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Localization microscopy approaches with enhanced depth-of-field (EDoF) are commonly optimized using
the Cramér-Rao bound (CRB) as a criterion. It is widely believed that the CRB can be attained in practice
by using the maximum-likelihood estimator (MLE). This is however an approximation, of which we de-
fine in this paper the precise domain of validity. Exploring a wide range of settings and noise levels, we
show that the MLE is efficient when the signal-to-noise ratio (SNR) is such that the localization standard
deviation of a single molecule is less than 20 nm. Thus, our results provide an explicit and quantitative
validity boundary for the use of the MLE in EDoF localization microscopy setups optimized with the CRB.
© 2021 Optical Society of America. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution,

duplication of any material in this paper for a fee or for commercial purposes, or modifications of the content of this paper are prohibited.
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1. INTRODUCTION

Single-molecule localization microscopy (SMLM) is a super-
resolved fluorescence imaging technique based on precise lo-
calization of fluorophores [1]. Because the lateral resolution is
inversely proportional to the numerical aperture (NA), this tech-
nique employs high-NA objectives, which considerably limits its
natural depth-of-field (DoF). Several groups have demonstrated
that placing a phase mask in the aperture stop of a localization
microscope can significantly increase its DoF [2–5]. Recently, we
have proposed to use annular binary phase masks to extend 2D-
localization performance within a prescribed DoF range [6, 7]
(see Fig. 1). These masks are optimized using a criterion based on
the Cramér-Rao bound (CRB), which is a lower bound on local-
ization variance [8]. We have shown that an adapted maximum
likelihood estimator (MLE) for 2D localization estimation is able
to reach this bound in practice, but this demonstration was done
under particular conditions: pure additive noise model, large
values of the signal-to-noise ratio (SNR), and a given microscope
configuration [7].

A question therefore arises: if one deviates from this partic-
ular configuration, is it still possible to reach the CRB using an
MLE? The performance of the MLE has already been quantified
in different scenarii in the case of focused SMLM methods [9],
and it is widely believed that it can always attain the CRB in

practice [10, 11]. However, classical signal processing theory
says that if the SNR becomes too small, the variance of the MLE
is worse than the CRB [8]. The purpose of this article is thus
to precisely delineate the domain in which MLE-based EDoF
SMLM methods effectively reach the CRB, by exploring a wide
range of settings and noise levels.

The article is organized as follows. In Section 2, we define the
image formation models considered in the paper and review the
corresponding expressions of the CRB. In Section 3, we develop
our methodology and apply it to delineate the domain in which
the MLE is efficient (i.e., reaches the CRB) for standard in-focus
SMLM methods. In Section 4, we apply this methodology to
investigate the domain of efficiency of the MLE-based SMLM
methods with enhanced DoF (EDoF) that use binary annular
phase masks. Section 5 is devoted to concluding remarks and
perspectives.

2. IMAGE FORMATION & LOCALIZATION ACCURACY

Consider an emitter located at an axial distance ∆zp from the
focus plane and at a lateral position θ = (xp, yp). Our goal is
to optimize the estimation of θ over a certain range of defocus
distances ∆zp. Assuming that the image formation process is
space invariant, the image of this emitter is proportional to the
normalized 2D spatial irradiance of the point spread function

https://doi.org/10.1364/JOSAA.439993
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Fig. 1. EDoF localization microscopy setup: an optimized
phase mask is placed in the aperture stop of the microscope
objective. We consider in this paper six annular binary phase
masks respectively optimized for ψmax = {1λ, 1.5λ, 2λ} in Sce-
narii A and B. This type of mask is based on concentric rings
implementing static spatial phase modulations of alternatively
0 and π radians at a nominal wavelength λ.

(PSF) of the microscope objective centered on θ:
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and
∫∫

f θ(x, y)dx dy = 1. In Eq. (1), J0(·) is the Bessel function
of the first kind of order 0, λ is the wavelength of the collected
light, M is the lateral magnification, NA is the object numerical
aperture, and Φ(r) is the pupil phase function which depends
on ∆zp and on the possible presence of a phase mask. In the
case of well focused emitters with no phase mask and no optical
aberration, Φ(r) = 0 and the 2D spatial distribution of collected
fluorescence is the Airy pattern. Note that the formalism de-
fined in Eq. (1) is limited to phase functions Φ(r) having circular
symmetry, since the annular binary phase masks that we use in
the following have this symmetry. However, the methodology
of this article can easily be extended to the many non-circularly
symmetric DoF-extending phase masks proposed in the litera-
ture, see, e.g., [12–17].

The image of the PSF is acquired by an array sensor and
corrupted by noise. According to [18], the dominant sources
of corruption in SMLM are shot noise arising from the useful
fluorescence signal (i.e., the emitter) and from the fluorescent
background (e.g., from the autofluorescence of the biological
environment). In consequence, we shall consider only these two
types of noise sources in this article.

Let us denote by sij the data acquired at pixel (i, j) over a
square region (2P + 1)× (2P + 1), so that (i, j) ∈ {−P, · · · , P}2.
It is modeled as a Poisson random variable of mean N0rij(θ) + b
where N0 is the total number of photo-electrons expected in
the whole image from the emitter, rij(θ) the value of the PSF
integrated over the square pixel (i, j) of side length ∆xy:

rij(θ) =
∫ (i+ 1

2 )∆xy

(i− 1
2 )∆xy

∫ (j+ 1
2 )∆xy

(j− 1
2 )∆xy

f θ(x, y)dx dy (2)

and b is the spatially constant mean value of the background
per pixel. The value of b depends on the application, and for the
sake of simplicity, we consider in this article the two following
extreme scenarii. In Scenario A, we consider only the shot noise
due to the light of the fluorescent emitter, i.e., we assume that b =
0. In Scenario B, we consider that the autofluorescent background
is the dominant source of noise, i.e., we neglect the fluctuations
due to the signal from the emitter, which leads to N0rij(θ)� b.
Realistic background noise levels therefore lie between these
two extreme scenarii.

Our goal is to estimate the fluorophore lateral position θ from
the measured data sij. Since this data is noisy, so is the position
estimate, and a lower bound on the variance of the estimation is
given by the CRB. The square root of the CRB, denoted RCRB =
(RCRBx, RCRBy), has the following expressions along the x and
y axes:
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where ∆x f θ0
i (y) (respectively ∆y f θ0

j (x)) is the difference between
the PSF samples at the edge of the pixels of row i (respectively
column j), i.e.,
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The values of the RCRB in Eq. (3) and Eq. (4) depend on the
actual position θ0 of the PSF with respect to the pixel grid [6]. In
this paper, we shall consider the two following extreme cases.
In the first one, the PSF is located at the center of a pixel (e.g.,
θ0 = (0, 0)). This position corresponds to the largest possible
value of the CRB, i.e., the worst case for localization accuracy [7].
In the second case, the PSF is centered on the corner of a pixel,
e.g., θ0 = (∆xy/2, ∆xy/2). This position corresponds to the
smallest possible value of the CRB, i.e., the most favorable case
for localization accuracy. Note that in these two cases, RCRBx =
RCRBy.

The RCRB expressions given in Eq. (3) and Eq. (4) are a ver-
sion of those given in Ref. [6] for pure signal-based shot noise
but generalized to take into account a constant background noise
of mean level b. In Scenario A, where the background noise is
neglected, the expressions of the RCRB are easily obtained by
setting b = 0 in Eq. (3) and Eq. (4). In Scenario B, where the fluctu-
ations of the useful signal are neglected, we have N0rij(θ)� b,
so the expressions of the RCRB can be approximated by
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Fig. 2. Estimation properties of the MLE when the fluores-
cent emitter is in-focus and at the center of a pixel for (a) the
normalized bias (nBias), (b) the normalized standard devia-
tion (nSTD), as a function of the RCRB for Scenarii A (black
dots) and B (red crosses). The simulation parameters are:
θ0 = (0, 0) µm ∆xy = 10 µm, 2P + 1 = 21 pixels, NA = 1.3,
λ = 700 nm, M = 60 (magnification).

Note that these expressions, which relate to additive Poisson
noise, are the same as those of the RCRB for additive Gaussian
noise with variance σ2 = b, see, e.g., Ref. [7].

3. VALIDITY DOMAIN OF STANDARD SMLM METHODS

To estimate the emitter position with subpixel precision, a local-
ization algorithm needs to be implemented. For that purpose,
different methods based on center of mass estimation, template
fitting, or deconvolution with sparsity constraints have been
proposed [19]. However, a commonly employed algorithm is
the MLE, whose advantage is to leverage our knowledge about
the nature of the noise sources that corrupt the observed im-
ages [10]. For a Poisson noise model, the MLE has the following
expression:

θ̂ = arg max
θ

 P

∑
i=−P

P

∑
j=−P

sijqij(θ)

 (9)

where
qij(θ) = log

[
N0rij(θ) + b

]
. (10)

It is interesting to note that in Scenario A, qij is proportional to
log[rij(θ)], and in Scenario B, it is quasi-proportional to rij(θ)
since in this case, log[1 + N0rij(θ)/b] ' N0rij(θ)/b. Thus in Sce-
nario B, although the noise is Poisson distributed, the expression
of the MLE can be approximated by the matched filter, which is
optimal in the presence of additive Gaussian noise [8].

In the case of emitters located in the focusing plane, it has
been shown that for good SNR, the MLE is unbiased and able to
reach the CRB [10]. In order to precisely delineate the domain of
validity of this assertion, let us assume that the observed emitter
is centered on a pixel with θ0 = (0, 0) (the least favorable case
for localization accuracy). In this configuration, the value of the
RCRB is equal in the x and y directions, and we shall denote
it RCRB = RCRBx = RCRBy. Obviously, the bias (E[θ̂] − θ0,
where E[·] denotes the mathematical expectation operation and

Fig. 3. Estimation properties of the MLE when the fluorescent
emitter is in-focus and at the corner of a pixel for (a) the nor-
malized bias (nBias), (b) the normalized standard deviation
(nSTD), as a function of the RCRB for Scenarii A (black dots)
and B (red crosses). The simulation parameters are given in
Fig. 2 except for θ0 = (5, 5) µm.

θ0 is the true position of the emitter) and the standard deviation
STD[θ̂] of the MLE are also equal in the x and y directions. To
delineate the domain of validity of the MLE, we will study the
normalized versions of these values, namely,

nBias =
E[θ̂]− θ0

RCRB
and nSTD =

STD[θ̂]

RCRB
(11)

These values are estimated with Monte-Carlo simulations on
4000 noise realizations. We have checked that this number of
Monte-Carlo realizations are sufficient: using more realizations
does not change the results.

The values of nBias are represented in Fig. 2.a, and those of
nSTD in Fig. 2.b, for Scenario A (black dot markers) and Scenario B
(red cross markers). These values are plotted as a function of the
RCRB. This means that large SNR values correspond to the left
side of the curve, and SNR decreases as one goes to the right.
In this representation, if the MLE is efficient, the normalized
bias should be close to 0 and the normalized standard deviation
close to 1. The optical parameters considered in this simulation
are typical of standard SMLM setups: ∆xy = 10 µm, NA = 1.3,
λ = 700 nm, and M = 60 (magnification). In the simulations,
the increasing values of RCRB are obtained by reducing the SNR
whose expression depends on the scenario. In Scenario A, the
SNR is defined as

√
N0 (see Eq. (3) when b = 0) and is varied

in the range [75.9, 1.1] to cover the desired values of the RCRB.
In Scenario B, it is defined as N0/

√
b (see Eq. (7)) and is varied

in the range [303, 4.4]. Note that representing the bias and the
standard deviation as a function of the RCRB instead of the SNR
has the advantage of making it possible to visualize the two
types of noise configurations on the same graph.

We observe on Fig. 2.a that for both Scenarii A and B, the
bias is close to 0 and the normalized standard deviation (nSTD)
close to 1 as long as RCRB ≤ 20− 30 nm. In this range of RCRB
values, the MLE is thus efficient. Then when RCRB > 30 nm, the
standard deviation starts to diverge while the bias remains close
to 0 before diverging in turn when RCRB > 40 nm. In order to
check that these conclusions remain the same if θ0 is not centered
on a pixel, we have also considered the case where the actual PSF
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position θ0 is at the corner of a pixel, with θ0 = (∆xy/2, ∆xy/2).
In this case also, the symmetry of the problem is such that the
bias, the standard deviation and the RCRB have the same value
along the x and y axes. We have represented in Fig. 3 the values
of nBias and nSTD for this configuration. The noise realizations
are not the same as those used in Fig. 2. We can see that the
graphs are very similar to those in Fig. 2. In particular, the
MLE is efficient for RCRB < 20 nm. This conclusion is thus
independent of the PSF position.

As a summary, in low SNR conditions, the actual localization
accuracy is worse than the one predicted by the CRB. Fortu-
nately, this problem does not affect cases of higher SNR: for the
standard experimental parameters that we have assumed, the
MLE remains efficient as long as the RCRB is smaller than 20 nm.
Care should thus be taken when experiments are conducted in
low SNR conditions since the standard deviation of the MLE
does not reach the RCRB in this case.

As an aside, we can note that an advantage of representing
the bias and the standard deviation as a function of the RCRB in
Figs. 2 and 3 is that this type of graph can be used as an abacus.
Indeed, in a given application, whatever the type of noise, the
signal to noise ratio and other optical parameters, the RCRB can
be computed. If the RCRB is lower that 20 nm, it can be safely
considered as a correct evaluation of the precision that can be
reached in practice with the MLE. If it is larger, this is no longer
the case.

4. VALIDITY DOMAIN OF MLE-BASED EDOF SMLM
METHODS

Let’s now consider the case of emitters with axial positions dis-
tant from the imaging plane: they are out-of-focus. To quantify
this defocus, we use the standard parameter ψ which is the
wavefront error at the edge of the pupil [20]:

ψ =
NA2 ∆zp

2n
(12)

where ∆zp is the axial distance between the observed emitter
and the focus point, and n is the refractive index of the object
space. Naturally, the expression of the PSF, and thus of the
RCRB, now depends on the defocus parameter ψ through the
pupil phase function:

Φ(r) =
2π

λ
ψr2 + Φmask(r) (13)

where Φmask(r) is the phase function of a mask possibly added
in the optical path.

Without a mask, the localization precision degrades as ψ in-
creases. We have shown in Ref. [6] that placing an optimized
annular binary phase mask in the aperture stop of the micro-
scope allows to significantly increase the localization perfor-
mance within a required DoF range by reducing the spread of
the PSF due to defocus. The optimal mask is entirely character-
ized by the vector ρopt = (ρ1, ρ2, · · · , ρL−1) of the normalized
radii of each ring (the last radius is at the edge of the aperture,
i.e., ρL = 1), such as:

ρopt = arg min
ρ

{
max

ψ∈[−ψmax,ψmax]
RCRB(ρ, ψ)

}
. (14)

Note that the expression of the RCRB is different in Scenario A
(see Eq. (3) and Eq. (4) with b = 0) and Scenario B (see Eq. (7)
and Eq. (8)). Hence, the optimal masks in these two scenarios

will be different even for the same targeted defocus range ψmax.
We also notice that in these two scenarios, the SNR appears as
a simple multiplying factor in the expression of the RCRB. The
optimized masks are therefore independent of the SNR. This
approach was presented in detail for a pure additive Gaussian
noise model in [7], and it was shown that even with an optimal
mask, the PSF shape still significantly varies with defocus. To
reach the RCRB, it is thus necessary to use an approximate MLE
which consists in dividing the DoF range into a finite number of
sub-ranges in order to define a reference kernel adapted to each
sub-range.

Suppose that the targeted DoF range [0, ψmax] is split into Mψ

distinct sub-ranges. Note that this is equivalent to the interval
[−ψmax, ψmax] since, independently of the presence or absence
of the annular binary mask with a π modulation, the PSF is iden-
tical for ψ and −ψ (i.e., on either side of the focus point) [7]. To
each DoF sub-range, we can associate a unique kernel, denoted
by rm

ij (θ), with m ∈ {1, · · · , Mψ}. This kernel is built as a linear
combination of characteristic PSFs in this sub-range:

rm
ij (θ) =

K

∑
k=1

αkrij(θ) (15)

where the coefficients αk are the components of the eigenvector
associated with the greatest eigenvalue of the matrix W defined
as:

[W ]ij =
∫∫

R2
νxνy f̃ ∗(νx, νy, ψi) f̃ (νx, νy, ψj)dνx dνy (16)

with f̃ (νx, νy, ψ) the Fourier transform of f θ(x, y) defined in
Eq. (1). The dependence on ψ is made explicit, and the super-
script ∗ denotes the complex conjugate. The proof of Eq. (16) is
described in [7]. For example, let us assume that the targeted
DoF range is ψmax = 1λ in Scenario A. In this case, the MLE
requires Mψ = 4 DoF sub-ranges, and m can thus take 4 differ-
ent values: [0, 0.2λ] (m = 1), [0.2λ, 0.35λ] (m = 2), [0.35λ, 0.5λ]
(m = 3), and [0.5λ, 1λ] (m = 4), as shown in [6]. The associated
kernels rm

ij (θ), with m ∈ {1, · · · , 4}, are illustrated in Fig. 4.a.
The number Mψ of DoF sub-ranges depends on the value of the
targeted DoF range ψmax and on the scenario. We have illus-
trated, in Fig. 4.b, the five kernels rm

ij (θ) that are needed when
ψmax = 1.5λ in Scenario A.

This estimator thus requires joint estimation of the emitter
position θ and of the defocus sub-range m in which it is located:

(
θ̂, m̂

)
= arg max

θ,m

 P

∑
i=−P

P

∑
j=−P

sijqm
ij (θ)

 (17)

with qm
ij (θ) = log[rm

ij (θ)] in Scenario A and qm
ij (θ) = rm

ij (θ) in
Scenario B. Note that in this article, our goal is 2D localization
estimation with EDoF, so that our masks are not optimized to
retrieve the 3D localization of the emitters. Our only parameter
of interest in this study therefore remains the lateral position θ.
However, to estimate it, estimation of the nuisance parameter
ψ is necessary. We have shown in [7] that a crude estimation of
ψ using a limited number Mψ of kernels (see Eq. (17)) was suffi-
cient to yield acceptable results in practice. The (modest) price to
pay on localization performance for this approximation will be
discussed at the end of the section. Moreover, since the kernels
rm

ij (θ) are not actual PSFs, the estimator defined in Eq. (17) is not
strictly speaking an MLE. However, we use this term in the fol-
lowing for the sake of simplicity, as this algorithm is able to reach
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(a) ψmax = 1λ

(b) ψmax = 1.5λ

Fig. 4. Average PSF kernels rm
ij (θ) defined in Eq. (15) and used

in the approximate MLE of Fig. 5 (Scenario A) when (a) ψmax =
1λ or (b) ψmax = 1.5λ.

the CRB in the presence of pure additive Gaussian noise and for
high enough SNR [7]. Our goal hereafter is to fully characterize
its domain of validity, i.e., the range of RCRB values for which it
actually reaches the localization performance predicted by the
RCRB. Note that the gain in absolute localization performance
(or absolute RCRB) obtained by using a mask has already been
evaluated previously in detail [6, 7].

Let us consider several previously determined annular bi-
nary phase masks with π modulation that optimize the RCRB in
Scenario A [6] and Scenario B [7], for various targeted DoF ranges
ψmax = {1λ, 1.5λ, 2λ}. These phase masks are illustrated and de-
scribed in Fig. 1. For all these DoF ranges, we have represented
the bias of the MLE in Scenario A (see Fig. 5.a) and in Scenario B
(see Fig. 6.a) as a function of the RCRB for two different values
of the defocus parameter ψ. In addition, we have represented
the standard deviation of the MLE in Scenario A (see Fig. 5.b)
and in Scenario B (see Fig. 6.b). As references, we have added to
these two figures the curves obtained without phase mask for
an in-focus emitter (ψ = 0), that were also displayed in Fig. 2,
and for an out-of-focus emitter (ψ = 0.5λ) when θ0 is estimated
with Eq. (9). We observe that for all the considered DoF ranges
ψmax, the MLE is unbiased and its standard deviation reaches
the RCRB when RCRB ≤ 20 nm. The main conclusion of these
graphs is therefore that the domain in which the MLE reaches
the RCRB is comparable for mask-less and EDoF setups, even
though in the latter case, the implementation of the MLE is more

complex since it requires joint estimation of the lateral position
and of the DoF sub-range (see Eq. (17)).

Fig. 5. Estimation properties, (a) the bias and (b) the standard
deviation, of the approximate MLE designed for EDoF in Sce-
nario A, with ψmax = {1λ, 1.5λ, 2λ}, as a function of the RCRB
for in-focus emitters (i.e., ψ = 0) and out-of-focus emitters (i.e.,
ψ 6= 0). The simulation parameters are given in Fig. 2.

Fig. 6. Estimation properties, (a) the bias and (b) the standard
deviation, of the approximate MLE designed for EDoF in Sce-
nario B, with ψmax = {1λ, 1.5λ, 2λ}, as a function of the RCRB
for in-focus emitters (i.e., ψ = 0) and out-of-focus emitters (i.e.,
ψ 6= 0). The simulation parameters are given in Fig. 2.

In order to understand more precisely how the statistical dis-
tribution of the position estimates changes when the RCRB gets
larger than 20 nm, we have plotted in Fig. 7 the evolution of
the histogram of (E[θ̂] − θ0)/ RCRB (with RCRB = RCRBx =
RCRBy) as a function of the RCRB in two examples of configura-
tions. We observe that the histograms widen progressively with
decreasing SNRs. The increase of variance is thus not due to the
presence of some isolated bad outliers.

Analyzing in more detail the results in Figs. 5.b and 6.b, we
can notice two interesting points. First, for some values of the
DoF range ψmax and of the defocus parameter ψ, the localiza-
tion performance is not exactly equal to the RCRB even when
RCRB < 20 nm: one can notice that some standard deviation
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Fig. 7. Histograms of (E[θ̂] − θ0)/ RCRB as a function of the
RCRB when (a) ψmax = 1λ, ψ = 0.2λ in Scenario A and (b)
ψmax = 1.5λ, ψ = 0.4λ in Scenario B. The simulation parame-
ters are given in Fig. 2.

curves are slightly larger than one, by a factor up to 5%. Second,
when the RCRB gets larger than 20 nm, the localization perfor-
mance deviates from the RCRB much faster in the presence of a
phase mask, compared with the curves obtained without phase
mask (black dots and purple stars).

To explain these two observations, we compare in Fig. 8, for
a given configuration (namely, ψmax = 1.5λ and ψ = 0.55λ),
the values of nBias and nSTD obtained with three different ML-
based localization algorithms as a function of RCRB. The first
algorithm is the approximate MLE defined in Eq. (17) (curve
with yellow triangular markers). In the second case, we assume
to know the true defocus range m0 = 2 in which the emitter
lies, and apply the MLE defined in Eq. (9) with reference kernel
rij = rm0

ij (red cross markers). In the third case, one uses the
MLE defined in Eq. (9) with the reference kernel rij equal to the
true PSF of the configuration ψmax = 1.5λ and ψ = 0.55λ (blue
circular markers). We observe that the curves obtained with
the first and second algorithm are similar, having a standard
deviation slightly larger than one for RCRB < 20 nm and a
fast increase after RCRB > 20 nm. This means that the estima-
tion of the defocus range m in the approximate MLE defined in
Eq. (17) is correct, since assuming to know a priori the correct
kernel does not improve the performance. In contrast, the curve
obtained with the third algorithm is very close to one when
RCRB < 20 nm and has a much slower increase, similar to what
is observed in the focused case. This means that the slight dis-
crepancy in the standard deviation observed in some cases for
RCRB < 20 nm and its sharper increase when RCRB gets larger
than 20 nm comes from the mismatch between the average PSF
kernel used in the localization algorithm of Eq. (17) and the real
PSF. This mismatch could be reduced by increasing the number
Mψ of defocus subranges considered in Eq. (17). The cost of the
calculations would grow linearly with Mψ.

Note that in practice, other factors such as optical aberrations
or inaccurate PSF calibration can further increase the mismatch
between the actual PSF and the correlation kernel. For example,
several recent works have investigated the sensitivity of local-
ization algorithms based on PSF fitting [21–23] to a mismatch
between actual and calibrated PSF.

Fig. 8. Estimation property comparison, for ψmax = 1.5λ and
ψ = 0.55λ, of (a) the bias and (b) the standard deviation ob-
tained with the MLE defined in Eq. (17). This approximate
MLE requires either the joint estimation of the correct matched
kernels (yellow triangular markers), or a hand selection (red
cross markers), or the use of the true PSF (blue circular mark-
ers). The simulation parameters are given in Fig. 2.

5. CONCLUSION

In conclusion, we have delineated the domain in which the
CRB is able to accurately predict the localization precision of
SMLM experiments. We have shown that the MLE is efficient
(i.e., unbiased and reaching the RCRB) when the experiment
parameters are such that the RCRB is less than 20 nm. This
limit is identical for standard and EDoF setups, but in the latter
case, the divergence of the MLE performance beyond this limit
is much faster. We also observed that EDoF setups may have a
standard deviation slightly larger than the RCRB when RCRB <
20 nm. This comes from the mismatch between the actual PSF
and the correlation kernel used in the localization algorithm.
Since many SMLM experiments are conducted in conditions
where RCRB < 20 nm, the common practice of evaluating or
optimizing setups using the CRB and employing the MLE to
reach the predicted performance is most often valid. However
when experimental conditions are thus that RCRB > 20 nm, care
has to be taken as the CRB no longer faithfully represents the
MLE performance in low SNR scenarios.

An interesting perspective of this work is to apply the de-
veloped methodology to precisely delineate the domain of effi-
ciency of 3D localization setups [2–4].
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