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Abstract. In the framework of the methods we introduced for the restoration of images of Fizeau interferometers such as the
Large Binocular Telescope, we propose an algorithm which is able to super-resolve compact stellar objects such as a binary
system with an angular separation smaller than the angular resolution of the telescope. The method, which works also in the
case of a monolithic mirror, is based on a simple modification of the Richardson-Lucy (RL) method or of the Ordered Subsets –
Expectation Maximization (OS-EM) method for image deconvolution. In general, it consists of three steps: the first one requires
a large number of RL-iterations, which are used to identify and estimate the domain of the unresolved object; the second one
is a RL-restoration initialized with the mask of the domain. These two steps can provide a super-resolved image of the stellar
system but the photometry of the stars may not be correct. Therefore their positions are derived from the result of the first two
steps while their magnitudes are estimated in a third step by solving a simple least-squares problem. In order to show that the
method can work in practice, we use (simulated) adaptive-optics-corrected point spread functions (PSF), both in the case of
a monolithic and in the case of a binocular telescope, and we investigate mainly the case of binary systems. We analyze the
limitations of the method in evaluating the angular separation and the relative magnitude of the two stars. The results we obtain
are quite promising.
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1. Introduction

In two previous papers (Correia et al. 2002; Carbillet et al.
2002) we present the Software Package AIRY (Astronomical
Image Restoration in interferometrY), implementing methods
for the simulation, reconstruction and analysis of Fizeau in-
terferometric images, as well as its application to the case
study of the Large Binocular Telescope (LBT). In a third
paper (Anconelli et al. 2005) we propose accelerated ver-
sions of these methods which allow their use as quick-
look methods to be routinely used for data reduction. The
quick-look image then can be used to investigate the ob-
ject and extract information for improved reconstruction. A
first example of this two-step approach is given in Correia
et al. (2002) where we sketch a possible method for the
super-resolved reconstruction of binary systems. In this pa-
per we generalize and validate this method; the imple-
mented algorithms have been inserted in the Software Package
AIRY, version 2.0 (see http://dirac.disi.unige.it and
http://www.arcetri.astro.it/caos).

In astronomy and microscopy, super-resolution is a term
which, in general, is used to indicate any method able to

improve resolution beyond the diffraction limit. In the case of
a telescope with a single mirror of diameter D, perfect optics
and no atmosphere, this limit is approximately given by λ/D,
where λ is the wavelength of the observed radiation; in the case
of interferometers such as LBT, it is given by λ/B, where B is
the maximum baseline. The idea of overcoming such a limit
with a suitable processing of the detected images is an old one
and dates back to papers by Toraldo di Francia (1955), Wolter
(1961), Harris (1964), McCutchen (1967), Rushforth & Harris
(1968) and others.

Resolution beyond the diffraction limit requires the extrap-
olation of the Fourier transform of the object outside the band
of the optical instrument and, as remarked in the papers by
Wolter and Harris mentioned above, this is possible if the ob-
ject has a finite extent. Since the extrapolation problem is ill-
posed (in practice, very sensitive to noise propagation from the
data to the solution), unlimited super-resolution is impossible
in the presence of noise. A first attempt at estimating how much
super-resolution can be achieved in practice was developed in
Bertero & Pike (1982), where it is shown that the amount of
super-resolution is basically controlled by two parameters: the
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space-bandwidth product (SBP) and the signal-to-noise ratio
(SNR). In the case of a telescope the SBP is approximately
given by the ratio between the angular diameter of the object
and the diffraction limit; then the results derived in the paper
mentioned above imply that super-resolution is feasible when
this parameter is not much greater than one, namely in the
case of compact and unresolved objects. On the other hand the
amount of super-resolution increases with increasing SNR. An
estimate in terms of the photon flux is given by Lucy (1992a,b).
A survey of the mathematical foundations of super-resolution is
given in Bertero & De Mol (1996) (see also Bertero & Boccacci
1998).

According to the previous remarks, the development of a
super-resolving method requires an estimate of the domain D
of the object, to be used as a constraint in the restoration al-
gorithm so that the total flux of the restored object is concen-
trated within D. In addition, it has been claimed by other au-
thors that other constraints may provide super-resolution. One
is non-negativity, which is implemented, for instance, in the
maximum entropy method. However, it has been proved that
maximum entropy provides super-resolution in the case of the
so-called nearly black objects, i.e. objects that are zero in the
vast majority of the pixels (Donoho et al. 1992). In general,
non-negativity works well when combined with the sparsity of
the object, as shown by Donoho (1992). It is also known that
the restoration of a sparse object is stable with respect to noise
if the restoration algorithm implements a constraint on the total
flux of the object.

The frequently used RL method (Richardson 1972; Lucy
1974), also known in emission tomography as the Expectation
Maximization (EM) method (Shepp & Vardi 1982), imple-
ments in a quite natural way both the constraint of non-
negativity and that on the total flux of the image. Moreover
it implements also the constraint on the domain of the ob-
ject if a suitable initialization of the iterations is used. The
same remarks apply to the OS-EM method (Hudson & Larkin
1994) we have extended to LBT imaging (Bertero & Boccacci
2000a,b). Therefore these methods provide algorithms imple-
menting all the relevant constraints and they appear quite suit-
able for estimating the amount of super-resolution achievable
in practical situations.

In Sect. 2 we introduce the algorithm proposed in this paper
and based on RL-like methods. In Sect. 3 we describe the sim-
ulation of the PSFs and their correction due to adaptive optics
(AO), together with the generation of the simulated images of
binary systems. In Sect. 4 we give the results obtained with the
proposed algorithm both in the case of a monolithic mirror and
in the case of an interferometer such as LBT. Possible applica-
tions and perspectives of the method are discussed in Sect. 5.

2. The super-resolving algorithm

The proposed super-resolving algorithm is based on the RL
method in the monolithic case and on the OS-EM method in the
LBT case (the version of these methods, implemented in AIRY,
is given in Anconelli et al. 2005). It is a two-steps algorithm,
each step consisting of RL or OS-EM iterations. Moreover we

introduce a third step which may be required to estimate the
correct photometry of stellar systems such as binaries.

The basic property of the RL and OS-EM methods, which
allows their use as super-resolving algorithms, derives from the
fact that the result of one iteration contains as a factor the result
of the previous one; therefore, if the initial guess is zero at a
given pixel, then the result of all the iterations will be zero at
that pixel. We call such a property the localization property of
these methods, in the sense that we can constrain the object to
be localized in a given domainD by a suitable initialization of
the iterations, namely a function which is constant overD and
zero elsewhere.

Our approach to super-resolution applies to the case where
the astronomical target consists of unresolved objects (angular
size of the order of the diffraction limit) separated by an
angle considerably greater than the diffraction limit (sparsity
condition), so that there is no overlapping of their images. For
simplicity we assume that there is only one of these unresolved
objects, surrounded by empty sky. Then the approach consists
of the following steps.

Step 1 - Apply the RL or OS-EM method to the detected im-
ages, using a constant array as initial guess and a number of
iterations such that the restored object is sufficiently well lo-
calized. If the angular separation is not much smaller than the
diffraction limit and the magnitude difference is small, it may
happen, in the case of a binary, that the two stars are already
resolved in this first step. In such a case one can estimate their
positions by computing the centroids and go directly to Step 3
for a more accurate estimate of their magnitudes.

If the two stars are not resolved, then go to Step 2.

Step 2 - Define the domain D of the object by identifying the
pixels where the flux of the result of Step 1 is greater than a
selected threshold (for instance some percent of its maximum
value); alternatively one can take a disc with a diameter equal
to the diffraction limit and containing most of the flux of the
reconstructed object.
Apply again the RL or OS-EM method to the detected images,
but now initialized with the mask of the domain, namely a func-
tion which is constant over the domain and zero elsewhere.
Each iterate is localized in the selected domain; if, after a num-
ber of iterations, the two stars are separated, their positions are
obtained by computing their centroids.

To illustrate the method, we show an example of its ap-
plication in Fig. 1. The parameters used in the simulation are
described in Sect. 3. The object, shown in the upper-left panel,
consists of two unresolved binaries, the angular separation of
each binary being about 1/3 of the diffraction limit while the
angular separation of the centres of the two stars is about 2/3
of the diffraction limit. In each binary the difference in mag-
nitude is zero, while the difference in magnitude between the
two binaries is 0.5. The images were generated by convolving
the object with three ideal LBT PSFs, corresponding to equally
spaced parallactic angles (0◦, 60◦, and 120◦), and by perturb-
ing the result with photon and read-out noise. For the first step
we selected 1000 OS-EM iterations initialized with a uniform
array; the result is shown in the upper-right panel of Fig. 1.
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Fig. 1. Upper-left panel: the object; upper-right: the reconstruction af-
ter 1000 OS-EM iterations (first step); lower-left: the mask obtained
with a thresholding of the previous reconstruction (50% of the maxi-
mum value); lower-right: the restoration after 1000 OS-EM iterations,
initialized with the previous mask (second step). The diameter of the
circle shown in each picture is λ/B.

The two binaries are resolved but not the stars within each bi-
nary. Then a mask was estimated by selecting the pixels where
the flux is greater than 50 % of the maximum value of the re-
stored image; the result is shown in the lower-left panel. Finally
this mask is used for re-initializing OS-EM and the result is
shown in the lower-right panel. The two binaries are clearly
resolved. In this case also the magnitudes are obtained with a
sufficient accuracy (few percent errors), as the angular separa-
tions.

However, in our numerical simulations on binary systems
we have verified that, when there is a significant difference of
magnitudes between the two stars, these may not be correctly
estimated at the end of the second step, while their angular po-
sitions are, in general, correctly estimated. In order to overcome
this difficulty we propose the following third step.

Step 3 - Let us assume, in general, that the restored object, pro-
vided by Step 1 or Step 2, consists of q stars localized at the
pixels P1, P2, ..., Pq. We denote by K(i)

j ( j = 1, ..., p) the PSFs
centered at Pi and given by:

K(i) = K ∗ δ(Pi) , (1)

where δ(Pi) is the characteristic function of the pixel, i.e. it
is one at pixel Pi and zero elsewhere. Then we introduce the
images:

g j,c =

q∑

i=1

ci K(i)
j , (2)

depending on the unknown parameters c = {c1, c2, ..., cq}.
These are determined by means of a least-squares method,
namely by minimizing the discrepancy:

∆(c) =

√√√ p∑

j=1

||g j,c − g j||22 , (3)

where ||.||2 denotes the usual Euclidean norm.

3. Image generation

In our numerical simulations we consider the case of LBT
both in its “first-light” scheme (one pupil of 8.25 m effective
diameter), and in its “second-light” scheme (two pupils sepa-
rated by 14.4 m and recombined interferometrically in a Fizeau
way). The first scheme implies the simulation of the first-light
AO system of LBT (Esposito et al. 2003), while the second
scheme is to be considered within the framework of the LINC-
NIRVANA instrument (Ragazzoni et al. 2003; Herbts et al.
2003). The main features of both systems are the use of pyra-
mid wavefront sensors and the LBT 672 adaptive secondary
mirror (Riccardi et al. 2003).

The tool employed for numerically simulating the PSFs rel-
ative to the two cases is the Software Package CAOS (Carbillet
et al. 2004) which is used to simulate in detail the whole
process of atmospheric propagation of light, wavefront sens-
ing (with a complete model of the pyramid wavefront sen-
sor), wavefront reconstruction (using the LBT 672 adaptive
secondary mirror modes), and dynamic closing of the loop. In
the case of the interferometric PSFs, the Fizeau recombination
of light, together with the related differential piston error, is
also taken into account.

3.1. The AO-corrected PSFs

A detailed explanation of the method and of the tuning of
the system parameters for the simulation of our AO-corrected
monolithic (one pupil) PSFs can be found in Carbillet et al.
(2003). We will here only briefly recall the main physical pa-
rameters considered for the present case. The multi-layer atmo-
sphere has an average layer velocity of 15 m/s, a total Fried pa-
rameter r0 (@500 nm)= 0.15 cm, a wavefront outer scale L0 =

20 m, and a resulting seeing of roughly 0.5′′. The guide star
considered has an R-band magnitude of 13 and is a K5 spec-
tral type. The sensing band is 600–900 nm (roughly R and the
first part of I) and the average total transmission related to the
sensing is approximately of 40%. Following Carbillet et al.
(2003) the optimum sensor configuration is therefore the one
corresponding to 15×15 sub-apertures, with an exposure time
of 1.67 ms, and 150 LBT 672 modes reconstructed.

Figure 2 shows the resulting K-band PSFs, compared with
the ideal one that would be obtained in case of no perturba-
tions at all from the atmosphere. The on-axis PSF has a Strehl
ratio of ∼79%, while the off-axis PSF is at 15′′ away from it,
with a resulting Strehl ratio of ∼67%. Note that the difference
in Strehl ratio between the two PSFs is highly dependent on
the turbulent layers distribution (the higher the turbulence, the



750 B. Anconelli et al.: Restoration of interferometric images. IV.

Fig. 2. One-pupil AO-corrected K-band PSFs: ideal case (left), on-axis case (middle), and 15′′ off-axis case (right). The total field is 256 ×
0.0025 = 0.64′′ and for rendering purpose the images are shown at the power of 0.2. Note the slight difference in image quality between the
on-axis PSF and the off-axis PSF.

Fig. 3. Interferometric AO-corrected K-band PSFs: ideal case (left), on-axis case (middle), and 15′′ off-axis case (left). The total field is 256 ×
0.001 = 0.256′′ and for rendering purpose the images are shown at the power of 0.2. The difference in image quality between the on-axis PSF
and the off-axis PSF is appreciable. The PSFs shown here correspond to the case of 0◦ parallactic angle. Note that in our simulations we use
two other similar sets at 60◦ and 120◦.

lower the off-axis Strehl ratio). Moreover we assume the op-
timistic case where a reference star is available in the vicinity
of the observed object. This may depend on the detector size.
In principle we require a very large detector because we as-
sume that we have a pixel size of 2.5 mas, which is a consider-
able over-sampling: since the diffraction limit is about 50 mas
(the considered band is K, 2200 nm), we have approximately
20 × 20 pixels within a resolution element. However, as we
discuss in Sect. 5, the required oversampling can be obtained
by a rebinning of the detected images if these are moderately
over-sampled, as it will be in the case of LBT.

Starting from the known performance of the first-light AO
system of LBT (monolithic case explained above), and assum-
ing that at least the single-conjugate phase of LINC-NIRVANA
will have a similar behaviour, the resulting set of interfero-
metric images is then composed from observations at differ-
ent parallactic angles (here 0◦, 60◦, and 120◦), corresponding
to three different moments during the observation night, and
therefore to three different realizations of the turbulent atmo-
sphere. The AO system behaviour is simulated with the same
sets of parameters as for the monolithic case, but with the ad-
ditional effect of a differential piston residual. The pixel size is
1 mas (again about 20×20 pixels within a resolution element,
since the diffraction limit is about 20 mas in K-band). The

resulting Strehl ratio of the on-axis PSF is ∼77% (averaged
over the 3 realizations), while that of the off-axis one (15′′) is
∼66%. Figure 3 shows the resulting interferometric PSFs cor-
responding to a 0◦ parallactic angle.

3.2. Image formation

Sets of binary star images are formed starting from the sum
of two shifted PSFs (see Eq. (1)), centered on the pixels of
the two stars, and weighted with the desired magnitudes. Sky
background emission is then added and the resulting images
are eventually corrupted with Poisson and detector noise. The
overall efficiency taken into account for both the monolithic
8 m PSFs and the interferometric PSFs is 30%. K-band sky
background is 12.5 mag/arcsec2, read-out noise is 2 e− rms, and
dark current noise is neglected. The integration time considered
in both cases is 20 min, and the K-band magnitudes considered
(concerning the binary main component) range from 10 to 17.
In such a situation we can consider the images as dominated
by photon noise, so that the signal-to-noise ratio (SNR) simply
depends on the square root of the number of object photons.
As a consequence the interferometric case shows a SNR im-
provement by a factor of ∼√6 with respect to the monolithic
case, since we are considering two 8m pupils and three different
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a)

b)

c)

Fig. 4. Example of application of the two-step algorithm. The object
is a binary consisting of two stars with angular separation 1

4λ/B (B =
maximum baseline of LBT) and with the same magnitude m = 12;
three interferometric noisy images are generated by convolving the
object with the PSFs with an average Strehl ratio of 66% and are de-
convolved by means of the PSFs with an average Strehl ratio of 77%
(see Fig. 3): a) the original object; b) the restored object obtained after
Step 1; c) the restored object obtained after Step 2.

parallactic angles. Such an improvement corresponds to
roughly 1 mag gain.

4. Numerical results

In this section we validate the super-resolving algorithm pro-
posed in this paper by considering the problem of estimating
the astrometric and photometric parameters of unresolved bi-
nary systems. We consider first the case of a single mirror and
next the interferometric case. We estimate the performance of
the algorithm both when the ideal PSF is used for convolving
and deconvolving the binary (this simulation provides the max-
imum attainable super-resolution for the given SNR) and when
different AO-corrected PSFs are used for convolution and de-
convolution.

After an analysis of a few cases, we decided to use
10 000 RL-iterations in Step 1 and up to 5000 RL-iterations
in Step 2; indeed, in Step 2, the number of iterations depends
on the result of Step 1 and, in some lucky cases can be small

(about 250). In general the analysis of each single case can be
quite heavy from the computational point of view, especially
in the interferometric case (about a factor of 3 in computation
time with respect to the monolithic case). In Fig. 4 we give a
typical result of the two-step algorithm together with the origi-
nal object. The parameters characterizing the numerical experi-
ment are given in the caption. In this case Step 3 is not required.

4.1. The monolithic case

The super-resolution attainable for given values of the obser-
vational parameters (efficiency, integration time, etc.) depends
both on the magnitude of the primary star and on the magni-
tude difference between the two stars. Since a complete anal-
ysis should require the investigation of a very large number
of possible cases, we introduce a number of limitations in the
choice of the parameters.

The first study concerns the limit attainable in angular sep-
aration by assuming that the magnitude difference between the
two stars is zero and that the K-band magnitude of the single
component ranges from 10 to 17. For each of these values we
search for the minimum binary separation allowing for detec-
tion and characterization of the system.

The second study concerns the limit attainable in the mag-
nitude difference ∆m between the two stars by fixing their
angular separation to 1

2λ/D (we think that this is a relevant
value in the potential applications of the method); moreover,
as above, we assume that the magnitude of the primary compo-
nent ranges from 10 to 17. Again, for each value of the primary
magnitude we search for the maximum magnitude difference
allowing detection and characterization of the system.

We consider three different cases, denoted as A, B, and C.
In case A ideal PSFs are used both for convolution (image for-
mation) and deconvolution. Case B and case C concern AO-
corrected PSFs. In case B the observed object (the unresolved
binary system) is also used as the AO guide star while the im-
age of an off-axis point-like reference star is used as the PSF
for deconvolution. This is probably the most common case. We
also consider the case where the image of the AO guide star is
used for deconvolving the binary image (case C), i. e. the role
of the two PSFs is exchanged with respect to case B; such a sit-
uation is realistic when the observed object is fainter than the
reference star in the wavefront sensing band.

4.1.1. Binary separation limit

As stated above, in this simulation study we assume ∆m = 0
and we fix to 10 000 the number of iterations of Step 1; the
number of iterations of Step 2 ranges from 250 to 5000 (iter-
ations are pushed until clear separation of the binary compo-
nents is detected). In cases A and B the mask used in Step 2 is
based on an intensity thresholding of the image reconstructed
in Step 1, while in case C we apply a circular mask of diameter
≤λ/D. This mask suppresses artifacts which may appear out-
side the region of interest (ROI), namely a region with a size of
the order of the resolution limit λ/D. We point out that, since
in all these cases we have ∆m = 0, the first two steps provide
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Table 1. Summary of the results obtained in the case where the mag-
nitude difference between the two stars is zero – monolithic case. Sep.
is the minimum separation, in units of λ/D, allowing for detection and
characterization of the binary system.

Main star Case A Case B Case C
K-band mag. Sep. [λ/D] Sep. [λ/D] Sep. [λ/D]

10 3/20 1/4 1/4
11 3/20 1/4 3/10
12 3/20 3/10 3/10
13 3/20 3/10 3/10
14 3/20 3/10 3/10
15 3/20 3/10 3/10
16 1/4 3/10 3/10
17 1/4 3/5 3/10

both the angular positions and the magnitudes with sufficient
accuracy and Step 3 is not required.

For the search of the minimum separation which can be re-
solved, we consider angular separations which are integer mul-
tiples of the pixel size, so that we have an accuracy of about
one pixel. Since, as indicated in Sect. 3, we have 20 pixels
within a resolution element λ/D, our accuracy is about λ/20D.
Our results are summarized in Table 1.

As follows from this table, the amount of super-resolution
obtained in the ideal case is spectacular but the effect is greatly
reduced by incomplete AO correction, even if rather high AO
corrections are considered in our simulations. Moreover, as is
expected, the effect decreases for increasing magnitudes, be-
cause the SNR is decreasing. We also point out that the differ-
ence between the super-resolution attainable in case B and that
attainable in case C is about one pixel and therefore these two
cases can be considered as equivalent within our accuracy. This
result is reasonable because, as follows from Fig. 1, the differ-
ence between the two PSFs used in these simulations is not
very relevant. A gain of a factor of 4 in resolution, as estimated
in both cases for the brightest binaries, can be considered as
remarkable.

4.1.2. Magnitude difference limit

In this study Step 2 is not necessary in cases A and B, except
for the fainter magnitude (17), while it is always necessary in
case C in order to eliminate artefacts outside the ROI. In all
cases the magnitudes must be estimated by means of Step 3. In
order to reduce computation time we have considered steps of
0.5 mag in the variation of the magnitude difference between
the two stars.

Our results are summarized in Table 2 where the following
notations are used:

– ∆m0 = maximum magnitude difference which can be de-
tected;

– ∆Θr = relative reconstruction error on the angular separa-
tion;

– ∆mr = reconstructed magnitude difference.
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Fig. 5. Behaviour of the maximum magnitude difference ∆m0 which
can be detected as a function of the magnitude m of the main compo-
nent – monolithic case. For the sake of clarity coincident points are
represented with a small horizontal shift.

Moreover in Fig. 5 we plot the behaviour of the magnitude dif-
ference limit as a function of the magnitude of the main com-
ponent, in the three different cases.

Again the best results are obtained in the ideal case, even if
the difference between the three cases is not as significant as in
the previous study concerning angular separation. The reason
probably is that, in this study, we only require an improvement
in resolution by a factor of 2. The maximum difference in mag-
nitude attainable decreases with increasing values of the pri-
mary magnitude, namely with decreasing SNR. Similarly, the
error in estimating the magnitude difference (i.e. the difference
between ∆m0 and ∆mr) increases with decreasing SNR.

The magnitude difference is around 3 for the brightest cases
and is ∼1 even in the case of a binary with a 17th main compo-
nent magnitude (hence corresponding to a binary star combined
magnitude of ∼16.6).

4.2. The interferometric case

In the interferometric case, we follow the same simulation
strategy introduced in the monolithic case. We investigate the
minimum separation attainable in the case where ∆m = 0
and the maximum difference magnitude attainable in the case
where the angular separation is 1

2λ/B, B now being the max-
imum baseline of LBT. Again we consider three cases: A, B,
and C. In case A ideal interferometric PSFs are used both for
convolution (image formation) and deconvolution. In case B
the observed object (the unresolved binary system) is also used
as the AO guide star and therefore images are obtained by con-
volving the object with the PSFs corresponding to a Strehl ratio
of about 77% while the PSFs corresponding to a Strehl ratio of
about 66% are used for deconvolution (see Fig. 3). In case C
the role of the two sets of PSFs is exchanged.
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Table 2. Summary of the results obtained in the case where the angular separation of the two stars is 1
2λ/D. The quantities ∆m0, ∆Θr, and ∆mr

are defined in the text.

main star case A case B case C
K-band mag. ∆m0 ∆Θr ∆mr ∆m0 ∆Θr ∆mr ∆m0 ∆Θr ∆mr

10 3.5 20% 3.75 3 20% 2.8 2.5 20% 2.4
12 3 10% 3.2 2.5 20% 2.5 2.5 15% 3.3
14 2.5 20% 2.5 2.5 20% 2.2 2.5 15% 3.1
15 2.5 20% 2 2 10% 1.5 2 20% 2.7
17 2 20% 1 1 20% 0.4 1 10% 0.4

Table 3. Summary of the results obtained in the case where the mag-
nitude difference between the two stars is zero – interferometric case.
Sep. is the minimum separation obtained in units of λ/B, where B is
the maximum baseline of LBT.

main star Case A Case B Case C
K-band mag. Sep. [λ/B] Sep. [λ/B] Sep. [λ/B]

10 3/20 3/20 3/20
11 3/20 3/20 1/5
12 3/20 3/20 1/4
13 3/20 3/20 1/4
14 3/20 1/4 1/4
15 3/20 1/4 1/4
16 1/5 1/4 1/4
17 1/5 1/4 1/4
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Fig. 6. Behaviour of the maximum magnitude difference limit ∆m
which can be detected as a function of the magnitude m of the main
component – interferometric case. For the sake of clarity coincident
points are represented with a small horizontal shift.

4.2.1. Binary separation limit

As in the monolithic case we perform 10 000 iterations in
Step 1 while the iterations of Step 2 are pushed until clear sepa-
ration of the two stars is obtained. Again Step 3 is not required
and we consider angular separations which are integer multi-
ples of the pixel size. Therefore our accuracy is about λ/20B.
Our numerical results are summarized in Table 3.

These results look even better than those obtained in the
monolithic case, but one must take into account that each im-
age of LBT has a higher SNR than the image of the mono-
lithic case (roughly a factor

√
2) and that we use three images

corresponding to different baselines (see the comment at the
end of Sect. 3). The effect of this higher SNR will be recon-
sidered in connection with the subsequent results. At least for
the brightest binaries, the amount of super-resolution does not
strongly depend on the amount of AO correction and is con-
siderable. As it is obvious, an improvement in resolution by a
factor of about 7 in the case m = 10 is quite surprising; even
if it will not be attained in real observations, it indicates that
LBT can be compatible with a remarkable amount of super-
resolution. This will probably depend also on the orientation
of the binary axis with respect to the observation baselines, as
can be expected from the angular coverage study we made in
Carbillet et al. (2002).

Here one can appreciate the difference between the two
AO-corrected cases, namely B and C. Such a difference (case B
permits a higher amount of super-resolution for medium-high
binary magnitude cases) can be reasonably explained by the
fact that in case B the images correspond to PSFs with a higher
AO correction and therefore intrinsically contain more infor-
mation than those of case C. As also follows from Fig. 2, the
difference between the two PSFs is much more significant than
that observed in the monolithic case.

To be very conservative we can conclude that a gain of a
factor 5 in resolution is clearly attainable in the brightest cases.

4.2.2. Magnitude difference limit

In this simulation study the angular separation is fixed, as indi-
cated above. Moreover we use the same notations introduced in
the monolithic case for the maximum magnitude difference, the
error on angular separation and the reconstructed magnitude
difference. Our numerical results are summarized in Table 4.
Moreover in Fig. 6 we plot the behaviour of the magnitude dif-
ference limit as a function of the magnitude of the main com-
ponent, for the three cases we have considered.

Again we find better results than those obtained in the
monolithic case. However, if we compare the two tables, we
find that in the interferometric case we have an improvement
of about one order of magnitude with respect to the monolithic
case and such an improvement is compatible with the higher
SNR of the interferometric images as discussed at the end of
Sect. 3.

5. Discussion

In this paper we have proposed an algorithm for the super-
resolution of stellar systems, with an application to binary stars.
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Table 4. Summary of the results obtained in the case where the angular separation of the two stars is 1
2λ/B, where B is the maximum baseline

of LBT.

main star case A case B case C
K-band mag. ∆m0 ∆Θr ∆mr ∆m0 ∆Θr ∆mr ∆m0 ∆Θr ∆mr

10 5 20% 3.5 3.5 20% 2 3 22% 2.5
12 4 10% 2.8 3 20% 2 3 22% 2.5
14 3.5 10% 2.5 3 20% 1.8 2.5 22% 2.3
15 3 10% 2.3 2.5 10% 1.7 2.5 22% 2
17 2.5 10% 1.7 2 0% 1.4 1.5 10% 1

From a general point of view we have shown that the well-
known RL algorithm can be used for such a purpose if it is
joined with a suitable initialization of the iterations, namely the
mask of the domain where the unresolved object is localized.

We have shown that, in case of relatively high SNR (small
magnitudes) and relatively high AO correction, a gain of a fac-
tor from 4 to 5 in resolution is clearly attainable. This would
make similar the results from an 8 m telescope, equipped with
a high-order AO system and our deconvolution method, to
a 30 m future telescope, rescaling at least the object magni-
tude because of the obvious differences. In an equivalent man-
ner, this would also allow comparison of a telescope such as
LBT in its interferometric mode to a 100 m Extremely Large
Telescope (ELT), or, more reasonably, to the VLTI with two
Unit Telescopes (UT) and a baseline of ∼50 m, considering
that the limit in resolution for a Michelson interferometer is
typically λ/2B.

However this remark does not mean that we propose Fizeau
interferometers as competitors to the Michelson ones for the
analysis of, for instance, binary systems. We only mean that
an astronomer observing with LBT, hence with a wide field of
view (10′′ in the case of the detector of the beam combiner
LINC-NIRVANA), has a method for investigating whether an
unresolved stellar object in the field has a structure or not and
for attempting a quantitative analysis.

The crucial point in our approach is that it needs an over-
sampling of the data which is not provided by the existing de-
tectors. However, a moderate oversampling will be available
with the detectors designed for the first light of LBT and for
LINC-NIRVANA, as discussed below. Therefore we performed
a numerical experiment in order to verify that the required over-
sampling can be obtained by a suitable rebinning of the images.
The experiment applies to the object of Fig. 1 and consists of
the following steps:

– three LBT images, with a sampling distance of 1 mas, are
generated by convolving the object with ideal PSFs corre-
sponding to 0◦, 60◦, and 120◦;

– the three images are rebinned to 5.12 mas (the sampling
distance of the detector of LINC-NIRVANA in K band) and
then are perturbed with photon and read-out noise;

– the noisy images are now re-rebinned to 1 mas;
– these final images are deconvolved with ideal PSFs.

In the third step the cubic interpolation provided by the stan-
dard IDL routine congrid is used but, of course, more refined
interpolation methods could be devised.

The experiment was successfull, in the sense that the two
binaries were resolved and the accuracy in the estimation of
the astrometric and photometric parameters was still satisfac-
tory. For instance we have a few percent increase of the errors
in the estimation of the angular separations; as concerns the
magnitude difference between the two binaries, we find 0.49 in
the experiment of Fig. 1 and 0.4 in the rebinning experiment,
the correct value being 0.5. Of course our simulation does not
correspond exactly to the real detected images, but it is promis-
ing and therefore we think that a rebinning strategy is a viable
approach in practice.

As an alternative to a numerical rebinning, one could also
consider dithering the data (see e.g. Fruchter & Hook 2001),
although it can be objected that this is probably not necessary
since it does not add information if the images are already sam-
pled well beyond the Nyquist limit. The super-resolution ca-
pabilities come from the fact that the deconvolution algorithm
tries to extrapolate information down to the pixel limit, hence
a numerical rebinning is probably sufficient. A study of these
two techniques, possibly combined to obtain over-sampled data
is beyond the scope of this paper but will soon be the object of
further study.

The results we have derived in the monolithic case could be
applied to observations with the first-light AO system of LBT
together with the near-infrared instrument LUCIFER (Mandel
et al. 2001). Since the pixel size of this instrument is 15 mas
in J, H, K band and since the resolution is 55 mas in K band,
we see that the conditions for applying the rebinning proce-
dure outlined above are satisfied. The same remark applies
to interferometric observations with LINC-NIRVANA in its
single-conjugated AO configuration, since the pixel size will
be 5.12 mas in J, H, K band, with a resolution of 20 mas in
K band.

Another important problem is the PSFs determination, i. e.
the obtention of a suitable reference star for the PSF estimation
and subsequent deconvolution of the scientific images. This
problem could in some cases lower the performances evoked in
this paper. Nevertheless, if a suitable star is not present in the
field of view of the detector, this problem could be addressed by
changing the pointing of the telecope in a reasonable time, as is
done routinely in speckle imaging (see, for instance, Carbillet
et al. 1996; Aristidi et al. 1997) to take images of point-like
sources.

A last crucial point in our approach is the choice of the
mask, which is fundamental for obtaining a good reconstruc-
tion. In the module DEC of the software package AIRY, where
we have implemented our approach, we allow three possible
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choices: a circular mask with diameter equal to the resolution
limit of the telescope; a mask defined by a thresholding of the
image reconstructed in Step 1, the threshold being selected by
the user, and a user-defined mask. The first mask is useful when
artifacts, clearly due to noise amplification, are present outside
the region of interest while the second one requires the choice
of the threshold. No precise rule can be given for this but, in
general, one must look for a threshold between 30 and 50% of
the maximum value of the reconstructed image.
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