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Abstract:11

Numerical simulation of wildland fire spread is useful to predict the loca-12

tions that are likely to burn and to support decision in an operational con-13

text, notably for crisis situations and long-term planning. For short-term,14

the computational time of traditional simulators is too high to be tractable15

over large zones like a country or part of a country, especially for fire danger16

mapping.17

This issue is tackled by emulating the area of the burned surface returned18

after simulation of a fire igniting anywhere in Corsica island and spreading19

freely during one hour, with a wide range of possible environmental input20

conditions. A deep neural network with a hybrid architecture is used to21

account for two types of inputs: the spatial fields describing the surrounding22

landscape and the remaining scalar inputs.23

After training on a large simulation dataset, the network shows a satis-24

factory approximation error on a complementary test dataset with a MAPE25

of 32.8%. The convolutional part is pre-computed and the emulator is de-26

fined as the remaining part of the network, saving significant computational27

time. On a 32-core machine, the emulator has a speed-up factor of several28

thousands compared to the simulator and the overall relationship between29

its inputs and output is consistent with the expected physical behavior of30

fire spread. This reduction in computational time allows the computation31

of one-hour burned area map for the whole island of Corsica in less than a32

minute, opening new application in short-term fire danger mapping.33
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1 Introduction38

A major purpose of mathematical modeling and numerical simulation of39

wildland fire spread across land is to make relevant predictions and sup-40

port long-term to short-term planning of firefighting actions. Fundamen-41

tally, fire spread implies heat transfer at scales of the centimeter, which is42

too computationally intensive to solve in operational conditions. Alterna-43

tively, fire spread modeling can be approached by solving a front-tracking44

problem where we focus on the propagation of the interface between burned45

and not burned areas, aka the fire front, over a 2D domain that represents46

the landscape. The growth of the burned surfaces from their initial state is47

governed by equations involving a model of rate of spread (ROS), that is to48

say the speed at which the flames advance, which is expressed as a function of49

local environmental parameters. Among such solvers, marker methods con-50

sist in discretizing the fire front by means of markers, which evolve in space51

and time according to an underlying fire behavior model that determines the52

speed at which the markers advance as well as other characteristics such as53

reaction intensity. Notable examples of simulators using this method include54
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FARSITE (Finney, 1998), Prometheus (Tymstra, Bryce, Wotton, Taylor,55

& Armitage, 2010), and Phoenix (Tolhurst, Shields, & Chong, 2008), that56

are commonly used in the US, Canada, and Australia, respectively. Alter-57

natively, level-set methods (e.g. Mallet, Keyes, & Fendell, 2009; Rochoux,58

Ricci, Lucor, Cuenot, & Trouvé, 2014) can be used in simulations to track59

the fire front, and other approaches were proposed to model fire spread, such60

as cell-based simulations (e.g. Johnston, Kelso, & Milne, 2008) that adopt a61

raster representation of the burned surface (see Sullivan, 2009b, for a detailed62

review of simulation models). Most of these approaches allow to simulate a63

fire propagating during more than an hour in a computational time of about64

a minute or less.65

Physical models of wildland fire spread (Sullivan, 2009a), more complex66

and typically including heat transfer conservation laws, equations describing67

combustion chemistry, etc. have also been developed. However, their use is68

generally limited to research purposes, because the computational time for69

simulations based on such models is prohibitory in an operational context,70

even more so for large wildfires that may burn during several hours or even71

days and scale up to thousands of hectares.72

Evaluation of simulators of wildland fire spread can be carried out based73

on the comparison of an observed burned surfaces with its simulated counter-74

part. Several evaluation metrics have been proposed in wildland fire research,75

for instance relying on how much the two surfaces intersect (e.g. Duff, Chong,76

& Tolhurst, 2016; Filippi, Mallet, & Nader, 2013), on the distance between77
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the vertices of the two fire perimeters (Duff, Chong, Taylor, & Tolhurst, 2012;78

Fujioka, 2002), or on information regarding the growth of the simulated and79

observed burned surfaces over time (Filippi et al., 2013). These metrics can80

be computed for observed fires, in which case the simulations can make use of81

data known in hindsight, such as fire suppression actions or observed weather82

variables (e.g. Duff et al., 2018; Salis et al., 2016), or be simply based on data83

available at the time of fire start (e.g. Filippi, Mallet, & Nader, 2014). ROS84

models, which may be involved in fire spread simulators, can also be evalu-85

ated based on observations obtained from laboratory or outdoor experiments86

or even from observed wildfires (Cruz & Alexander, 2014).87

Given the complexity of wildland fires, there are significant uncertainty88

sources in modeling that may lead to considerable difficulties in determining89

the most appropriate decisions in an operational context (Thompson, Calkin,90

Scott, & Hand, 2017). In particular, for prediction purposes, there is con-91

siderable input uncertainty, which can refer to a range of possible values for92

a given model parameter or data source, possibly due to the use of weather93

forecasts or difficulty to estimate a single “best” value. In control theory,94

parameter uncertainty can be expressed by means of uncertainty matrices in95

the model (L. Zhou, Tao, Paszke, Stojanovic, & Yang, 2020) to design robust96

control laws (Stojanovic, He, & Zhang, 2020; L. Zhou et al., 2020). The main97

goal of firefighters, once a wildfire has started (i.e. in a “crisis” situation), is98

to control the fire by means of suppression actions. These actions are difficult99

to model, therefore, predictions of wildland fire spread using simulators usu-100
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ally represent free spread (i.e. firefighting actions are not accounted for, but101

non-burnable areas such as water bodies may halt the progression of the fire102

front). Uncertainty can still be accounted for in such predictions, usually by103

propagating the probability distributions of the uncertain inputs following a104

Monte Carlo (MC) approach, resulting in an ensemble of fire spread simu-105

lations (e.g. Allaire, Filippi, & Mallet, 2020; Finney, Grenfell, et al., 2011;106

M.S. Pinto et al., 2016).107

There are several possible applications of simulators of wildland fire spread108

in an operational context. As previously mentioned, in a crisis situation,109

they can help in predicting where the fire will spread and optimizing the fire110

suppression actions and evacuation. Prior to crisis situations, fire spread sim-111

ulations are a major component of risk assessment frameworks to determine112

what areas have the highest potential to host a large incident. Wildland fire113

risk quantification generally involves models describing ignition probability,114

the probability for a given location to be burned, and the consequences on115

the objects affected by fire such as properties, timber production, as well as116

the consequences on human lives, wildlife habitats, etc. Several studies fo-117

cused on fire risk mapping at the regional or country scale (Finney, McHugh,118

Grenfell, Riley, & Short, 2011; Lautenberger, 2017; Parisien et al., 2005),119

where many fires are simulated to represent a fire season or year according120

to some probabilistic distribution of ignition and environmental conditions121

driving fire spread. This process may be repeated hundreds of thousands of122

times as part of a Monte Carlo method. The purpose of such maps is to help123
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in land management through the reduction of areas at risk in the long-term,124

by setting up fire breaks and providing more firefighting resources such as125

reservoirs, etc.126

Regarding short-term planning, information for the next day or hours127

about the areas where a fire is most likely to ignite and how far the re-128

sulting fire may spread can be very useful in order to know what locations129

should be monitored more closely and help in anticipating the distribution130

of firefighting resources (firefighters, trucks, ...) across the territory. For this131

purpose, one may focus on the quantification of “fire danger”, a term that132

generally relates to the potential for ignition and spread of a fire at a given133

location. Traditional fire danger indices, widely used for decision support in134

an operational context, consist in a unitless value calculated essentially based135

on weather variables. A notable example of such an index is the Canadian136

Fire Weather Index (FWI Van Wagner & Pickett, 1985), used for generating137

maps of predicted fire danger covering Europe and the Mediterranean area138

as part of the European Forest Fire Information System (EFFIS)1. Making139

use of output burned surfaces of wildland fire spread simulations offers an140

interesting alternative for quantifying fire danger: for instance, the resulting141

fire size accounts not only for weather but also for terrain (i.e. elevation142

and vegetation, which are also influential factors in fire spread) and can be143

expressed in hectares, a more “concrete” quantity. Numerical simulations of144

wildland fire spread could be used to generate high-resolution maps of fire145

1https://effis.jrc.ec.europa.eu/, last checked 2021.02.01
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spread on the basis of weather forecasts; but this would require numerous146

computations for different ignition locations, and the constraint on compu-147

tational time would be too demanding even for simulators used for other148

operational purposes. As a rough estimate for the region considered in the149

present study, running one fire spread simulation with a computational of150

one minute for each hectare of land would amount to a computational time151

of 872,000 minutes (about 600 days) on a single processor, and even more152

if an ensemble of simulations is considered for each hectare; which would be153

too long even after distributing the computations on multiple processors.154

In the aforementioned applications, and more particularly in short-term155

fire danger mapping, a promising approach to reduce computational time156

is to rely on an emulator (aka metamodel or surrogate model) to provide157

an approximation of some quantity of interest derived from the simulator’s158

output. The idea is to focus on this quantity and compute it much faster159

with the emulator at the cost of some approximation error that should be160

as low as possible. Emulation may be used in situations when a fire spread161

model has high computational time and/or a lot of simulations or calls of a162

given function are required. Still, emulators are rarely used in wildland fire163

research even though their potential for reducing computational time of sim-164

ulations appears desirable in this field. Examples include data assimilation of165

a fire front via polynomial chaos (Rochoux et al., 2014), sensitivity analysis166

through the computation of Sobol’ indices related to the area and shape of the167

simulated burned surface with emulation by either Gaussian processes (GP)168
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or generalized polynomial chaos (Trucchia, Egorova, Pagnini, & Rochoux,169

2019), uncertainty quantification and computation of Sobol’ indices regard-170

ing the ROS model of Rothermel (Rothermel, 1972) using high dimensional171

model representation methods (Liu, Hussaini, & Ökten, 2016), interpolation172

in a cell-based wildland fire spread simulator to quickly compute the val-173

ues of correction factors in the relationship between advection velocity and174

spread angle on the basis of pre-computed values obtained in a few given175

configurations using a Radial Basis Function (RBF) approach (Ghisu, Arca,176

Pellizzaro, & Duce, 2015). Another example outside the scope of fire spread177

is the emulation of some outputs of a fire emission model with GP (Katurji178

et al., 2015).179

Machine learning (ML) is a very rapidly growing area of study whose180

methods have been used for prediction and decision-making purposes in a181

variety of scientific and technical fields (Jordan & Mitchell, 2015). As exem-182

plified by recent reviews, there has been an increasing interest in application183

of ML to engineering risk assessment (Hegde & Rokseth, 2020), emergency184

management (Chen, Liu, Bai, & Chen, 2017), and to a wide variety of topics185

in wildland fire science (Jain et al., 2020) as well.186

Neural networks, in particular, appear promising to take into account the187

complexity of wildland fire spread. For instance, an application involving em-188

ulation is proposed in (T. Zhou, Ding, Ji, Yu, & Wang, 2020) where a radial189

basis function neural network (RBFNN) is trained to emulate the similarity190

index between an observed burned surface and its simulated counterpart as a191
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function of several ROS adjustment factors; a MC procedure is then applied192

to the emulator, providing parameter estimation of the adjustment factors193

for data assimilation of the simulated fire front. Other methods consist in194

using a convolutional neural network (CNN) as a surrogate for a wildland195

fire spread simulator to obtain a map of predicted burned areas (Hodges &196

Lattimer, 2019; Radke, Hessler, & Ellsworth, 2019). Data required to solve197

wildfire simulations have similarities with these involved in image process-198

ing as we are handling gridded maps of elevation and fuel parameters. As199

deep learning proved to be very appropriate to solve such image processing200

problems (Krizhevsky, Sutskever, & Hinton, 2012), it motivates the use of201

deep neural networks (DNNs) instead of traditional emulation techniques to202

approach emulation in wildland fire spread simulations.203

In the present study, a method is proposed for the estimation of wildland204

fire spread in a wide variety of environmental conditions with potential for205

application to fire danger mapping. The quantity of interest is the burned206

surface area in hectares provided by a wildland fire simulator and the core207

of the method consists in the emulation of this output quantity using a208

DNN with a hybrid architecture so that both 2D and scalar input data are209

processed by specific layers. The present study focuses on Corsica island but210

the method can be extended to other regions.211

The numerical simulator of wildland fire spread that is used as basis of212

the present work is presented in Section 2 together with the characteristics213

of the simulations. The strategy used to obtain the emulator is described in214
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Section 3 and the results are provided and discussed in Section 4. Conclu-215

sions of this work are summarized in Section 5 where some perspectives of216

application of the emulator and possible extensions to the method are also217

mentioned.218

2 Simulation of wildland fire spread219

In the present study, wildland fire spread simulations are carried out with220

the numerical solver ForeFire (Filippi, Morandini, Balbi, & Hill, 2010). Fore-221

Fire relies on a front-tracking method where the fire front is represented by222

Lagrangian markers that are linked to each other by a dynamic mesh. The223

interface is discretized using an ordered list of Lagrangian markers at given224

locations on the surface of the Earth. The interface is then tracked by ad-225

vecting all these markers at the propagation velocity of the front and by226

ensuring that the list of markers still holds an accurate representation of227

the interface. In this ordered list of markers, previous and next are defined228

by convention in the indirect direction as in Figure 1. The outward normal229

defines the direction of propagation from burning regions toward unburned230

regions. Although fronts are allowed to contain islands of unburned fuel,231

they must remain simple polygons (with no self-intersection).232

A key aspect of the simulation is the computation of rate of spread (ROS),233

that is to say the speed at which the flames advance. Several ROS models234

were proposed in the scientific literature. The model used in present study is235
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Figure 1: Example of a small fire front discretization with ordered markers.

The gray area in the center represents the burned surface and its interface

with the unburned locations (white) represents the fire front whose vertices

(markers) expand outward along the normal to the front.

the model of Rothermel (Rothermel, 1972), which is commonly used by fire236

managers in the US. The ROS is expressed as a function of several environ-237

mental properties such as wind speed, terrain slope, fuel moisture content238

(FMC), and other fuel parameters characterizing the vegetation. A simula-239

tion mostly consists in the definition of an initial state of the fire front and240

the ROS is computed for the markers of the fire front based on underlying 2D241

fields, from which environmental properties are determined. ForeFire relies242

on a discrete event approach where most computations deal with the deter-243

mination of the time at which the markers will reach their next destination,244
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this destination being defined by a fixed spatial increment in the outward245

normal. This discrete event approach includes other types of events such as246

changes in the values of the layers, notably wind speed and FMC, additions247

and removals of markers so that the fire front maintains a perimeter resolu-248

tion in a given range during the simulation, and topology checks that may249

induce front merging to ensure that the front keeps a physical representation.250

The area of study is Corsica island, which is located south-east of France251

in the Mediterranean sea. For fire simulation on this domain, 2D fields of252

elevation and land use in raster format at approximately 80-m resolution253

are used. These two fields are represented in Figures 2a and 2b. The land254

use field comes from Corine Land Cover data (Feranec, Soukup, Hazeu, &255

Jaffrain, 2016) coupled with data from the IGN (Institut Géographique Na-256

tional) product BD TOPO R© for road and drainage networks. The elevation257

field is extracted from another IGN product: BD ALTI R©, which originally258

has a 25-m resolution. A fuel parameterization is used to assign reference259

fuel parameters to each type of vegetation (referred to as “fuel type” in the260

following) in the land use data for ROS computations. Data used for simula-261

tion also include 2D fields of wind speed vectors at a resolution of 200 m that262

were pre-computed for average wind speed vectors with the mass conserving263

preconditioner from the atmospheric forecasting system Meso-NH (Lac et al.,264

2018) to account for orographic effects. By specifying an average input wind265

speed vector in the simulations, the underlying 2D wind field is simply ob-266

tained from the pre-computed fields corresponding to the closest mean speed267
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(b) Land cover field.

Figure 2: Data maps of Corsica used to describe the landscape in ForeFire

simulations; their spatial resolution is approximately 80 m.

(a) Locations with an altitude of 0 m or less (mostly maritime waters) are

represented in blue.

(b) The color scheme corresponds to the classification of the Corine Land

Cover

vectors.268

In the present study, a simulation is always that of a fire with free spread269

during one hour. Another fixed input in the simulations is the initial fire270

front, which is an octagon with a surface area of 0.45 ha, corresponding to271
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an already-propagating fire, that must be located in areas classified as fuel272

(i.e. burnable vegetation) based on the land cover field.273

Several inputs in the simulations may vary from a simulation to another.274

First are the coordinates of the center of the initial fire front, this point being275

referred to as the ignition point, that may be located in all fuel areas in Cor-276

sica. This “high-level” input is of major importance because it determines277

the location where the fire starts and the part of the spatial fields that will278

influence how the fire will spread. Next are the zonal and meridional coor-279

dinates of the “forcing” wind speed vector, in m s−1, that both vary in [-35,280

35] on the condition that the wind speed norm be lower than 35 m s−1. The281

FMC of dead fuel varies between 0.04 and 0.3. In contrast to these “raw”282

inputs, the remaining ones are perturbation coefficients that are applied to283

reference values of some fuel parameters. Perturbation in heat of combus-284

tion and particle density are additive and applied to a common reference285

value used for all fuel types, whereas perturbations in fuel height, fuel load286

or surface-volume ratio are multiplicative coefficients. For all the three lat-287

ter parameters, each one of the 13 fuel types receives a specific perturbation288

coefficient. This amounts to 46 variable inputs in the simulations, whose289

information is summarized in Table 1, including the range of each variable.290

The simulations are meant to be used for prevision of wildfire spread291

in Corsica before a fire starts, at any time, so the intervals of variation of292

the raw inputs were chosen to account for a wide variety of environmental293

conditions. Moreover, in this context, there is significant uncertainty in the294
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Input Symbol Unit Type Range Constraint

Ignition point coordinates (x, y) m Raw Map of Corsica Initial front in burnable area

Wind speed (Wx,Wy) m s−1 Raw [−35, 35]2 Euclidean norm ≤ 35

Fuel moisture content (dead fuel) mc Raw [0.04, 0.3]

Heat of combustion perturbation ∆H MJ kg−1 Additive [−5, 5]

Particle density perturbation ρp kg m−3 Additive [−300, 300]

Fuel height perturbations h m Multiplicative [0.4, 1.6]13

Fuel load perturbations σf kg m−2 Multiplicative [0.4, 1.6]13

Surface-volume ratio perturbations Sv m−1 Multiplicative [0.4, 1.6]13

Table 1: Variable scalar inputs in wildland fire spread simulations. In the

case of perturbations, the symbol corresponds to the perturbed quantity, and

the perturbation of this quantity can be either additive or multiplicative.

The range indicates the boundaries of the domain of definition with two

components for the wind and 13 components in the last three rows (one row

per fuel type).

The intervals of variation account for uncertainty and variability of weather

and ignition locations, as well as for uncertainty.

simulations. The weather forecasts used to predict wind speed and FMC are295

possible sources of uncertainty, so are model simplifications and the choice296

of a given fuel parameterization. Therefore, the intervals of variation of both297

raw inputs and fuel parameters also account for their uncertainty range.298

Some intervals follow those of a previous study that focused on uncertainty299

quantification (see notably Table 1 in Allaire, Mallet, & Filippi, 2021).300

Finally, the quantity of interest in the present study is the area in hectares301

of the burned surface obtained at the end of the simulation, namely after a302
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test dataset, simulation 4
burned area: 1315.79 ha

Figure 3: Example of a simulated burned surface after one hour returned by

ForeFire.

The initial fire front of 0.45 ha is represented in black at the center of the

figure and the final burned surface is the surrounding shaded shape. The

input wind speed vector is represented by the arrow at the top. The simulated

fire spread to the south, was partly blocked by mountains (in gray), but still

burned 1316 ha.

Background colors correspond to the classification of the Corine Land Cover
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free fire spread of one hour. An example of simulated surface is represented303

in Figure 3.304

It is possible with ForeFire to simulate any duration of fire and obtain305

the state of the fire front at any moment between fire start and fire end.306

Still, the simulated one-hour area alone could be a relevant information for307

the firefighters as it provides an estimation of the potential of fire growth if308

a fire that starts at a given location is not contained fast enough, one hour309

being a typical time for a fire to be detected and firefighters to arrive on-site.310

3 Emulation with deep learning311

In the context of fire growth prediction mentioned in Section 2, the absence312

of knowledge regarding the location of fire start and the uncertainty in the313

simulation are considerable difficulties that need to be addressed. An intu-314

itive method consists in running a large number of simulations for ignition315

points all across the map, where some inputs are determined from weather316

forecasts. This procedure may or may not include perturbations in the in-317

puts other than ignition point coordinates to account for uncertainty; but in318

any case, the time required to run all the desired simulations in operational319

conditions is too high with usual numerical simulators such as ForeFire. This320

motivates the use of an emulator to compute the area of the output simulated321

burned surface in a reasonable amount of time, although with some error of322

approximation. It is desirable to obtain an emulator that approximates this323
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quantity with high accuracy and has a significantly lower computational time324

than that of the simulator, but it can be quite challenging for an emulator325

to combine both properties.326

3.1 Design of experiments327

A common strategy to design an emulator consists in considering the simu-328

lator as a “black-box” and build the emulator based on a synthetic dataset329

of input and corresponding output. The first step of this strategy is to define330

a design of experiments (DOE) to generate the datasets that will be used to331

build the emulator and evaluate its approximation error. Given input dimen-332

sion and model complexity in the present study, we expect a large number333

of simulations (∼ 105 at the very least) will be required for an emulator to334

have good accuracy.335

The DOE relies on a Latin Hypersquare Sample (LHS) in [0, 1]46, which336

is a popular space-filling design. For all elements of the LHS, we apply an337

affine transformation from [0, 1]46 to the hyperrectangle whose boundaries338

are defined by the ranges in Table 1. However, this procedure alone does339

not account for the restrictions to the definition domain implied by the con-340

straints on ignition point coordinates and wind speed norm. To include these341

constraints, we generate a LHS with more members than ntrain, the desired342

number of training sample members, and keep only “valid” members, namely343

those that satisfy the constraints after the affine transformation, so that the344

resulting sample size is slightly lower than the target. The next step in the345
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constitution of the DOE is to generate a Sobol’ sequence in [0, 1]46, which is346

a low-discrepancy sequence. We complete the initial LHS (in [0, 1]46) with347

members of the Sobol’ sequence based on a discrepancy criterion, following348

the idea proposed in (Iooss, Boussouf, Feuillard, & Marrel, 2010) to obtain349

an optimal complementary design. A notable difference in the present study350

is that the first elements selected by the algorithm are used to complete the351

training sample only if they are valid (they are ignored otherwise). Then,352

when the target size ntrain is reached, the next valid elements are used to form353

a test sample of size ntest. This procedure aims at selecting the points of the354

test sample so that they are located far from each other but also far from355

the points of the training sample, where the approximation error is expected356

to be higher.357

Finally, based on the inputs of the training and test sample, the corre-358

sponding fire spread simulations are carried out as described in Section 2 and359

the resulting outputs complete the training and test datasets.360

3.2 Neural network architecture361

Several techniques can be considered for emulation. Simple statistical meth-362

ods such as linear regression based on the inputs in Table 1 would most likely363

lead to poor approximation because of the non-linearity of the model. Other364

methods such as those mentioned in Section 1 (i.e. Gaussian processes, poly-365

nomial chaos, high dimensional model reduction, radial basis functions) are366

interesting alternatives, however their computational requirements (regard-367
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ing time and/or memory space) can become prohibitory when there are both368

a high dimension (d = 46) and a large sample size (≥ 105).369

In this problem, the input variables presented in Table 1 can be expressed370

as a vector of R46, including the coordinates (two scalars) of the ignition371

point. While these coordinates do locate the origin of the fire, they are not372

used directly to compute the ROS and simulate how the fire will spread from373

there. Actually, the restriction of the simulation domain to the surface that is374

burned after one hour identifies the part of the spatial fields of elevation and375

fuel parameters that were used in the ROS computations. Therefore, this376

information could be a better-suited emulator input than the coordinates377

of the ignition point. Although the simulated burned surface is not known378

beforehand, the fire will almost never spread further than 10 km in an hour,379

so a priori it will be contained in a 20 km × 20 km square centered around the380

ignition point. If one considers the fields of elevation and of fuel parameters381

h, σf , and Sv restricted to this square, given their 80-m spatial resolution,382

this amounts to four input fields of size 256 × 256 for emulation. This raises383

the need for a method that is adapted to handle such high-dimensional data384

as well as the remaining scalar inputs.385

Neural network models appear suitable for emulation of fire spread simu-386

lations, not only because they usually perform well when trained on a large387

dataset, but also because they can handle several types of data. In partic-388

ular, CNNs proved to be quite successful in the classification of 2D inputs389

such as images (e.g. Krizhevsky et al., 2012), but also for regression (e.g. Xie,390

21



Xing, Kong, Su, & Yang, 2015), which is our target. Here, the simulations391

are also significantly influenced by the other (scalar) inputs, notably wind392

speed and FMC, so a network with a hybrid architecture to process both393

types of inputs (2D and scalar) seems well suited to our problem. The term394

“hybrid” may have different meanings when it comes to neural networks. It395

can refer to the succession of multiple ensembles of layers, with each ensem-396

ble appearing like a given type of neural network, as in (Quang & Xie, 2016)397

where DNA sequences are first processed by a convolutional part then by a398

recurrent part. In the present study, this term is understood as the use of399

specific types of layers for each type of input, as proposed in (Yuan, Jiang,400

Li, & Huang, 2020) where image, sequential, and scalar/categorical inputs401

are first processed separately by the network.402

We propose an emulator based on a DNN with a hybrid architecture. A403

convolutional part processes the four 2D fields of elevation and fuel parame-404

ters (prior to perturbation) h, σf , and Sv in a square surrounding the ignition405

point with a side of approximately 20 km, which corresponds to an input of406

shape (256, 256, 4). Another part of the network processes the vector of407

size 46 of scalar simulation inputs mentioned in Table 1. The “absolute”408

coordinates (x, y) of the ignition point are replaced by (δx, δy), which are409

the coordinates of this point relatively to the center of the surrounding 2D410

fields. Also, both 2D and scalar inputs are scaled to [-1, 1] through an affine411

transformation before being processed by the DNN.412

The detailed architecture of the DNN is represented in both Figure 4413
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Figure 4: Neural network architecture. The numbers in brackets outside the

boxes indicate the shape of the data as they are processed by the network.

The architecture is considered “hybrid” because the DNN processes both 2D

input corresponding to terrain data and scalar inputs. Processing is first

carried out separately until concatenation after which both parts are mixed.
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Figure 5: Representation of data processing in the neural network. The

blocks indicate the shape of the data. The 2D input is derived from the

four fields of elevation, and fuel parameters h, σf , and Sv. The 46 scalar

inputs are derived from the simulation parameter inputs of Table 1. Conv:

Convolution 2D; BN: Batch Normalization; AvgPool: Average Pooling 2D.
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and Figure 5. The first figure is more focused on the processing layers (i.e.414

convolutions, pooling, etc.), while the second figure represents the successive415

shapes of the data as they are processed by the network.416

First, convolutions with a 2x2 window are applied to the 2D inputs, fol-417

lowed by a batch normalization layer, a Rectified Linear Unit (ReLU) acti-418

vation and an average pooling layer with a 2x2 window. This succession of419

layers is repeated three more times, with a 3x3 window for the convolutions420

and more and more kernels. Convolutions are carried out without padding421

nor stride, and the first two average pooling layers result in the edge of the422

data being cropped, due to the odd input shape. Then, the output of these423

four blocks of layers is flattened and goes through a block consisting of a fully424

connected feed forward (aka dense) layer with 1024 output nodes, followed425

by batch normalization and ReLU activation. As for the scalar input, it goes426

through a similar block of layers. The output of these two blocks is con-427

catenated and undergoes four similar blocks of layers. The intention behind428

the application of the dense blocks before concatenation is to concatenate429

vectors that have the same shape and potentially give similar importance to430

the 2D part and the scalar part in this mixed architecture. Finally, a dense431

layer followed by a ReLU activation and an increase of 0.45 ha (the minimum432

simulated burned surface area, corresponding to a fire that does not spread)433

are carried out, yielding the output of the network.434
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3.3 Accuracy metrics and training strategy435

Among a dataset of size n, ui denotes the i-th set of simulation inputs,436

y(ui) the resulting output, and ∼
y(ui) the corresponding value returned by437

the emulator. Several metrics can be used to evaluate the accuracy of ∼
y, the438

emulator of function y. In this study, we use the mean absolute error (MAE),439

the mean absolute percentage error (MAPE), and the standardized mean440

square error (SMSE, cf. Rasmussen & Williams, 2006), which are respectively441

defined as follows:442

MAE = 1
n

n∑
i=1
|∼y(ui)− y(ui)|, (3.1)

MAPE = 1
n

n∑
i=1

∣∣∣∣∣
∼
y(ui)− y(ui)

y(ui)

∣∣∣∣∣ , (3.2)

SMSE =
∑n
i=1

(
∼
y(ui)− y(ui)

)2

∑n
i=1

(
y(ui)− ȳ

)2 , (3.3)

where ȳ = 1
n

∑n
i=1 y(ui) is the sample mean of the emulated function. The443

SMSE can be seen as a mean squared error normalized by the sample variance444

of y, and would be equal to 1 if the emulator was a constant function equal to445

the sample mean ȳ. The lower these scores, the more accurate the emulator.446

The emulator can also be evaluated in terms of mean error, similarly to the447

MAE but without the absolute value, that will be referred to as “bias” in the448

following.449

26



The accuracy metrics need to be computed for the test dataset as the450

error is expected to be much lower for the training dataset, which is used to451

determine the parameter values of the network. In order to quantify overfit-452

ting, the accuracy metrics may also be computed for the training dataset.453

The procedure used to train the network’s parameters relies on a MAE454

loss function with an Adadelta optimizer (Zeiler, 2012), without regulariza-455

tion based on the norm of the layer parameters.456

To enrich the train dataset, a form of data augmentation is carried out:457

over one epoch, each member of the training dataset is used exactly once,458

but possibly after a geometric transformation (rotations or axial symme-459

tries). The geometric transformation is applied to the 2D field inputs as well460

as (Wx,Wy), the wind speed vector, and (δx, δy), the relative coordinates of461

the ignition point. There is a 0.5 probability of having no transformation,462

whereas the other transformations (seven different non-identity applications)463

each have a 1/14 probability of being applied, all of them being represented464

in Figure 6. We know that in such a configuration, the simulated burned sur-465

face would be the same, so this allows us to enrich the dataset (virtually, by a466

factor of eight) without running additional ForeFire simulations, and might467

limit overfitting (Shorten & Khoshgoftaar, 2019) since it allows for more468

possible configurations than described in Section 2. Note that data augmen-469

tation is only used during training. Also, with the synthetic datasets there470

is no need to split the training dataset to obtain a validation dataset, since471

the test dataset was designed specifically to evaluate accuracy, as explained472
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 (2)

 (3)

 (4)

 (5) (6)

 (7)

 (8)

O

(a) Transformations applied

to a point.

(1) (2) (3) (4)

(5) (6) (7) (8)

(b) Transformations applied to a matrix.

Figure 6: Geometric transformations used for data augmentation during

training.

Considering (a) an initial point or vector in the plan with origin O or (b)

a matrix in an initial state (1), 8 possible transformations are considered,

resulting in state (n), with n ∈ {1, . . . , 8}. Identity transformation, leading

to (1), has a 0.5 probability of being applied during training. The probability

is 1/14 for all other transformations. (2): 90◦ rotation, (3): −90◦ rotation,

(4): y axis symmetry, (5): x axis symmetry, (6): 180◦ rotation, (7): y=x axis

symmetry, (8): y=-x axis symmetry.

Applying one of these transformations to the input data would result in a sim-

ilarly transformed simulated burned surface, so the output area in hectares

is invariant to these transformations.
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in Section 3.1. The accuracy metrics of the network are simply computed for473

the test dataset at the end of each epoch during training.474

3.4 Extraction of the actual emulator475

The DNN presented in Section 3.2 relies on many convolutions that can be476

computed much faster with high-performance graphics cards. Even if one is477

not equipped with such resources, it is possible to compute the output of the478

DNN even faster once the network has been trained.479

To achieve this goal, the final layer of the convolutional part of the480

network (of size 1024), before concatenation with the scalar part, is pre-481

computed. Indeed, due to the spatial resolution of the elevation and land482

cover fields of approximately 80 m, there is a finite amount of possibilities for483

the 2D input and the subsequent layers up to the end of the convolutional484

part, which will take the same values as long as the ignition point is located485

in a given cell of side ∼80 m. In the present case, there are ∼ 1.2 × 106
486

possibilities for Corsica.487

The actual emulator consists in the remaining part of the DNN and its488

inputs are the pre-computed final layer of the convolutional part as well as489

the scalar vector of size 46. This part of the network only involves some490

dense blocks and a concatenation of the two parts of the network, that can491

be computed much faster—even on a machine without specific acceleration.492
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3.5 Implementation493

Python scripts are used to process the data, generate the training and test494

datasets, build and evaluate the DNN. Keras library, which is a high-level495

neural networks API that is running on top of TensorFlow, is used for building496

the DNN.497

Training and accuracy evaluation of the DNN up to the retrieval of the498

actual emulator are carried out on a GPU accelerated compute node. The499

computational time of the actual emulator is evaluated on a machine with500

32 CPU.501

The size of the datasets are ntrain = 5 × 106 and ntest = 104. Training502

is carried out with data augmentation as explained in 3.3 for 100 epochs503

with batches of size 400, and the hyperparameters of the Adadelta optimizer504

are a decay rate of 0.95, a conditioning constant ε of 10−7, and a learning505

rate of 0.3, which is an extra factor in the right-hand term of Equation (14)506

in (Zeiler, 2012). The weights of the network are initialized using default507

TensorFlow arguments, therefore the weights of Dense and Conv2D layers508

are initialized following a Glorot uniform initializer (cf. Equation (16) in509

Glorot & Bengio, 2010).510

The same procedure is also applied to smaller training dataset of size511

ntrain ∈ {105, 106}, each with a specific dataset of size ntest = 104 gener-512

ated as explained in Section 3.1, to investigate the influence of ntrain on the513

approximation error.514
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4 Results and discussion515

The computational time of a simulation (with ForeFire) of wildland fire516

spread took an average of approximately 25 s. This time highly depends517

on the input of the simulation and can range from about 0.1 second to more518

than an hour. Overall, the larger the simulated burned surface, the more519

computations are carried out during the simulation. Running all the simula-520

tions in the training and test datasets would have taken about 4 years if it521

were not for distributed computing: with several multi-CPU machines, for522

a total of about 150 CPU cores, the computations were completed in about523

10 days. Given the simulation settings presented in Section 2, the obtained524

burned surface areas range from 0.45 ha to 24 804.4 ha among the training525

dataset. Some statistics of this output in the training dataset are presented526

in Table 2. The high variance of the simulation output is consistent with that527

of computational time. The minimum output corresponds to the area of the528

initial burned surface and is obtained in a few simulations (approximately529

half a thousandth) where the FMC is very close to the moisture of extinction530

(0.3) in the ROS model, leading to a fire that almost does not spread. Similar531

statistics are obtained with the test dataset, except for the maximum output532

(14 403.7 ha). The test dataset, having a much lower size than that of the533

training dataset, is less representative of the tail of the output distribution,534

hence the lower maximum.535

Most simulations result in a burned surface of less than 1000 ha, which is536
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Mean Std Minimum Q1 Median Q3 Maximum

455.7 ha 782.0 ha 0.45 ha 52.6 ha 181.0 ha 517.7 ha 24 804.4 ha

Table 2: Statistics of the output simulated burned surface area among the

training dataset of size 5× 106.

Std: Standard deviation; Q1: first quartile; Q3: third quartile.

The output has high variance, arguably making “relative” error metrics such

as the MAPE and SMSE (cf. Equations (3.2) and (3.3), respectively) better

suited for expressing the performance of the emulator regarding approxima-

tion error.

realistic for a fire that spreads freely during one hour. Still, a non-negligible537

amount of simulations result in burned surfaces that are most certainly bigger538

than what would be observed in reality. This amount would probably be539

higher were it not for non-burnable zones that significantly contribute to limit540

fire spread in some cases. This is mostly due to the fact that the simulations541

rely on simplifying assumptions where wind speed and FMC are constant542

in time and the DOE allows these inputs to vary in very large intervals.543

Therefore, it is not surprising to obtain a very large burned surface in a544

simulation where the wind speed is extremely high, the FMC extremely low,545

and no unburnable zone is reached during a whole hour of spread. Although546

somewhat unrealistic, the extremely high values of simulated burned surfaces547

were not removed from the dataset. This might make the emulation more548

difficult but the ability to discriminate between a wide range of situations,549
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even extreme ones, is relevant in wildland fire spread.550

Carrying out one epoch took a bit less than three hours, so training, which551

consisted in 100 epochs, lasted for about 10 days. The evolution of the MAE552

over training of the DNN for these 100 epochs is reported in Figure 7. At a553

given epoch, the predicted values for both test and training datasets result554

from the model obtained at the epoch’s end. Due to high computational time,555

the MAE was only computed for the training dataset (without applying data556

augmentation) at the first epoch and every five epoch starting from the fifth.557

On the one hand, the MAE for the test dataset decreases overall until it558

reaches 81.5 ha after about 78 epochs, after which it oscillates around that559

value. On the other hand, the MAE for the training dataset decreases overall,560

faster than the MAE of the test dataset. Therefore, while both scores are561

almost identical at the start, the gap between the two increases with the562

number of epochs.563

The main objective is to have low generalization error, which is measured564

here using the error metrics for the test dataset. In high-dimensional cases,565

it is possible to observe a significant gap in error between the training and566

test datasets when training neural networks (see for instance Advani, Saxe,567

& Sompolinsky, 2020). It is the case in this study with the original model568

(ForeFire) relying on high-dimensional input data and being highly non-569

linear. Note that the neural network can be interpreted here as a substitute570

for an interpolator in high dimension, without the constraint to coincide with571

the training dataset at the training points.572
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Figure 7: MAE (loss function) over training. The solid curve represents the

MAE for the test dataset, while the crosses represent the MAE computed

for the training dataset at the end of the first epoch and after every five

epochs starting from the fifth. The horizontal dotted line corresponds to

MAE=81.5 ha.

Both metrics decrease and this decrease is faster for the training dataset,

yet the MAE for the test dataset does not increase and seems to keep

around 81.5 ha after about 75 epochs. No significant decrease in the test

error is expected after more epochs, so the network after 94 epochs, which

has a SMSE on the test dataset of 6.0% (the best over all 100 epochs) is

selected for emulation.

It is unlikely that carrying out more training epochs would result in a573

significant decrease of the error metrics for the test dataset. Consequently,574
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the model with the best SMSE over the test set, which was obtained at the575

end of the 94-th epoch, was selected to define the emulator. The emulator576

with the best MAE was not selected because its MAE was only slightly lower577

(80.7 ha instead of 81.2 ha), whereas the other scores were all better for the578

model with the best SMSE. Even though our loss function (the MAE) may579

seem high, an absolute error of about 80 ha is at the same time very high580

for a small simulated burned surface of about 10 ha and very small for larger581

ones of about 1000 ha. Consequently, “relative” error metrics such as the582

MAPE and SMSE (cf. Equations (3.2) and (3.3), respectively) are arguably583

better suited for expressing the performance of the emulator regarding ap-584

proximation error.585

Model \ Metric MAE MAPE SMSE Bias

Mean of training 461.9 ha 2266% 100.0% 2.2 ha

Linear regression without threshold 387.9 ha 1239% 73.9% −4.8 ha

Linear regression with 0.45 ha threshold 361.1 ha 493.3% 72.3% 21.9 ha

DNN after 100 epochs 81.2 ha 33.5% 6.2% −13.1 ha

Emulator (from DNN after 94 epochs) 81.2 ha 32.8% 6.0% −6.5 ha

Table 3: Model error on test dataset of size 104.

The approximation is poor using the three most simple models (constant and

linear regression with or without threshold), whereas the DNN trained using

a large training dataset shows good approximation.

The error metrics of the emulator are reported in Table 3 and Table 4, re-586
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Model \ Metric MAE MAPE SMSE Bias

Mean of training 461.5 ha 2139% 100.0% 0 ha

Linear regression without threshold 389.9 ha 1185% 73.7% 0 ha

Linear regression with 0.45 ha threshold 365.6 ha 493.4% 72.3% 24.3 ha

DNN after 100 epochs 44.0 ha 23.8% 1.2% −7.6 ha

Emulator (from DNN after 94 epochs) 45.1 ha 23.2% 1.2% −0.9 ha

Table 4: Model error on training dataset of size 5× 106.

For the three most simple models, the approximation metrics are almost the

same to the ones computed on the test dataset (cf. Table 3), whereas the

DNN has lower error for the training dataset than for the test dataset.

spectively relating to the test dataset and the training dataset. These metrics587

are also computed for three simple models for comparison: 1) a model that588

consists in always predicting the mean simulated burned surface of the train-589

ing dataset (455.7 ha), 2) a linear regression model fitted using the training590

dataset based on the 46 inputs of Table 1, 3) same as the previous model,591

but applying a 0.45 ha minimum threshold (the minimum simulated area)592

to avoid non-physical output. The metrics for the DNN with the parame-593

ters obtained at the end of training are also reported. Although a MAE of594

81.2 ha might seem high, it is much lower compared to that of the three sim-595

ple models (461.9 ha with the mean, 361.1 ha for the linear regression with596

threshold). The SMSE of 6.0% means that 94.0% of the variance in the test597

dataset output is explained by the emulator, which is very good given the598
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range of variation in simulation inputs. The relative error is also satisfactory599

with a MAPE of 32.8% on the test dataset, especially when compared to600

that of the simple models (2266.0% using the mean, 493.3% using linear re-601

gression with threshold). As for computational time on a 32-CPU machine,602

the outputs for the test dataset are obtained in about half a second with the603

emulator against 56 s with the whole DNN, which corresponds to a speed-604

up by a factor of about 100. Also, the corresponding ForeFire simulations605

would have been obtained in about two hours with parallel computations606

on the 32-CPU machine, meaning that the emulator allows a speed-up by607

about 15,000 times. For a dataset where the simulated burned surface tends608

to be higher, the average computational time with ForeFire could be higher.609

This is not the case for the emulator, for which computational time does not610

depend on the output fire size, meaning that the resulting speed-up factor611

would be higher.612

ntrain \ Metric MAE MAPE SMSE Bias

105 (best SMSE after 34 epochs) 182.0 ha 89.1% 25.4% −22.6 ha

106 (best SMSE after 26 epochs) 127.5 ha 49.9% 13.3% −16.3 ha

5× 106 (best SMSE after 94 epochs) 81.2 ha 32.8% 6.0% −6.5 ha

Table 5: DNN error on complementary test dataset (always of size ntest =

104) with variable training dataset size ntrain.

The larger the training dataset of the DNN, the better the approximation.

The influence of ntrain on the resulting approximation error of the DNN613
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Figure 8: Plot of the error metrics against ntrain the size of the training

dataset (cf. values reported in Table 5), in log scale.

Linear regression of the logarithms (dotted lines) results in a good fit with

the data, suggesting a slowly decreasing trend of the form (ntrain)−α with

α ∈ [0.2, 0.37], depending on the metric.

based on the error metrics for the test dataset is presented in Table 5. The614

MAE in the test dataset did not seem to decrease after a few tens of epochs615

for smaller training datasets (this was also the case for ntrain = 5 × 106),616

and the model with best SMSE over 100 epochs, which had a MAE close to617

the best value obtained over the 100 epochs, was selected. Figure 8 shows618

the MAE, MAPE, and SMSE from Table 5 plotted against ntrain. Although619

there are only three points for each metric, linear regression of the logarithms620

suggests that the metrics decrease following a trend of the form (ntrain)−α with621

α ∈ [0.2, 0.37], depending on the metric, which is quite slow. For instance,622
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assuming this trend using the values of the slopes reported in Figure 8 to623

specify α, reducing the MAE from 81.2 ha to 50 ha (resp. the MAPE from624

32.8% to 20% and the SMSE from 6.0% to 2.0%) would require to increase625

ntrain by approximately a factor 10 (resp. 7 and 20).626

For more insight regarding the approximation of the selected model, the627

emulator output for each member of the test dataset is plotted against the628

actual values of simulated burned area in Figure 9. The vast majority of the629

emulated values are close to their simulated counterparts and 9,332 out of630

10,000 are at most either twice higher or half lower. In 157 cases, the emulator631

returns the minimum value of 0.45 ha, while the actual simulated value may632

go up to 10 ha. This corresponds to the apparent “black vertical bar” at the633

lower left of the graph in Figure 9a. There are 29 simulations for which the634

emulated burned area is at least five times lower (11 of them being equal to635

0.45 ha) and 43 simulations for which the emulated value is at least five times636

higher. In the latter cases, most of the simulated burned surfaces are small637

(≤10 ha in 32 simulations out of 43), which usually contributes to a higher638

relative error, but not all of them. In some of these cases of overprediction639

by the emulator, there is a relatively small area close to the ignition point640

in the main direction of fire spread that seems to considerably slow down641

the fire. The emulator probably has difficulty when it comes to accounting642

for some particular configurations of the underlying fuel and altitude fields,643

especially small non-burnable areas, given that the convolutional part of the644

DNN reduces the size of inputs by a factor of 256 when processing it for the645
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Figure 9: Comparison between the burned area simulated by ForeFire and

the corresponding emulator output over the test dataset of size 104.

(a) The solid oblique gray line corresponds to a perfect match and the dotted

lines correspond to an error by a factor of 0.5 and 2.

(b) Black contour: histogram of simulated areas; blue surface: histogram of

emulated areas. Both top and bottom figures represent the same distribu-

tions, they share the same abscissa axis but the bottom figure has its ordinate

in log scale.

Most of the emulated values are at most either twice higher or half lower,

resulting in good error metrics (MAE=81.2 ha, MAPE=32.8%), yet the in-

dividual error is quite high for a few members. The distributions of both

samples are close.

emulator (from 262,144 to 1024). Overall, the individual errors lead to similar646

distributions of burned area. The emulator has a small bias of −6.5 ha and,647

40



as shown in Figure 9b, the histogram of emulated burned areas is slightly648

less dispersed (standard deviation of 752.9 ha against 782.5 ha).649
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Figure 10: Comparison between the ensemble of burned areas simulated by

ForeFire for the fire case of Calenzana and their emulated counterparts.

(a) The solid gray line corresponds to a perfect match and the dotted lines

correspond to an error by a factor of 0.5 and 2.

(b) Black contour: histogram of simulated areas; blue surface: histogram of

emulated areas. Both top and bottom figures represent the same distribu-

tions, they share the same abscissa axis but the bottom figure has its ordinate

in log scale.

The inputs have smaller variations than for the test dataset, yet most emu-

lated values fall into the range of half to twice the simulated value as it was

the case for the test dataset (cf. Figure 9), leading to good error metrics

(MAE=18.7 ha, MAPE=22.7%).
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The emulator is also evaluated with an ensemble of ForeFire simulations650

that correspond to a real Corsican fire that occurred near Calenzana during651

summer 2017 and burned about 120 ha. Most of the spread for this fire took652

place during the first hour after ignition. For this case, some reference inputs653

are defined from weather predictions and a presumed ignition point is iden-654

tified, as explained in (Allaire et al., 2020). Then, an ensemble of perturbed655

simulations is generated, for which the inputs presented in Table 1 follow a656

calibrated distribution that was obtained in a previous study (Allaire et al.,657

2021) with β = 1/2. It should be noted that the resulting ensemble of burned658

surface areas in the present study is not the same as in (Allaire et al., 2021)659

because supplementary inputs were variable in the previous study (such as660

perturbations in the times of fire start and fire end, which could make the sim-661

ulated fire duration different from one hour). The 10,000 simulated burned662

surface areas of the ensemble are compared to their emulated counterparts663

in Figure 10. Similarly to the test dataset, most emulated values fall into the664

range of half to twice the simulated value, leading to a MAPE of 22.7%. A665

MAE of 18.7 ha is obtained and individual errors result in a distribution of666

the emulator output that is less dispersed than that of the simulated output,667

as shown in Figure 10b, with a bias of −9.6 ha and a standard deviation of668

77.7 ha against 86.1 ha.669

The overall agreement between simulation and emulation is good for this670

simulated fire case and the simulations were computed in 20 minutes, whereas671

the emulator predictions only took a bit more than a second. The speed-up672
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factor is about 1000 this time, which is lower than the several thousands673

obtained for the test dataset. This is explained by the lower simulation time674

for this fire case (20 min instead of about two hours for the test dataset, while675

both datasets have the same size). This performance is quite promising for676

application to ensemble forecasting, but care should be taken as propagation677

of uncertainty leads to different output distributions according to the model678

(either ForeFire or its emulator) used.679

Linked to the approximation error of the emulator is the influence of the680

inputs on the output. A desirable property of the emulator is the ability to681

behave in a similar way as ForeFire so that it keeps the main characteristics682

of the fire spread model, namely a burned area that, overall, increases with683

wind speed and decreases with FMC, while the surrounding 2D fields of684

altitude and fuel can either favor or block fire spread. Perturbations of685

fuel parameters are expected to have less influence, especially those of fuel686

parameters that are applied to a specific fuel type (h, σf , Sv). Also, the687

ROS is proportional to heat of combustion ∆H, which is a global parameter,688

so positive perturbations of this quantity will increase the burned area and689

negative ones will decrease it.690

Given the complexity of the emulator, one may approach it as a black-box691

and estimate the overall influence of its inputs with Shapley additive expla-692

nations (SHAP, cf. Lundberg & Lee, 2017), a feature attribution method.693

The features we focus on are the inputs of the emulator, namely the 1024694

“position” scalars linked to the 2D fields surrounding the ignition point stem-695
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ming from the convolutions and the remaining 46 scalar inputs. Approximate696

SHAP values are computed for each member of the test dataset by means697

of expected gradients. This procedure leads to exact SHAP values when the698

model to explain is linear and the features are independent. While these699

assumptions are not verified with the emulator, the original algorithm for700

the computation of the exact SHAP values is too computationally expensive,701

whereas this method allows to compute approximate values in a reasonable702

amount of time. Although these results should be taken with care, they can703

still be used for a qualitative analysis and should provide some insight on704

the overall input influence over a whole dataset. For each member of the test705

dataset, the expected gradient is estimated based on a subset of size 50,000706

sampled randomly from the training dataset. Given that the 1024 position707

scalars are difficult to interpret and expected to have little individual influ-708

ence on the output due to their correlation, we consider the sum of their709

SHAP values, which is identified via a fictitious variable named “Position”.710

The approximate SHAP values obtained for 12 of the 47 resulting variables711

are summarized in Figure 11.712

The values obtained for each of the 10,000 test members represented in713

Figure 11b indicate a good overall agreement with the main characteristics of714

the fire behavior model. High FMC (mc) tends to decrease the output while715

low FMC tends to increase it. High positive SHAP values for the coordinates716

of wind speed (Wx and Wy) are obtained for extreme values of these inputs,717

i.e. close to either −35 m s−1 or 35 m s−1 (in blue and red, respectively) while718
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Figure 11: Approximate SHAP values associated with the emulator com-

puted for the test dataset, using the training dataset as basis. The SHAP

values corresponding to the 1024 inputs resulting from the convolutional part

of the DNN are summed up and this sum is identified as “Position” in the

figure. Only the 12 most overall influential inputs, as ranked in (a), are rep-

resented.

(b) The color indicates the value of the input for each member, while the

SHAP value is read in abscissa.

Qualitatively, the influence of the inputs expressed by the SHAP values cor-

responds to typical behavior of fire spread, both in terms of ranking and in

terms of values for individual members (e.g. overall, low FMC mc leads to a

high SHAP value and high FMC leads to a low SHAP value). This suggests

that the input-output relationship of the emulator is similar to that of the

simulator.
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the negative values are obtained for intermediate values (close to 0 m s−1).719

SHAP values associated to the perturbation of ∆H are also consistent with720

our expectations. Regarding the rankings of the inputs when looking at the721

absolute SHAP values averaged over the test dataset in Figure 11a, the three722

most influential inputs are the FMC and the two coordinates of the wind723

speed vector. Position is ranked fourth, perturbations on fuel parameters724

that affect all fuel types (∆H and ρd) are ranked fifth and sixth, and the725

remaining ranks are attributed to the other perturbations of fuel parameters726

as well as δx and δy (ranked last). Interestingly, when the positional inputs727

are not summed, their individual influence is quite low: the 54th scalar of728

the vector of size 1024 is the highest ranked at rank 32 only. Although we729

only have an approximation of SHAP values, these results are qualitatively730

the ones we would expect from fire spread simulations and indicate that the731

emulator has an overall relationship between inputs and output that is fairly732

consistent with typical behavior of wildland fire spread.733

The “physical” behavior of the emulator is also analyzed through the lens734

of fire danger mapping in Figure 12 that represents the response surface of the735

emulator where the ignition point varies in Corsica, whereas the other inputs736

are fixed to mc = 0.13, (Wx,Wy) = (15, 15) m s−1, and no perturbation on737

fuel parameters.738

This mapping involves ∼ 1.2 × 106 emulator computations, which are739

carried out in about 40 s only. Values lower than 200 ha can be observed740

toward the south-west of non-burnable areas (mostly water bodies, rocky741

46



21.21 m/s

20 km

200

400

600

800

1000

1200

1400
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Corsica island.
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Figure 12: Map of the area (in hectares) of the burned surface predicted by

the emulator with variable ignition point in Corsica. The other inputs are a

wind speed vector of (15, 15) m s−1 represented with a black arrow, a FMC

of 0.13, and no perturbation on fuel parameters. The spatial resolution is

approximately 80 m; white pixels correspond to non-burnable locations in

the simulations.

(b) From top to bottom: burned area (ha), altitude (m), land cover.

The “potential” area at a given ignition point is clearly lower when unburn-

able locations are close to the ignition point in the direction of the wind speed

vector. This is consistent with “physical” behavior of wildland fire spread.
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mountain tops over 1800 m with no vegetation, and urban areas), while most742

of the other ignition points are associated to values higher than 300 ha. This743

is consistent with the input wind speed vector pointing to the north-east.744

Also, there is a fairly high spatial variation of the emulated burned area that745

goes up to about 1500 ha. The smaller region shown in Figure 12b presents746

some of the highest emulated values. Comparison with the underlying 2D747

fields of altitude and fuel used in the simulations does not reveal clear in-748

fluence of either one of these fields on the emulated output (except for the749

ignition points to the south-west of non-burnable locations). An animated750

version of Figure 12a with varying wind is available as Supplementary mate-751

rial. Considering that the approximation errors of the emulator are relatively752

low, it appears that, overall, the map generated using the emulator highlights753

locations where ignition would induce larger burned areas.754

5 Conclusions755

The basis for the present study was simulations of wildland fire spread with756

the numerical solver ForeFire using the underlying ROS model of Rothermel.757

These simulations represented free fire spread during one hour from a small758

initial burned surface located at all possible areas in Corsica island. The759

terrain was represented by 2D fields of fuel and altitude at approximately760

80-m resolution in the simulations. Some environmental input parameters,761

namely FMC, wind speed, and perturbation of fuel parameters, were also762
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allowed to vary in a wide range. ForeFire simulations can be computed in a763

reasonable amount of time, yet too high for applications that require a large764

number of simulations on a daily basis. This motivated the use of an emulator765

in order to faster compute an approximation of the output simulated burned766

area (in hectares).767

The proposed approach consisted in training a DNN used for regression.768

The network has a hybrid architecture to deal with 2D fields of environmental769

parameters and with scalar inputs. On the one hand, the 2D fields are770

restricted to a square of 20 km side centered around the ignition point to filter771

out information that is, for the most part, not used during the simulation,772

and these fields go through convolutional blocks due to their similarity to773

images. On the other hand, the remaining scalar inputs go through a dense774

block and are concatenated with last layer of the convolutional part. Then,775

the rest of the network consists in more dense blocks. Training was carried776

out with a large dataset of size 5× 106 obtained from a LHS sample, which777

could be augmented during training, and a complementary test sample of778

size 104 was obtained from a low-discrepancy sequence.779

The DNN achieved good approximation of burned surface area simulated780

by ForeFire. The last layer of the convolutional part of the DNN for all781

fuel cells (∼ 1.2 × 106) of the map of Corsica for which ignition is possible782

in the simulation is pre-computed. This allows to reduce computational783

time since the resulting positional information can be used together with784

the scalar inputs to run computations with only the remaining part of the785
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DNN, which was chosen as emulator of burned surface area. The emulator786

showed satisfactory performance. In the test dataset, it explains 94.0% of787

the variance of the output, it has a MAPE of 32.8%. Also, compared to the788

ForeFire simulations for fire danger mapping, the emulator computations789

are carried out thousands of times faster on a 32-CPU machine. Finally,790

the overall influence of the inputs on emulator output seems consistent with791

typical behavior of wildland fire spread.792

Preliminary results suggest that the emulator is suited to ensemble pre-793

dictions and fire danger mapping, notably due to the considerable speed-up794

factor. For instance, 1.2 million ForeFire simulations requiring 25 s on aver-795

age would be computed in more than 10 days on a 32-CPU machine, while796

this took about 40 s with the emulator, that is to say more than 20,000 times797

faster.798

Even though the DNN was trained for Corsica using ForeFire, the method799

presented in this work could be applied to other regions and/or similar fire800

spread simulators. In this method, the two most computationally expensive801

steps are 1) running the simulations required for the training dataset and 2)802

training the DNN. Thanks to high-performance computing resources (multi-803

CPU machines for the simulations and a GPU-accelerated core for training),804

both steps only took about 10 days in the present study. In other cases with805

bigger territories (e.g. at the scale of a country), one can expect that an806

even larger training dataset will be required to obtain comparable approx-807

imation error. Also, if the spatial resolution of the data maps is different,808
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one may consider adapting the convolutional part. Regarding data size, the809

available RAM also poses a constraint on the batch size used during training.810

For these reasons, the authors strongly recommend using high-performance811

computing resource to apply the method and starting with a relatively small812

training dataset before moving on to a larger dataset. In spite of the high813

computational time for those two steps, once the DNN is trained and the814

emulator is obtained, the resulting speed-up factor should be worthwhile.815

A major research perspective consists in evaluating the emulator for use816

in ensemble predictions and fire danger mapping, but now in a more extensive817

manner. In particular, actual weather forecasts that cover the whole island818

will be used to generate fire danger maps for every hour (at least) of a given819

day. This process can be carried by considering several real fire cases or820

an entire fire season. Depending on the ability of the emulator to quickly821

identify the locations with higher fire danger ahead of time, it could provide822

valuable help in an operational context.823

Another perspective is to investigate how the DNN compares with other824

approximation techniques (regression or interpolation), but their application825

can be quite computationally expensive with large training datasets and may826

require to carry out data reduction on high-dimensional inputs. One may also827

focus on the neural network architecture to either increase its performance or828

extend its application to more scenarios of wildland fire spread simulations. A829

first extension could be to consider more simulation outputs, for instance the830

burned surface area every ten minutes after ignition. In this case, the DNN831
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could yield a vector output that represents burned areas at different forecast832

times (instead of a single scalar) where each component could be expressed833

as the sum of the previous component plus a positive quantity. Similarly,834

inputs such as wind speed vector and FMC could vary during the simulation835

time. This would entail more possibilities in simulated scenarios, making836

the emulator more relevant for simulations of fires spreading during 1 hour837

or more, provided that it is trained with realistic weather time series, the838

definition of which is not obvious. As for network architecture, upsampling839

layers could be considered hoping that they would re-constitute a good raster840

approximation of the burned surface. This burned surface could either be841

used directly as output (as in Hodges & Lattimer, 2019) or as the layer842

previous to the final output node estimating the number of hectares burned.843

Also, multi-dimensional recurrent neural networks (Graves, Fernández, &844

Schmidhuber, 2007) could be considered as substitute for the convolutional845

part of the DNN. Regardless of the complexity of the emulator, the main846

properties to pursue remain the same: low approximation error and reduction847

in computational time.848
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