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ABSTRACT

Our approach proposed in a previous paper for the reduction of boundary effects in the deconvolution of astronomical images by the Richardson-
Lucy method (RLM) is extended here to the problem of multiple image deconvolution and applied to the reconstruction of the images of
LINC-NIRVANA, the German-Italian beam combiner for the Large Binocular Telescope (LBT). We investigate the multiple image RLM, its
accelerated version ordered subsets expectation maximization (OSEM), and the regularized versions of these two methods. In addition we
show how the approach can be extended to the iterative space reconstruction algorithm (ISRA), which is an iterative method converging to non-
negative least squares solutions. Numerical simulations indicate that the approach can provide excellent results with a considerable reduction
of the boundary effects.

Key words. methods: data analysis – methods: numerical

1. Introduction

In a previous paper (Bertero & Boccacci 2005) we pro-
posed implementation of the Richardson-Lucy method (RLM)
(Richardson 1972; Lucy 1974) that allowed for a reduction of
the boundary effects; the same idea has been subsequently ap-
plied by Vio et al. (2005) to the Landweber method, in the
framework of least squares solutions. Just after publication of
our paper we discovered that a very similar approach was pro-
posed years ago and implemented in the lucy task of STSDAS
(White 1993; Stobie et al. 1994), even if a complete description
of the implementation details was not provided in the refer-
eed literature. The approach, derived from ideas developed by
Politte & Snyder (1991) in the case of medical imaging, was
based on the use of a weight array compensating for the flat
field and masking the bad pixels, as well as the outer parts of
the image.

We recall that boundary effects appear if the astronomical
object contained in the field of view (FOV) of the image is
not surrounded by free sky and if FFT-based deconvolution al-
gorithms are used. Indeed, FFT implicitly assumes a periodic
continuation of the image, which is discontinuous at the bound-
ary of the original domain. In the deconvolved image these
discontinuities generate Gibbs oscillations (sometimes called
ripples), which propagate inside the image domain and com-
pletely degrade the quality of the reconstruction.

Starting from the observation that, due to the extent of the
point spread function (PSF), the detected image receives con-
tributions from a domain that is a bit broader than the FOV

of the telescope, the basic idea of our method consists in also
attempting a reconstruction of the object outside the image
domain. In this approach the number of unknowns (the pixel
values of the object) is greater than the number of data (the
pixel values of the image), so that it seems impossible to use
FFT-based methods: the problem becomes rapidly intractable
from the numerical point of view when the size of the image
increases. However, an efficient implementation of this idea, in
the case of RLM, was proposed in Bertero & Boccacci (2005).
If the image is N × N, then our approach essentially leads to
a FFT-based RLM applied to 2N × 2N arrays, with an increase
in the computational cost compared to standard RLM by a fac-
tor of about 16; indeed, the increase in the FFT computational
cost is about 4, and each RLM iteration requires the computa-
tion of 4 FFTs. It must also be pointed out that our approach
does not require a symmetric PSF.

An alternative is provided by the methods based on the use
of boundary conditions (BC), which extend the object outside
the FOV in a somewhat artificial way. Even if an efficient im-
plementation of these methods was originally proposed only in
the case of symmetric PSFs (Chan et al. 1999; Serra Capizzano
2003), it has been recently noted (Donatelli & Serra Capizzano
2005) that this requirement is not strictly necessary. Therefore
a comparison between ours and the BC-based methods is pos-
sible, in principle, for any kind of PSF, and the choice be-
tween one or the other method is not determined by compu-
tational efficiency but, rather, by accuracy in the reconstruction
of the object.
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The purpose of this paper is to extend our method to the
deconvolution of multiple interferometric images of the same
astronomical target. Our group has already developed meth-
ods and software for the solution of this problem (Bertero
& Boccacci 2000a,b; Correia et al. 2002; Carbillet et al.
2002) and produced the software package AIRY (Astronomical
Image Reconstruction in interferometrY), for which version 3.0
is now available (see http://dirac.disi.unige.it and
http://www.arcetri.astro.it/caos). This tool can be
applied to Fizeau interferometers such as LINC-NIRVANA
(Lbt INterferometric Camera and Near-InfraRed/Visible
Adaptive iNterferometer for Astronomy), the German-Italian
beam combiner for the Large Binocular Telescope (LBT). We
recall that LBT will consist of two 8.4 m mirrors on a common
mount, with a spacing of 14.4 m between their centers, so that
a maximum baseline of 22.8 m will be available. The first light
of the first primary mirror has been achieved on October 12,
2005.

The paper is organized as follows. In Sect. 2 our approach
is extended to multiple-image RLM and its accelerated version
ordered subset expectation maximization (OSEM) (Bertero &
Boccacci 2000a), while in Sect. 3 it is extended to regularized
versions of the same methods. In Sect. 4 we discuss its ap-
plication to the least-squares (LS) method known as iterative
space reconstruction algorithm (ISRA) and, finally, in Sect. 5
we present the results of a few numerical simulations in the
case of LBT LINC-NIRVANA. Section 6 is devoted to the dis-
cussion of the perspectives of the proposed method.

2. Multiple image RLM and OSEM

Let g j, ( j = 1, ..., p) be p different images of the same as-
tronomical target. For instance, in the case of LBT LINC-
NIRVANA, they are obtained by means of different orientations
of the baseline. Moreover, let us assume that the g j are N × N
arrays corresponding to the FOV of the detector, hence to a
given angular region of the sky. These images receive contri-
butions from a broader region, so that we must take a broader
array for describing the astronomical object that contributes to
the images. The size of this array depends on the size of the
PSFs and therefore depends on the particular telescope we are
considering. For this reason and also for using dimensions that
are a power of 2, we consider arrays 2N × 2N and look for
methods that leave the choice of the reconstruction domain to
the particular PSFs we are using. We will denote the 2N × 2N
arrays by a bar, and the multi-index characterizing the elements
of these arrays by n = {n1, n2}.

The ingredients of the method are the following.

– ḡ j, ( j = 1, ..., p) are 2N × 2N arrays, obtained by zero
padding from the original images g j. Since the use of the
FFT implies a periodic continuation of these arrays, the lo-
cation of g j within the corresponding ḡ j is not important;
for instance, they can be located in the central region or in
the lower-left quadrant. Either way, the choice must be the
same for all the p images.

– S̄ is the full domain of the values of the multi-index n, while
S ⊂ S̄ is the subset of values corresponding to the detected
images, hence to the pixels of the FOV.

– b̄ j, ( j = 1, ..., p) are 2N × 2N uniform arrays, formed with
the constant values of the backgrounds.

– f̄ is the 2N × 2N array of the unknown values of the as-
tronomical target. We denote by f the restriction of f̄ to S ,
namely to the FOV of the detected images.

– K̄ j are 2N×2N PSFs, obtained by zero padding and shifting
from the original PSFs (extracted, for instance, from the
images of a star in the FOV).

We will denote the matrix associated to the PSF K̄ j by Ā j, and
by ĀT

j the corresponding transposed matrix:
(
Ā j f̄
)

(n) =
∑
n′∈S̄

K̄ j
(
n− n′

)
f̄
(
n′
)
, (1)

(
ĀT

j ḡ
) (

n′
)
=
∑
n∈S̄

K̄ j
(
n− n′

)
ḡ(n).

Both can be computed by means of the FFT. As usual, we as-
sume that the PSFs satisfy the normalization condition:∑
n′∈S̄

K̄ j(n′) = 1, (2)

which will be used in the following.
As shown by Shepp & Vardi (1982), RLM is an iterative

method for the maximization of the likelihood function if the
images are contaminated by photon noise. In view of a uni-
fied approach, which also applies to the LS method discussed
in Sect. 4, we use the equivalence between the maximization
of the likelihood function and the minimization of the Csiszár
I-divergence (Csiszár 1991). In the case of multiple image de-
convolution, this is given by (Anconelli et al. 2005):

I( f |g) =
p∑

j=1

∑
n∈S

⎧⎪⎪⎨⎪⎪⎩g j(n)ln
g j(n)(

A j f
)

(n) + b j(n)

+
[(

A j f
)

(n) + b j(n) − g j(n)
] ⎫⎪⎪⎬⎪⎪⎭. (3)

The multiple image RLM, as derived in Bertero & Boccacci
(2000b), is just an iterative method for the minimization of this
functional. It is closely related to the method proposed by Lucy
& Hook (1992) for combining images with possibly very differ-
ent PSFs. For completeness we recall that this model can also
be used for approximately including the effect of the read-out
noise (Snyder et al. 1993, 1994, 1995).

In view of dealing with boundary effects, since f̄ is now
the unknown object, we replace the previous functional with
the following one:

I( f̄ |ḡ) =
p∑

j=1

∑
n∈S̄

⎧⎪⎪⎨⎪⎪⎩ḡ j(n)ln
ḡ j(n)(

Ā j f̄
)

(n) + b̄ j(n)

+MS (n)
[(

Ā j f̄
)

(n) + b̄ j(n) − ḡ j(n)
] ⎫⎪⎪⎬⎪⎪⎭, (4)

where the definitions given above are used and, as usual, we
take x ln x = 0 if x = 0. The array MS (n) is the mask of the
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set S (i.e. the array that is 1 on S and 0 outside); this mask is not
indicated in the denominator of the argument of the logarithm
because the quotient is automatically zero outside S thanks to
the numerator. We point out that:

– the functional depends on 2N × 2N unknowns;
– only the detected images and the restrictions to S of the

computed images Ā j f̄ and of the backgrounds b̄ j contribute
to the functional.

It is obvious that the functional can be written without intro-
ducing the zero values of ḡ j and the mask of the domain S ; but,
if we write the functional in the form of Eq. (4), then all quan-
tities containing the imaging matrices Ā j can be computed by
means of the FFT.

Necessary and sufficient conditions for an array f̄ to
be a minimum of the convex functional I( f̄ |ḡ) in the cone
of the non-negative arrays are provided by the well-known
Kuhn-Tucker conditions (KTC):

f̄
(
n′
) [∇ f̄ I

(
f̄
∣∣∣ḡ)] (n′) = 0, n′ ∈ S̄ , (5)

f̄
(
n′
) ≥ 0,

[
∇ f̄ I
(

f̄
∣∣∣ḡ)] (n′) ≥ 0. (6)

Then, by defining products and quotients of arrays as pixel by
pixel products and quotients, the gradient of the functional of
Eq. (4) can be written in the compact form:

∇ f̄ I
(

f̄
∣∣∣ḡ) = −

p∑
j=1

ĀT
j

ḡ j

Ā j f̄ + b̄ j
+ ᾱ, (7)

ᾱ
(
n′
)
=

p∑
j=1

ᾱ j
(
n′
)
, n′ ∈ S̄ , (8)

ᾱ j
(
n′
)
=
∑
n∈S̄

MS (n)K̄ j
(
n− n′

)
=
(
ĀT

j MS

) (
n′
)
. (9)

If the PSFs satisfy the normalization condition of Eq. (2), then
all the weight functions ᾱ j(n′) are approximately 1 in the cen-
tral region of S , so that the weight function ᾱ(n′) is approxi-
mately p in the same domain. We point out that the arrays ᾱ j

can be computed by means of the FFT.
From the previous equations it follows that the first KTC

becomes:

ᾱ f̄ = f̄

⎛⎜⎜⎜⎜⎜⎜⎝
p∑

j=1

ĀT
j

ḡ j

Ā j f̄ + b̄ j

⎞⎟⎟⎟⎟⎟⎟⎠ . (10)

Since the PSFs K̄ j have been obtained by zero padding from
the original PSFs (whose extent can be smaller than S ), the
weighting function ᾱ can be zero in several pixels and, in the
same pixels, the sum at the r.h.s. of this equation is also zero.
It follows that, in these pixels, the values of the object are not
determined by Eq. (10). We can decide to set these values to
zero. More generally we can decide to set to zero the values
of the object in the pixels where the weighting function ᾱ is
too small. Therefore we can search for solutions satisfying this
constraint.

As in Bertero & Boccacci (2005) we define a reconstruction
domain R ⊃ S as follows: consider a threshold σ < 1, then R
is the set where ᾱ/p > σ (we can take, for instance, σ = 10−2

or even smaller). It is obvious that R depends on σ but, for
simplicity, we omit this dependence. The zeroing of f̄ outside R
can be obtained by introducing the following window:

w̄R
(
n′
)
=

{ p
ᾱ(n′) , if ᾱ(n′)

p > σ,

0, otherwise,
(11)

which is approximately 1 in the central part of S , and by mod-
ifying Eq. (10) in the following way:

f̄ =
1
p
w̄R f̄

⎛⎜⎜⎜⎜⎜⎜⎝
p∑

j=1

ĀT
j

ḡ j

Ā j f̄ + b̄ j

⎞⎟⎟⎟⎟⎟⎟⎠ . (12)

If we look at this relation as a fixed point equation, then RLM
can be formally obtained by applying the method of successive
approximations. The result is as follows:

f̄ (k+1)
=

1
p
w̄R f̄ (k)

⎛⎜⎜⎜⎜⎜⎜⎝
p∑

j=1

ĀT
j

ḡ j

Ā j f̄ (k)
+ b̄ j

⎞⎟⎟⎟⎟⎟⎟⎠ , (13)

and all the iterates are automatically zero outside R. Moreover,
in order to extract one specific minimum of I( f̄ |ḡ), we take it
as a rule to initialize the iterations with a constant array.

As already observed, if the background is not zero, then the
denominator is never zero and the quotient is zero outside S
thanks to the numerator. However, if the background is zero,
then the term Ā j f̄ (k)

can be zero in pixels outside S , as an effect
of the zero padding of the PSFs. In such a case, it is possible to
avoid the undefined quotient 0/0 by writing the algorithm as in
Eq. (13), with the background replaced by the mask of the set
R̄ = S̄ − R, i.e. the array that is 0 over R and 1 outside.

Equation (13) extends the method proposed in Bertero &
Boccacci (2005) to the problem of multiple-image deconvo-
lution. However, before introducing the OSEM algorithm for
faster implementation of this method, we discuss one normal-
ization problem.

From Eq. (13) it is easy to show by means of standard ar-
guments that, if b̄ j = 0 for any j, then all the iterates satisfy the
condition:

1
p

∑
n′∈R
ᾱ(n′) f̄ (k)

(n′) =
1
p

p∑
j=1

∑
n∈S
g j(n). (14)

The interpretation of this relation is the following: ᾱ(n′)/p
gives the fraction of photons emitted at pixel n′, which con-
tributes to the average flux of the detected images. When the
backgrounds are not zero, the iterates do not satisfy this condi-
tion but they approximately satisfy a similar one that is ob-
tained by replacing the l.h.s. of Eq. (14) with the following
quantity:

c =
1
p

p∑
j=1

∑
n∈S

{
g j(n) − b j(n)

}
. (15)

Therefore it is convenient to minimize the functional of Eq. (4)
with the additional constraint:

1
p

∑
n′∈R
ᾱ(n′) f̄

(
n′
)
= c. (16)
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As shown by Lanteri et al. (2002) in a more general context,
this constraint can be introduced by re-normalizing the result
of each RLM iteration. Such an approach can be very useful,
especially in the case of OSEM, in order to reduce possible os-
cillations of the iterates. Indeed, OSEM is formulated in terms
of cycles over the p images, each element of a cycle being
a single-image RLM iteration.

The version of the OSEM algorithm, implementing the
method for the reduction of the boundary effects, written in the
form given in Anconelli et al. (2005) is as follows.

Preprocessing step

– Compute the flux constant c defined in Eq. (15).
– For j = 1, ...p compute the windows functions w̄R, j de-

fined by:

w̄R, j
(
n′
)
=

{ 1
ᾱ j(n′) , if n′ ∈ R,

0, otherwise.
(17)

Reconstruction step

– Initialize the algorithm with f (0) = const., satisfying the
constraint of Eq. (16).

– Given f̄
(k)

, set j = (k + 1) mod p, and compute:

f̃ (k+1) = w̄R, j f̄
(k)

⎛⎜⎜⎜⎜⎜⎜⎝ĀT
j

ḡ j

Ā j f̄ (k)
+ b̄ j

⎞⎟⎟⎟⎟⎟⎟⎠ , (18)

c̃(k+1) =
1
p

∑
n′∈R
ᾱ
(
n′
)
f̃

(k+1)
(n′);

– Set:

f̄
(k+1)
=

c

c̃(k+1)
f̃

(k+1)
. (19)

All the algorithms derived in this section will be available in
the software package AIRY, version 3.1.

3. Regularized RLM and OSEM

From the analysis in the previous section, it is clear that the
object is reconstructed only inside the domain R; therefore, the
method provides the minimization of the functional that is ob-
tained from that of Eq. (4) by neglecting the contribution of
the components of f̄ corresponding to pixels outside R. If we
do not omit the dependence of the functional on these compo-
nents for computational reasons, then it must be written in the
following way:

I( f̄ |ḡ) =
p∑

j=1

∑
n∈S̄

⎧⎪⎪⎨⎪⎪⎩ḡ j(n)ln
ḡ j(n)(

Ā jMR f̄
)

(n) + b̄ j(n)

+MS (n)
[(

Ā jMR f̄
)

(n) + b̄ j(n) − ḡ j(n)
] ⎫⎪⎪⎬⎪⎪⎭, (20)

where MR is the mask of the reconstruction domain, namely
the array that is 1 inside R and 0 outside. In the RLM and
OSEM algorithms, as described in the previous section, we can
omit MR in the computation of A jMR f̄ (k)

, because the multi-

plicative structure of the algorithms guarantees that f̄ (k)
is zero

outside R.

The previous expression of I( f̄ |ḡ) is useful in view of the
development of regularized versions of RLM and OSEM. In
such a case the problem becomes the minimization of the fol-
lowing functional:

Jµ
(
f̄
∣∣∣ḡ) = I

(
f̄
∣∣∣ḡ) + µΩ (MR f̄

)
, (21)

where the first term is that defined in Eq. (20) and the second
one is the regularization functional; µ is the regularization pa-
rameter. Since this functional does not depend on the compo-
nents of f̄ corresponding to pixels outside R, the corresponding
components of the gradient are zero. As a consequence, we can
write the gradient of the first term in the following form, de-
rived from Eq. (7):

∇ f̄ I
(

f̄
∣∣∣ḡ) = −MR

⎛⎜⎜⎜⎜⎜⎜⎝
p∑

j=1

ĀT
j

ḡ j

Ā jMR f̄ + b̄ j

⎞⎟⎟⎟⎟⎟⎟⎠
+MRᾱ. (22)

We note that this is given by the difference of two non-negative
arrays. Then, according to the split gradient method (SGM),
proposed by Lanteri et al. (2001, 2002), we write the gradient
of the regularization functional in a similar way:

∇ f̄Ω
(
MR f̄
)
= −MRUΩ

(
MR f̄
)
+ MRVΩ

(
MR f̄
)
, (23)

where UΩ(MR f̄ ) and VΩ(MR f̄ ) are two non-negative arrays. It
is obvious that such a decomposition always exists even if it is
not unique. Moreover, as shown in the above mentioned papers,
realizations of the arrays UΩ,VΩ can be computed easily for all
the regularization functionals used in practice. For instance, in
the case of the well-known Tikhonov functional

Ω
(
MR f̄
)
=

1
2

∣∣∣∣∣∣MR f̄
∣∣∣∣∣∣2 , (24)

we have

UΩ
(
MR f̄
)
= 0, VΩ

(
MR f̄
)
= MR f̄ , (25)

since we are considering the restriction of the functional to the
cone of the non-negative arrays.

In terms of the previous expressions, the first KTC
becomes:

MR f̄

⎧⎪⎪⎪⎨⎪⎪⎪⎩
p∑

j=1

ĀT
j

ḡ j

Ā jMR f̄ + b̄ j
+ µUΩ

(
MR f̄
)⎫⎪⎪⎪⎬⎪⎪⎪⎭ =

MR f̄
{
ᾱ + µVΩ

(
MR f̄
)}
. (26)

Then, if we note that inside R we can divide both sides of this
equation by ᾱ, we obtain the following expression in terms of
the window function of Eq. (11)

1
p
w̄R f̄

⎧⎪⎪⎪⎨⎪⎪⎪⎩
p∑

j=1

ĀT
j

ḡ j

Ā j f̄ + b̄ j
+ µUΩ

(
f̄
)⎫⎪⎪⎪⎬⎪⎪⎪⎭ =

f̄
{

I +
µ

p
w̄RVΩ

(
f̄
)}
, (27)

where we do not indicate the mask MR because the factor w̄R

automatically implies that each f̄ that satisfies this condition is
zero outside R.
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If we divide both sides of Eq. (27) by the positive array
I + µp w̄RVΩ( f̄ ), we obtain a fixed-point equation that is a gen-
eralization of that of Eq. (12). Then, by applying the method
of successive approximations, we get the regularized version
of the RLM algorithm for multiple-image deconvolution with
reduction of the boundary effects:

f̄ (k+1)
=

1
p
w̄R

f̄ (k)

I + µp w̄RVΩ
(

f̄ (k))

×
⎧⎪⎪⎪⎨⎪⎪⎪⎩

p∑
j=1

ĀT
j

ḡ j

Ā j f̄ (k)
+ b̄ j

+ µUΩ
(

f̄ (k))
⎫⎪⎪⎪⎬⎪⎪⎪⎭ . (28)

Again, the OSEM method is obtained by replacing one
multiple-image RLM iteration by a cycle of p single-image
iterations:

f̄ (k+1)
= w̄R, j

f̄ (k)

I + µw̄R, jVΩ
(

f̄
(k))

×
⎧⎪⎪⎨⎪⎪⎩ĀT

j

ḡ j

Ā j f̄
(k)
+ b̄ j

+
µ

p
UΩ
(
f̄ (k))⎫⎪⎪⎬⎪⎪⎭ , (29)

where j = k+1 mod p. We do not write the complete algorithm
because it can be easily deduced from the one given at the end
of Sect. 2.

4. Multiple-image ISRA

As already remarked in Bertero & Boccacci (2005), the method
based on the immersion, by zero padding, of the detected image
into broader arrays can also be applied to least-squares (LS)
iterative methods. However, in such a case, the increase in the
computational cost is due not only to the increased size of the
images to be processed but also to the increase in the number
of FFTs per iteration. We discuss this point below.

The application of our approach to the Landweber method
has been already discussed by Vio et al. (2005). Here we con-
sider the application to ISRA. For generality, we give the equa-
tions in the multiple-image case but, of course, the reduction to
the single-image case is obvious.

The starting point is the minimization of the well-known
discrepancy functional

I
(

f̄
∣∣∣ḡ) =

p∑
j=1

∣∣∣∣
∣∣∣∣MS

(
Ā j f̄ + b̄ j

)
− ḡ j

∣∣∣∣
∣∣∣∣2 , (30)

where the notations introduced in the previous sections are used
and ||.|| denotes the usual Euclidean norm of 2N × 2N arrays.
We notice that only the terms Ā j f̄ + b̄ j are multiplied by the
mask MS , because MS ḡ j = ḡ j for any j.

Since we are again considering minimization onto the
non-negative cone, the KTCs provide the necessary and suf-
ficient conditions to be satisfied by the minimum points. By
taking into account that the gradient of the functional is
given by:

∇ f̄ I
(

f̄
∣∣∣ḡ) = 2

p∑
j=1

{
ĀT

j MS Ā j f̄ − ĀT
j

(
ḡ j − MS b̄ j

) }
, (31)

the first KTC provides the following equation for the non-
negative minima:

f̄
p∑

j=1

ĀT
j

(
MS Ā j f̄ + MS b̄ j

)
= f̄

p∑
j=1

ĀT
j ḡ j. (32)

In order to write this condition as a fixed-point equation, we
have to face a difficulty similar to the one discussed in the case
of Eq. (10). Indeed, since the PSFs K̄ j have been obtained by
zero padding, the sums appearing on both sides of Eq. (32) can
be zero in pixels outside S and, in these pixels, the object f̄ is
not determined. In other words, we again have the problem of
defining a reconstruction domain R ⊃ S .

This domain can be obtained by a suitable thresholding,
outside S , of the sum on the r.h.s. of Eq. (32). If we denote the
average flux per pixel by c̄

c̄ =
1

N2

p∑
j=1

∑
n∈S
g j(n), (33)

then given σ < 1, we define R as the union of S and of the
pixels outside S where the following condition is satisfied:

p∑
j=1

ĀT
j ḡ j(n) > σc̄. (34)

With this definition of the reconstruction domain R, we can de-
rive the following fixed-point equation from Eq. (32):

f̄ = f̄
MR
∑p

j=1 ĀT
j ḡ j∑p

j=1 ĀT
j

(
MS Ā j f̄ + MS b̄ j

) , (35)

where MR again denotes the mask of R. Then ISRA can be
obtained by applying the successive approximation method to
this equation. The result is the following:

f̄
(k+1)
= f̄

(k) MR
∑p

j=1 ĀT
j ḡ j∑p

j=1 ĀT
j

(
MS Ā j f̄ (k)

+ MS b̄ j

) · (36)

Since the denominator is computed in all the pixels of S̄ and
it can be zero in pixels outside S , we have a similar prob-
lem to the one already discussed in the case of RLM with
zero background. Therefore, for algorithmic reasons, and in or-
der to avoid undetermined forms 0/0 outside R, we can add the
mask of the domain R̄ = S̄ − R to the denominator.

Also in the case of ISRA, it is convenient to normalize
the result of each iteration; moreover, the OS-version is rec-
ommended in order to reduce the computational burden. The
complete version of OS-ISRA is as follows:

Preprocessing step

– Compute the flux constant c defined in Eq. (15).
– Compute the mask MR of the reconstruction domain by

means of Eq. (34).

Reconstruction step

– Initialize the algorithm with f (0) = const., satisfying the
constraint of Eq. (16).



1222 B. Anconelli et al.: Reconstruction of LINC-NIRVANA images

Fig. 1. The object used in our simulations (left) and one of the images
obtained by convolving the object with one of the PSFs used in our
numerical experiments (relative parallactic angle = 0◦, SR = 26%),
and perturbing the result with Poisson and Gaussian noise (right).

– Given f̄ (k)
, set j = (k + 1) mod p, and compute:

f̃ (k+1) = f̄ (k) MRĀT
j ḡ j

ĀT
j

(
MS Ā j f̄ (k)

+ MS b̄ j

)
+ MR̄

, (37)

c̃(k+1) =
1
p

∑
n′∈R
ᾱ(n′) f̃

(k+1)
(n′);

– Set:

f̄ (k+1)
=

c
c̃(k+1)

f̃
(k+1)
. (38)

The reduction of the boundary effects is due to the inser-
tion of the mask MS in the algorithm. However, this mask
increases the computational burden of ISRA. Indeed, one it-
eration of the standard version of ISRA requires the com-
putation of 2 FFTs, hence, is cheaper than one iteration of
RLM, that requires 4 FFTs. On the other hand, the computa-
tion of ĀT

j MS Ā j requires 4 FFTs; therefore, the computational
cost of 1 OS-ISRA iteration with boundary effects reduction is
just the same as one OSEM iteration.

5. A numerical example

In the previous sections we described several generalizations
of the method proposed in Bertero & Boccacci (2005) for the
reduction of boundary effects in image deconvolution. In this
section we discuss an application of the modified OSEM algo-
rithm to simulated images of LINC-NIRVANA.

The object considered is the 256 × 256 HST image of the
nebula NGC 7027, shown in the left panel of Fig. 1. The images
were generated according to the model described, for instance,
in Anconelli et al. (2005): the object was convolved with the
simulated PSFs, sky backgrounds were added, and the results
were perturbed with Poisson and Gaussian noise.

We first describe the three sets of PSFs used in our numer-
ical experiments. All consist of three PSFs corresponding to
three different orientations of the baseline with respect to the
observed object (relative parallactic angle): 0◦, 60◦, and 120◦.
The first set consists of ideal PSFs (not displayed), the sec-
ond of AO-corrected PSFs with SR = 70%, and the third of
AO corrected PSFs with SR = 26%. These PSFs were obtained
by means of the software package CAOS (Code for Adaptive
Optics Systems; Carbillet et al. 2005), according to the model

Fig. 2. The AO-corrected PSFs used in our simulations (logarithmic
scale): in the left column the PSFs with Strehl ratio of about 70% and
in the right column those with Strehl ration of about 26%, for baseline
orientations of 0◦, 60◦, and 120◦ (top to bottom).

already described in Carbillet et al. (2002) and Anconelli et al.
(2005). The two sets of AO-corrected PSFs are displayed in
Fig. 2: those with SR = 70% to the left and the others to
the right.

Next, simulated 256 × 256 LINC-NIRVANA images were
obtained by convolving the object, whose integrated magni-
tude in K-band was fixed to 15, with the PSFs of the three
sets described above. For the pixel size we assumed the value
of the LINC-NIRVANA detector, namely 5.12 mas. Moreover,
the following parameters were used in image generation: an
integration time of 20 min, a telescope surface of 104 m2,
a sky background of 12.5 mag/arcsec2 (K band), a read out
noise (RON) of 10 e− rms, and an efficiency of 25%.

In a first set of experiments, we deconvolved the images
by means of the same sets of PSFs used for their generation
(inverse crime). Moreover each experiment, one for each set of
PSFs, consisted of two parts:

– reconstruction of the complete 256 × 256 object using
the standard version of OSEM from the software pack-
age AIRY; the result is a reference image that can be
used for estimating the reduction of the boundary effects
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Fig. 3. Example of application of the method (inverse crime). In the
left column we display the reconstructions obtained by deconvolv-
ing the complete images by means of standard OSEM and in the
right column those obtained as a mosaic of the reconstructions of the
four quadrants, as provided by the version of OSEM with reduction of
the boundary effects. From top to bottom: ideal PSFs, AO-corrected
PSFs with SR = 70% and with SR = 26%.

provided by our method when it is used for reconstructing
only a piece of this image;

– splitting of each image into four non-overlapping quadrants
128 × 128, reconstruction of each of them by means of the
modified OSEM of Sect. 2, and finally, recombination of
the four reconstructions (mosaic) to provide a reconstruc-
tion of the complete object; in this way it is possible to
visualize the relevance of the boundary effects.

The results of these experiments are shown in Fig. 3.
In the upper panels we display the results obtained in the

case of ideal PSFs. In the left panel we give the reconstruction
obtained by deconvolving the full images; the minimum recon-
struction error is about 0.5%, and it is reached after 116 itera-
tions (semi-convergence property of RLM or OSEM; see, for
instance, Bertero & Boccacci 1998). The reconstruction error
was defined as the relative rms difference between the result of
iteration k, f (k), and the original object f :

ρ(k) =

∣∣∣∣
∣∣∣∣ f (k) − f

∣∣∣∣
∣∣∣∣

|| f || · (39)

Moreover, in the right panel we give the reconstruction ob-
tained as a mosaic of the four reconstructions provided by
the algorithm of Sect. 2, when applied to the four 128 × 128
quadrants of the detected images. For each quadrant we used
115 iterations and the reconstruction error, computed on the full
256 × 256 image, is about 0.6%. This numerical result agrees
with the fact that no visible difference exists between the left
and right panels.

The situation is a bit different in the case of AO-corrected
PSFs. In the middle panels we give the two reconstructions
(global and mosaic) obtained in the case of PSFs with SR =
70% and in the lower panels those obtained in the case of
the PSFs with SR = 26%. For each set of PSFs, the differ-
ence between the two different reconstructions is visible and
increases with decreasing SR; this means that the reduction of
boundary effects, provided by the method, is more significant in
the case of ideal PSFs than in the case of AO-corrected PSFs.
The reason may be that the ideal PSFs are symmetric, while
the AO-corrected ones are not, and the symmetry breaking in-
creases with decreasing SR.

More quantitative results are the following. In the case of
SR = 70%, the best global reconstruction was obtained after
120 iterations with a reconstruction error of about 0.7%, while
in the case SR = 26% the best reconstruction was obtained af-
ter 51 iterations with an error of about 3.5%. Moreover, in the
first case, the best mosaic is obtained after 79 iterations with an
error of about 1.9%, while, in the second case, the best mosaic
was obtained after 30 iterations with an error of about 5.5%.

In the last experiment we checked the robustness of the
method with respect to errors on the PSFs. To this pur-
pose we generated the images by convolving the object with
AO-corrected PSFs (SR = 70%), and these images were sub-
sequently deconvolved by using ideal PSFs. This experiment
mimics a situation where the PSFs, corresponding to a high SR,
are not known so one uses ideal PSFs for reconstructing the ob-
ject. The result is shown in Fig. 4: in the left panel the global
reconstruction is displayed, while the right panel shows the one
obtained as a mosaic of the reconstructions of the four pan-
els. In the first case the reconstruction error was 2.1% and was
reached after 116 iterations; in the second case the reconstruc-
tion error was 2.2% and was reached after 110 iterations.

6. Concluding remarks and perspectives

In this paper we extend the method proposed in Bertero &
Boccacci (2005) for the reduction of boundary effects in image
reconstruction to multiple-image deconvolution. The method
is based on the idea of also reconstructing the object outside
the domain of the detected images, while its implementation is
based on the immersion by zero padding of the detected images
N × N into broader ones, typically 2N × 2N. A few numerical
experiments indicate that the method also works well in the
case of multiple images of the same object and that it is robust
with respect to errors in the PSFs used for the deconvolution.

The numerical experiments were performed with 128 ×
128 images. However, it must be observed that the detector
of LINC-NIRVANA will produce 2048 × 2048 images and, in
such a situation, it may not be convenient to double the size
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Fig. 4. Example of the application of the method without inverse
crime. Convolution was performed with the AO-corrected PSFs (SR =
70%) and deconvolution with ideal PSFs. Left panel: reconstruction
obtained by deconvolving the complete images by means of standard
OSEM. Right panel: mosaic of the reconstructions of the four quad-
rants, as provided by the version of OSEM with reduction of the
boundary effects.

of the images by zero padding as required in the version of
the method presented in this paper. Moreover the domain of
the PSFs will be much smaller than 2048 × 2048. For such big
images the immersion should be in an array that is not much
greater than the original one with a size that cannot be a power
of 2. For instance, if the image is an N × N array and if the
PSF is a 2M × 2M array, then the immersion should be in an
array (N + M) × (N + M). However, as is known, if the size
of the array has a small prime factor, then the library FFTW
(Fastest Fourier Transform in the West) could provide an effi-
cient FFT. In the case of LINC-NIRVANA images, the closest
array satisfying these conditions has a size 2187 = (37), which
is compatible with a 278 × 278 array for the PSFs.

An alternative could be provided by a deconvolution based
on a domain decomposition of the images (Fish et al. 1996;
Aubailly et al. 2004). This approach could also be required if
the space variance of the PSFs is relevant. In general overlap-
ping sub-domains are used, and only the reconstructions ob-
tained in the central parts are kept, in order to reduce the bound-
ary artifacts provided by the standard deconvolution methods.
As shown by our numerical experiments, our method could be
efficiently applied to each sub-domain, and since the boundary
artifacts are considerably reduced by the method itself, slightly
overlapping sub-domains could be used. Therefore we think
that our approach can provide efficient deconvolution of large
images. It is also obvious that a deconvolution based on a do-
main decomposition can be implemented easily on a multi-
processor system.
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