Dominique Benielli

Baptiste Bauvin

Cécile Capponi

Sokol Koço

Hachem Kadri

Riikka Huusari

François Laviolette

Toolbox for Multimodal Learn (scikit-multimodallearn)

. This paper details the content of the library, including a specific multimodal data formatting and classification and regression algorithms. Use cases and examples are also provided.

Introduction

Learning from multiple views deals with the integration of different representations of the data, that can be either redundant, complementary, independent, or contradictory, in order to solve a learning problem [START_REF] Cesa-Bianchi | Guest Editorial: Learning from multiple sources[END_REF][START_REF] Sun | A survey of multi-view machine learning[END_REF]. Thus, learning over all the views is expected to produce a final model that performs better than models learnt on individual views separately. Multi-view learning is a setting of machine learning which was initially devoted to semi-supervised tasks with view agreement [START_REF] Blum | Combining labeled and unlabeled data with co-training[END_REF], and later approaches penalizing view disagreements [START_REF] Janodet | Boosting Classifiers built from Different Subsets of Features[END_REF], while mainly considering only two views. Surfing along the supervised side of multi-view learning, the assumption on view agreement is no longer considered, for the focus is set on exploring the complementarities (or diversity) of views. Methods of supervised multi-view learning include Multiple Kernel Learning [Bach et al., 2004, Gönen and[START_REF] Gönen | Multiple kernel learning algorithms[END_REF], multi-view machines [START_REF] Cao | Multi-view machines[END_REF], ensemble-based methods [START_REF] Koço | Tackling the uneven views problem with cooperation based ensemble learning methods[END_REF]Capponi, 2011, Goyal et al., 2017], etc.

This paper presents a collaborative toolbox which implements algorithms for multimodal supervised learning where each labelled example is observed under several views. Compatible with scikit-learn and numpy libraries, it comes with a intuitive input format for multi-view data sets which allows the use embedded algorithms in model selection facilities of sklearn. In this paper, we consider that mutli-view and multi-modal can be used interchangeably to qualify the type of data set we present, even if it can have different meaning in some fields.

Toolbox scikit-multimodallearn at a Glance

The toolbox scikit-multimodallearn aims at providing a unified format for multi-view data representation by implementing a data structure in the form on a python class inheriting from the numpy array class. Empowered by this novel data structure, we propose the implementation of four multi-view algorithms as python classes each implementing a classifier and rigorously respecting the scikit-learn syntax for learning algorithms. A detailed documentation and a technical manual are available online.1

Installing and Discovering scikit-multimodallearn

The installation of the toolbox is made easy by the use of pip: one just has to execute pip install scikit-multimodallearn in a terminal, or pip install -e . if you have sources in local. If needed, the package can be downloaded from Github. 2 The development has been performed using continuous integration with Docker and automated tests, covering 90% of the code. A technical documentation, including the automated Sphinx documentation and examples are available online3 to allow collaborative development.

Input Data Format

Multi-view data are encoded by MultiModalArray, a python class which encapsulates information in numpy array-like format adapted for multi-modal learning. A first attempt to deal with sparse data representation is also included in the MultiModalSparseArray class.

This groundwork is crucial for multi-view algorithm development as it allows to implement algorithms that can treat multi-view data sets while being compatible with the very useful scikit-learn library. In particular, algorithms implemented with scikit-multimodallearn take the exact same arguments as their scikit-learn basic counterparts: fit, predict and score, take either a MultiModalArray, MultiModalSparseArray, a dictionary or a simple numpy array coupled with a list of view indices range in views ind as input, enabling scikit-multimodallearn to be as versatile and user-friendly as possible. In the following example, a multiview data set is instantiated with a multi-view version of MNist [START_REF] Deng | The mnist database of handwritten digit images for machine learning research[END_REF] for which we generated the HOG [START_REF] Triggs | Histograms of oriented gradients for human detection[END_REF] ([0 , 192 , 384 , 576 , 768])

Architecture: Classifier Class and Algorithms

As a second major contribution, this library provides four multi-view classification algorithms that are designed to learn with multiple views (i.e. not restricted to only two views). These algorithms fall into two categories: kernel-based binary classifiers such as MVML [START_REF] Huusari | Multi-view metric learning in vector-valued kernel spaces[END_REF], a classification version of the MKL algorithm [START_REF] Kloft | lp-norm multiple kernel learning[END_REF]; and multi-class boosting algorithms such as MumBo [START_REF] Koço | A boosting approach to multiview classification with cooperation[END_REF] and Mu-Combo [START_REF] Koço | Tackling the uneven views problem with cooperation based ensemble learning methods[END_REF]:

• MVML uses machinery from the theory of operator-valued kernels and vector-valued RKHS to learn simultaneously a vector-valued function to solve the supervised learning problem, and a metric acting between each pair of views in the data.

• lp-MKL provides co-regularization and multiple kernel learning which are two well known kernel-based frameworks for learning in the presence of multiple views of data.

• Mumbo encourages the collaboration between major and minor views, in order to enhance the performances of classifiers usually learnt only on the major view.

• MuComBo is adapted to imbalanced learning problems, its adds a balanced weight on classes to the collaboration between view of Mumbo.

The algorithms are implemented in four main classes : MVML, MKL, Mum-boClassifier, MuComboClassifier, and two parent abstract meta classes MKernel and UBoosting for code factorization. As required by scikitlearn, the main class inherits from BaseEstimator or BaseEnsemble and ClassifierMixin from sklearn.base.

In addition, the kernel-based algorithms scale up to large training sets using a block-wise Nyström approximation of the multi-view kernel matrix (proposed as option).

Finally, as the code for these algorithms respects the guidelines given by scikit-learn, it is easy to add multi-view algorithms to the library using the tools provided by scikit-learn to test the compatibility and the data format provided by scikit-multimodallearn.

Multimodal Estimators Use Case

We present in the following a use case for initializing a MumboClassifier estimator. MuComBoClassifier, MVML and MKL can be used the same way, and Mu-ComBoClassifier with base estimator parameter initialized to a (list of) monoview classifier(s), the default classifier being the default Decision-TreeClassifier of scikit-learn.

scikit-learn Compatibility

A crucial advantage stemming from the compatibility of scikit-multimodallearn with scikit-learn is the underlying inheritance of several functionalities, such as :

• train test split of scikit-learn can be used with MultiModalArray as demontrated in 2.4;

• cross val score can be used transparently on multimodal estimator for multiviews data.

>>> # Instantiating MuComboClassifier >>> clfm = MuComboClassifier (base_estimator = base_estimator) >>> from sklearn . model_selection import cross_val_score >>> # usage cross_val_score on MuComboClassifier >>> cross_val_score (clfm , XX , y , cv =5) array ([0.96666667 , 0.96666667 , 0.9 , 0.93333333 , 1.])

• grid search, can also be used directly, for example, through OneV-sOneClassifier for the non-multiclass MVML.

Results

Figure 1 shows the results of a benchmark, with 5-folds cross validation on the multi-view version of MNist presented in Section 2.2. We tested a monoview decision tree and Adaboost [START_REF] Schapire | Explaining adaboost[END_REF] on each view, their early fusion versions and the four algorithms of scikit-multimodallearn. All the implemented algorithms output higher accuracy scores than the monoview approaches and the naive fusion methods. MuCombo, despite being dedicated to imbalance problems, still displays an interesting score for this balanced task.

Conclusion

scikit-multimodallearn offers specialized algorithms dedicated to multimodal supervised learning developed in Python3 on free licence, with an easy and transparent use for the user accustomed to the uses of scikit-learn.

We are currently working on a more robust integration of sparse matrices and the addition of a data format allowing to load the views dynamically when needed, such as HDF5. Finally, the scikit-learn and SuMMIT compatibility will the multi-view community to develop their own algorithms on this framework to build a large library.

Figure 1 :

 1 Figure 1: Accuracy results on a multi-view version of the multi-class MNist data set, computed with SuMMIT [Bauvin et al., 2021] in which early and late fusion are already implemented.

'

 estimator__n_loops ': (6 , 10) , ' es t i m at o r _ _n y s t ro m _ p ar a m ': (1.0 , 0.3) , ' estimator__kernel ': (' linear ' , ' polynomial ') , ' estimator__lmbda ': (0.1 ,) , ' estimator__eta ': (1 ,) } >>> # Instantiating the grid search object and fitting it >>> grid = GridSearchCV (est , param , cv = 5) . fit (XX , y) >>> # Getting the best score >>> grid . best_score_ 0.9693934335002783 >>> grid . best_params_ { ' estimator__eta ': 1 , ... ' estimator__n_loops ': 6 , ' e s ti m a t or _ _ n ys t r o m_ p a r am ': 1.0}

 in 12 directions, and selected 3 random directions for each view.

	>>> import numpy as np
	>>> from multimodal . datasets . data_sample import
	MultiModalArray
	>>> from multimodal . datasets . base import load_dict
	>>> from multimodal . tests . data . get_dataset_path import
	get_dataset_path
	>>> dic_digit = load_dict (get_dataset_path (" multiview_mnist .
	npy "))
	>>> y = np . load (get_dataset_path (" mnist_y . npy "))
	>>> XX = MultiModalArray (dic_digit)
	>>> XX . shape
	(5000 , 768)
	>>> XX . n_views
	4
	>>> XX . views_ind
	array

Hosted here https://dev.pages.lis-lab.fr/scikit-multimodallearn/ .

Hosted here https://github.com/dbenielli/scikit-multimodallearn .

Hosted here http://dev.pages.lis-lab.fr/scikit-multimodallearn/tutorial/auto examples/index.html .

Acknowledgements

This work is supported by National Science and Engineering Research Council of Canada (NSERC) Discovery grant 262067, and granted by Lives Project (ANR-15-CE23-0026).