all past abnormal inputs of Sa and disturbances of Sd:
∀k ∈ J0, kf − 1K, ∀uak ∈ Rm, ∀dk ∈ Rw, (7)− (8),

∀i = 1, . . . , ns, σsi(xkf ) ≥ 0

hold.
Proof: See App. A.

Remark 2: Condition (i) is a feasibility optimization
problem with LMI constraints. It is then solvable in
polynomial-time. This computational advantage comes at
the price of the conservatism of condition (i), that implies
but is not equivalent to condition (ii). This results from
the application of the S-procedure (see [13], [17], and the
references therein, for a detailed discussion).



B. Critical-time computation

In order to compute the critical-time kc, Algorithm 1
is proposed. Based on the sufficient condition provided by
Lemma 3, the time index kf is incremented until there is
no more solution to the LMI feasibility problem. An under-
estimate of the critical-time kc is so obtained and ensures
that the system is safe at least until the obtained result k∗f .

Theorem 1:
Let (Σ) be a system defined by (1) with a given state x0.
Consider the associate sets Ss, Sa and Sd given by (3)-(5).
Denote k∗f as the solution returned by Algorithm 1.
Then the system (Σ) with initial state x0 is safe over the
time-window I(k∗f ) = J0, k∗f K and for all abnormal inputs
of Sa and disturbances of Sd.

Proof: By Lemma 3, (Σ) is safe for each k ∈ I(k∗f ).

Algorithm 1: Critical-time computation with fixed x0
1 kf ← 0
2 f ← true
3 while f do
4 kf ← kf + 1
5 f ← isFeasible(
6 ∃

{
Ti,j ∈ Dkf ≥ 0, i = 1, . . . , ns, j = 1, . . . , na

}
,

7 ∃
{
Θi,g ∈ Dkf ≥ 0, i = 1, . . . , ns, g = 1, . . . , nd

}
,

8 such that (11) hold. )
9 /* true if a solution is found /*

10 kf ← kf − 1
11 return kf

V. SYSTEM CRITICAL-TIME COMPUTATION

In this section, Problem 2 is tackled. Analogous to Sec-
tion IV, the sub-problem of finding an initial state x0 ∈ Sp
such that xk ∈ Ss, k ∈ J0, kf K, over all abnormal inputs
of Sa and disturbances of Sd, for a fixed time-index kf
is first considered. Then, an algorithm is proposed to find
the maximum kf , providing an under-estimate of the system
critical-time kc, as well as a related state x0.

A. Fixed time-index kf
First, the problem of finding an initial state x0 for a fixed

time-index kf is addressed.
Lemma 4:

Let (Σ) be a system defined by (1). Consider the associate
sets Sp, Ss, Sa and Sd given by (2)− (5). Assume that

∀h = 1, . . . , np, Qph ≤ 0 and rQph := rank(Qph) ≥ 1

∀i = 1, . . . , ns, Qsi ≤ 0 and rQsi := rank(Qsi) ≥ 1

Factorize each Qph and Qsi such as

Qph := V ′phΣphVph Qsi := V ′siΣsiVsi

where Σph < 0 ∈ DrQph , Vph ∈ RrQph×l, Σsi < 0 ∈ DrQsi
and Vsi ∈ RrQsi×n. In addition, assume that kf ∈ N is fixed.
Then (i)⇒ (ii).

(i) ∃x0 ∈ Rn subject to
∀h = 1, . . . , np,[

rph + 2s′ph (Cx0) (VphCx0)
′

VphCx0 −Σ−1ph

]
≥ 0 (12)

∀i = 1, . . . , ns, ∀j = 1, . . . , na, ∀g = 1, . . . , nd,
∀k ∈ J0, kf K, ∃Ti,j,k ∈ Dk ≥ 0, ∃Θi,g,k ∈ Dk ≥ 0,

N̂ ′k,si

 Qsi ssi +QsiA
kx0 0

(ssi +QsiA
kx0)′ rsi + 2s′siA

kx0 0
0 0 0

 N̂k,si
−

na∑
j=1


Ti,j,k ⊗Qaj 0 diag (Ti,j,k)⊗ saj 0

0 0 0 0

diag (Ti,j,k)
′ ⊗ s′aj 0 trace(Ti,j,kraj ) 0

0 0 0 0



−
nd∑
g=1


0 0 0 0
0 Θi,g,k ⊗Qdg diag (Θi,g,k)⊗ sdg 0

0 diag (Θi,g,k)
′ ⊗ s′dg trace(Θi,g,krdg ) 0

0 0 0 0



+


0 0 0 0
0 0 0 0

0 0 0
(
VsiA

kx0

)′
0 0 VsiA

kx0 −Σ−1si

 ≥ 0 (13)

where N̂k,si :=

[
Nk 0
0 0rQsi×rQsi

]
.

(ii) There exists an admissible initial state x0 ∈ Sp such
that system (1) is safe over the time-window J0, kf K
for all abnormal inputs of Sa and disturbances of Sd:
∀k ∈ J0, kf K, ∀uak ∈ Rm, ∀dk ∈ Rw, (6)− (9) hold.
Proof: By the Schur Lemma [17], (12) is equivalent

to (9), i.e. x0 ∈ Sp. In addition, by Lemma 3 coupled with
the application of the Schur Lemma, (13) implies that the
system is safe at each time step k. As this is true for all
k ∈ J0, kf K, the system is safe over the whole interval.

Similarly to Lemma 3, condition (ii) is a feasibility
problem with LMI constraints, relying on the S-procedure.

Remark 3: The factorization of symmetric matrices Qph
and Qsi may be obtained using an eigenvalue decomposition.
For instance: ∃Uph ∈ Rl×l, ∃Σph ∈ RrQph×rQph ,

Qph = U ′ph

[
Σph 0

0 0

]
Uph = U ′ph

[
I 0

]′
Σph

[
I 0

]
Uph

The matrix Vph can then be defined as Vph :=
[
I 0

]
Uph .

B. System critical-time computation
To compute the critical-time and an associate x0, Algo-

rithm 2 is proposed. Based on Lemma 4, kf is incremented
until there is no more solution to the LMI feasibility problem.
The resulting under-estimate k∗f of the critical-time kc,
ensures that the system with initial state x∗0 is safe until k∗f .

Theorem 2:
Let (Σ) be defined by (1) and consider the sets Sp, Ss, Sa and
Sd as in Lemma 4. Denote k∗f and x∗0 the solutions returned
by Algorithm 2. Then the system (Σ) with admissible initial
state x∗0 ∈ Sp is safe over the time-window I(k∗f ) = J0, k∗f K
and for all abnormal inputs of Sa and disturbances of Sd.

Proof: This follows by application of Lemma 4.



Algorithm 2: System critical-time computation

1 kf ← 0
2 x0kf ← [ ] /* empty set /*
3 f ← false
4 while not(f) do
5 kf ← kf + 1
6 x0 ← x0kf
7 x0kf ← Find x0 ∈ Rn subject to: ∀k ∈ J0, kf K,
8 ∃

{
Ti,j,k ∈ Dk ≥ 0, i = 1, . . . , ns, j = 1, . . . , na

}
,

9 ∃
{
Θi,g,k ∈ Dk ≥ 0, i = 1, . . . , ns, g = 1, . . . , nd

}
,

such that (12), (13) hold
10 f ← isempty(x0kf ) /* true if no solution /*

11 kf ← kf − 1
12 return kf , x0

C. Lemma 4 with halfspace sets

In Lemma 4, the sets were assumed to be ellipsoidal,
potentially partially rank-degenerated, that is described by
quadratic constraints such as in Definition 1 with Q ≤ 0.
One may notice that halfspace sets, i.e. when Q = 0, may be
straightly considered by simply removing appropriate lines
and columns in (12) or (13). For instance, if Qph = 0, (12)
is replaced by the following LMI

rph + 2s′ph (Cx0) ≥ 0

VI. ILLUSTRATION

In this section, a numerical example is provided to illus-
trate the main results established in the previous sections.
Consider a system given by (1) with:

A =

[
0.9710 0.0563

0 0.9428

]
B =

[
0.0181
0.0173

]
C =

[
0.5
0

]′
For the sake of clarity, no disturbance d is considered.
Moreover, it is assumed that the performance constraint leads
to y0 ∈ [ymin, ymax], where ymin = 0.363 and ymax = 3.27,
for all k ∈ Z the system is safe if xk(1) ∈ [x1min , x1max ]
and xk(2) ∈ [x2min , x2max ], where x1min = x2min = 0.10,
x1max = 6.90 and x2max = 1.72, while the actuator
limitations allow only inputs ua ∈ [umin, umax], where
umin = 0 and umax = 6. The performance set Sp and the
actuator-limitations set Sa are then defined using (2), (4) and
Lemma 1, while the safety set Ss is defined by (3) and[

Qs1 ss1
s′s1 rs1

]
=

 −1.00 0 3.50
0 0 0

3.50 0 −0.690


[
Qs2 ss2
s′s2 rs2

]
=

 0 0 0
0 −1.00 0.912
0 0.912 −0.172


For illustration purposes, the system is simulated starting
from the initial points x01 =

[
1.4536 0.3629

]′
and x02 =[

5.8143 1.4517
]′

under either a DoS attack, i.e. ua = 0,

Fig. 1. Illustration of DoS and Upper saturation attacks on x2 starting
from two different initial points. Grey parts represent unsafe regions.

or an attack by upper saturation, i.e. ua = umax, that occurs
from ka = 10. The evolution of x(2) is plotted in Fig. 1.

Applying Theorem 2, Algorithm 2 is solved using the
Robust Control Toolbox of MATLAB. The maximal time-
index is found k∗f = 38 with x∗0 =

[
1.9035 0.9946

]′
. To

provide a comparative insight of this result, a DoS attack and
an attack by upper saturation are applied to the system for
different initial points and the related critical-time index kc
is computed for each attack. For the sake of illustration,
these initial points are arbitrarily chosen such that x{λ}0 =
λ · x?0, where λ ∈ R. The simulation results plotted in
Fig. 2 highlight the tradeoff arising when both attacks are
considered. The index k∗f suggests to be an adequate tradeoff
to ensure the maximal time for defense mechanisms.
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Fig. 2. Illustration critical time index kc for different initial state x0 and
trade-off between DoS attack and attack by saturation

VII. CONCLUSION

In this paper, a novel criterion, namely critical time,
was investigated to characterize the degree of resilience
of controlled CPS subject to actuator anomalies, including
attacks or faults. This criterion has been defined as the
maximum time-horizon for which a system is ensured to be
safe after the occurrence of an anomaly. Using the framework
of quadratic constraints, sufficient conditions have been
established to compute the critical time of discrete-time
LTI systems through iterative LMI-based algorithms. This



work paves the way for further investigations. This includes
extension to more general attack models, for instance replay
or covert attacks, and system dynamics as nonlinear or
multi-agent systems, the use of other convex sets such as
zonotopes [18] and the integration of communication and
networking models. This is a topic of our current research.

APPENDIX

A. Proof of Lemma 3
Proof:

First, denote I := J0, kf − 1K and zI :=
[
u′aI d′I

]′
. Using

(10), rewrite σsi(xkf ) and define ρsi(zI) as follows

σsi(xkf ) =

[
zI
1

]′ [
Q̃si s̃si
s̃′si r̃si

] [
zI
1

]
︸ ︷︷ ︸

:=ρsi (zI)

where Q̃si :=
[
Pkf Gkf

]′
Qsi

[
Pkf Gkf

]
s̃si :=

[
Pkf Gkf

]′ (
QsiA

kfx0 + ssi
)

r̃si :=
(
x0A

kf
)′
QsiA

kfx0 + 2s′siA
kfx0 + rsi

Moreover, define ρaj ,k(zI) and ρdg,k(zI) as ∀k ∈ I,

ρaj ,k(zI) :=

[
zI
1

]′ [
Qaj ,k saj ,k
s′aj ,k raj ,k

] [
zI
1

]
ρdg,k(zI) :=

[
zI
1

]′ [
Qdg,k sdg,k
s′dg,k rdg,k

] [
zI
1

]
where

Qaj ,k :=

[
Ek ⊗Qaj 0

0 0w·kf

]
Qdg,k :=

[
0m·kf 0

0 Ek ⊗Qdg

]
saj ,k :=

[
diag (Ek)

′ ⊗ saj 0m×(w·kf )
]

raj ,k := raj

sdg,k :=
[
0w×(m·kf ) diag (Ek)

′ ⊗ sdg
]

rdg,k := rdg

Ek :=

0k
1

0kf−1−k


This implies ρaj ,k(zI) = σaj (uak), ρdg,k(zI) = σdg (dk).
Thus, condition (ii) is equivalent to find if, ∀i = 1, . . . , ns,
ρsi(zI) ≥ 0 holds for all zI ∈ R(m+w)·kf such that,
∀k ∈ I, ∀j = 1, . . . , na, ∀g = 1, . . . , nd, ρaj ,k(zI) ≥ 0 and
ρdg,k(zI) ≥ 0. Applying the S-procedure, this is implied by:
∃{τi,j,k ≥ 0}, ∃{θi,g,k ≥ 0}, such that ∀zI ∈ R(m+w)·kf ,

ρsi(zI)−
na∑
j=1

kf−1∑
k=0

τi,j,kρaj ,k(zI)

−
nd∑
g=1

kf−1∑
k=0

θi,g,kρdg,k(zI) ≥ 0

that is equivalent to[
Q̃si s̃si
s̃′si r̃si

]
−

na∑
j=1

kf−1∑
k=0

τi,j,k

[
Qaj ,k saj ,k
s′aj ,k raj ,k

]

−
nd∑
g=1

kf−1∑
k=0

θi,g,k

[
Qdg,k sdg,k
s′dg,k rdg,k

]
≥ 0

Finally, define Ti,j :=

τi,j,0 . . .
τi,j,kf−1

 and note

kf−1∑
k=0

τi,j,k

[
Qaj ,k saj ,k
s′aj ,k raj ,k

]

=

 Ti,j ⊗Qaj 0 diag (Ti,j)⊗ saj
0 0 0

diag (Ti,j)
′ ⊗ s′aj 0 trace(Ti,jraj )


Similar reasoning for Θi,g leads to condition (i).

REFERENCES

[1] S. M. Dibaji, M. Pirani, D. Flamholz, A. M. Annaswamy, K. H.
Johansson, and A. Chakrabortty, “A Systems and Control Perspective
of CPS Security,” Annual Reviews in Control, vol. 47, 2019.

[2] M. S. Chong, H. Sandberg, and A. Teixeira, “A Tutorial Introduction
to Security and Privacy for Cyber-Physical Systems,” in 2019 18th
European Control Conference (ECC), 2019, pp. 968–978.

[3] C. G. Rieger, D. I. Gertman, and M. A. McQueen, “Resilient Control
Systems: Next Generation Design Research,” in 2009 2nd Conference
on Human System Interactions, 2009, pp. 632–636.

[4] Q. Zhu and T. Basar, “Game-Theoretic Methods for Robustness,
Security, and Resilience of Cyberphysical Control Systems,” IEEE
Control Systems Magazine, vol. 35, no. 1, pp. 46–65, 2015.

[5] A. Teixeira, H. Sandberg, and K. H. Johansson, “Strategic stealthy
attacks: The output-to-output l2-gain,” in 2015 54th IEEE Conference
on Decision and Control (CDC), 2015, pp. 2582–2587.

[6] A. Teixeira, K. C. Sou, H. Sandberg, and K. H. Johansson, “Secure
Control Systems: A Quantitative Risk Management Approach,” IEEE
Control Systems Magazine, vol. 35, no. 1, pp. 24–45, 2015.

[7] D. Wei and K. Ji, “Resilient Industrial Control System (RICS): Con-
cepts, Formulation, Metrics, and Insights,” in 2010 3rd International
Symposium on Resilient Control Systems, 2010, pp. 15–22.

[8] I. Hwang, S. Kim, Y. Kim, and C. E. Seah, “A Survey of Fault De-
tection, Isolation, and Reconfiguration Methods,” IEEE Transactions
on Control Systems Technology, vol. 18, no. 3, pp. 636–653, 2010.

[9] Y. Zhang and J. Jiang, “Bibliographical Review on Reconfigurable
Fault-Tolerant Control Systems,” Annual Reviews in Control, vol. 32,
no. 2, pp. 229–252, 2008.

[10] A. Megretski and A. Rantzer, “System Analysis via Integral Quadratic
Constraints,” IEEE Transactions on Automatic Control, vol. 42, no. 6,
pp. 819–830, 1997.

[11] G. Scorletti, X. Bombois, M. Barenthin, and V. Fromion, “Improved
Efficient Analysis for Systems with Uncertain Parameters,” in 2007
46th IEEE Conference on Decision and Control, 2007, pp. 5038–5043.

[12] C. W. Scherer and J. Veenman, “Stability Analysis by Dynamic
Dissipation Inequalities: on merging Frequency-Domain Techniques
with Time-Domain Conditions,” Systems & Control Letters, vol. 121,
pp. 7–15, 2018.

[13] T. Iwasaki and S. Hara, “Generalized KYP Lemma: Unified Frequency
Domain Inequalities with Design Applications,” IEEE Transactions on
Automatic Control, vol. 50, no. 1, pp. 41–59, 2005.

[14] A. Perodou, A. Korniienko, M. Zarudniev, and G. Scorletti, “Fre-
quency Design of Interconnected Dissipative Systems: a Unified LMI
Approach,” in 2018 IEEE Conference on Decision and Control (CDC),
2018, pp. 6250–6255.

[15] A. Perodou, A. Korniienko, G. Scorletti, M. Zarudniev, J. B. David,
and I. O’Connor, “Frequency Design of Lossless Passive Electronic
Filters: A State-Space Formulation of the Direct Synthesis Approach,”
IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 68,
no. 1, pp. 161–174, 2021.

[16] S. P. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix
Inequalities in System and Control Theory. SIAM, 1994, vol. 15.

[17] U. T. Jönsson, “A lecture on the S-procedure,” Lecture Note at the
Royal Institute of technology, Sweden, vol. 23, pp. 34–36, 2001.

[18] C. Combastel and A. Zolghadri, “A Distributed Kalman Filter with
symbolic Zonotopes and Unique Symbols Provider for Robust State
Estimation in CPS,” International Journal of Control, vol. 93, no. 11,
pp. 2596–2612, dec 2019.


