
HAL Id: hal-03473101
https://hal.science/hal-03473101

Preprint submitted on 9 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

What I Cannot Predict, I Do Not Understand: A
Human-Centered Evaluation Framework for

Explainability Methods
Thomas Fel, Julien Colin, Rémi Cadène, Thomas Serre

To cite this version:
Thomas Fel, Julien Colin, Rémi Cadène, Thomas Serre. What I Cannot Predict, I Do Not Understand:
A Human-Centered Evaluation Framework for Explainability Methods. 2021. �hal-03473101�

https://hal.science/hal-03473101
https://hal.archives-ouvertes.fr


What I Cannot Predict, I Do Not Understand:
A Human-Centered Evaluation Framework for Explainability Methods

Thomas Fel1,3,4 * Julien Colin1,3 * Rémi Cadène1,2 † Thomas Serre1,3
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Abstract

A multitude of explainability methods and theoretical
evaluation scores have been proposed. However, it is not
yet known: (1) how useful these methods are in real-world
scenarios and (2) how well theoretical measures predict
the usefulness of these methods for practical use by a hu-
man. To fill this gap, we conducted human psychophysics
experiments at scale to evaluate the ability of human par-
ticipants (n = 1, 150) to leverage representative attribution
methods to learn to predict the decision of different image
classifiers. Our results demonstrate that theoretical mea-
sures used to score explainability methods poorly reflect
the practical usefulness of individual attribution methods
in real-world scenarios. Furthermore, the degree to which
individual attribution methods helped human participants
predict classifiers’ decisions varied widely across catego-
rization tasks and datasets.

Overall, our results highlight fundamental challenges
for the field – suggesting a critical need to develop better
explainability methods and to deploy human-centered evalu-
ation approaches. We will make the code of our framework
available to ease the systematic evaluation of novel explain-
ability methods.

1. Introduction

There is now broad consensus that simply evaluating the
test accuracy of computer vision systems does not provide
a sufficient guarantee that these systems are safe to be de-
ployed in the real-world [34,42] as those systems are capable
of exploiting dataset biases and other statistical shortcuts
to achieve unprecedented levels of accuracy [13, 21]. A
growing body of research thus focuses on making modern
computer vision systems more trustworthy – in part via the
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Figure 1. We study the relationship between the theoretical scores
used to evaluate explainability methods versus their usefulness in
practical cases. A motivating example is proposed here showing
three commonly used attribution methods ranked from most faithful
(Saliency) to least faithful (Grad-CAM) according to the commonly
used Deletion metric [37, 51]. The image on the left is correctly
classified by the classifier as a “Red Fox”. Surprisingly, the most
faithful explanation (Saliency) seems more complex to grasp for
a human observer and is likely to be of little use in real-life situa-
tions. Here we conducted large-scale psychophysical experiments
to evaluate the practical utility of these explanations and contrast
the results with those of commonly used metrics.

development of explainability methods to help interpret their
predictions [31, 37, 39, 41, 46, 49, 51]. Such explainability
methods will find broad societal uses – like easing the de-
bugging of self-driving vehicles [54] and helping to fulfill
the “right to explanation” that European laws guarantee to
its citizens [22].

Here, we consider the problem of evaluating state-of-
the-art explainability methods. Arguably, these methods
should be evaluated directly according to their usefulness
to a human experimenter, i.e., how much they help under-
stand how a system classifies arbitrary inputs. However, in
practice, these methods are instead evaluated using surrogate
measures defined axiomatically [6, 9, 32, 54]. Building on
previous work [20,30], we propose a practical and actionable
definition of an explainable model which we use to introduce
a human-centered evaluation framework.



A Meta-predictor perspective. Before providing a rigor-
ous definition of interpretability, let us motivate our approach
with an example: a linear classifier is often considered to
be readily interpretable by a trained user because its inner
working is sufficiently intuitive enough that it can be com-
prehended by a human user. A user can in turn build a
mental model of the classifier such that it can potentially
successfully predict the classifier’s output for arbitrary in-
puts (i.e., by visually matching the degree to which “im-
portant” features associated to high classification weights
are present in the input). In essence, we suggest that the
model is interpretable because the output can be predicted.
This concept of predicting the classifier’s output is central
to our approach and we conceptualize the human user as a
Meta-predictor of the machine learning model. This notion
of Meta-predictor is also closely related to the notion of sim-
ulatability [15, 20, 23, 30, 38]. We will define the term more
formally in Sec. 3.1.

In contrast to linear classifiers, deep neural network
models are highly non-linear and possess numerous pa-
rameters which render them hardly interpretable to hu-
man users. To make these models more interpretable,
many different explainability methods have been intro-
duced [11, 20, 37, 39, 41, 45, 48, 49, 51, 55]. In vision, these
methods typically render an explanation by calculating an
importance score for each input pixel which are then dis-
played as a heatmap – also called an attribution map – re-
vealing regions of the image that support the model’s deci-
sion. Despite the existence of a wide range of explainability
methods, assessing the quality and reliability of these meth-
ods remains an open problem. The community has taken
up the issue and proposed two commonly used approaches
to evaluate methods: one based on ground truth annota-
tions [17,19,20,37,41,51,56] and a second more commonly
used on faithfulness metrics [19, 20, 29, 37, 40, 51].

In line with previous approaches [23, 35, 39, 43], we put
humans at the center of the evaluation procedure. More
specifically, we focus on measuring how useful explana-
tions from common methods are to human users in the sense
that they can be leveraged to build a more accurate meta-
predictor of the model to be explained. We ran a series of
large-scale online psychophysics experiments to evaluate
the usefulness of 6 representative attribution methods for
several binary categorization tasks derived from 3 different
datasets (a standard biased dataset, a fine-grained dataset
of leaf images, and ImageNet). We evaluated the ability of
human participants (n = 1, 150) to use attribution maps to
learn to predict the decision of different image classifiers.
Our results demonstrate that (1) the degree to which attribu-
tion methods were helpful to human observers varied widely
across categorization tasks; (2) the faithfulness [37, 40] and
our usefulness measures appeared to exhibit only a very
weak correlation. These results suggest that faithfulness

measures are surprisingly poor predictors of the practical
usefulness of current attribution methods. In the next section,
we highlight the originality of our proposed human-centered
evaluation framework compared to related approaches. Then,
we formalize our usefulness measure and describe our ex-
perimental design with its control experiments. Finally, we
report our main experiments on 3 datasets including Ima-
geNet and discuss how our results suggest a critical need for
better explainability methods and better quality measures for
these methods.

2. Related work
Evaluations based on ground-truth annotations A first
class of evaluation approaches scores explainability methods
according to their ability to identify image locations that
overlap with the target object defined either by a human-
derived bounding box or a segmentation mask [17, 19, 20,
37, 41, 51]. More recently, the evaluation method called
Pointing Game [56] counts the number of times the most
important region according to the explanation intersects with
the location of the object to classify.

All the aforementioned evaluation methods suffer from
a critical flaw. They assume that image classifiers rely on
visual features that belong to the target object. This is obvi-
ously not the case as they often rely on contextual features
and all kinds of other visual shortcuts [21]. Indeed, for a
model not using the target object but shortcuts for its de-
cision, a proper explainability method which points to this
shortcut will be unfairly penalized (for not having pointed
to the mask of the object). Conversely, our approach does
not make any such assumptions. Irrespective of whether
image classifiers provide correct or erroneous predictions,
our approach assesses whether explanations ultimately help
(or not) a user better understand the basis for classifying
images.

Evaluations based on faithfulness measures A second
class of approaches has recently started to emerge and do
not make use of any ground-truth annotations – specifically
to avoid some of the aforementioned limitations. They in-
troduce measures of faithfulness to the model. Common
approaches [37, 40] measure the change in the classifica-
tion score when the most important pixels are progressively
removed. The bigger the drop, the more faithful the expla-
nation method is. To ensure that the drop in score does not
come from a change in distribution of the perturbated images,
the ROAR [25] methods include an additional step where
the image classifier is re-trained in between each removal
step. These methods do not require ground-truth annotations
and hence can be used even for datasets that do not include
object masks or bounding boxes. As a consequence, they are
quite popular in computer vision [19, 20, 29, 37, 40, 51] and
natural language processing [4, 5, 51].



Nevertheless, faithfulness measures have recently been
criticized as they all rely on a baseline to remove important
areas, a baseline that will obviously give better scores to
methods relying internally on the same baseline. [26]. More
importantly, they do not consider humans at any time in the
evaluation. As a result, it is not clear if the most faithful
explanation methods can be practically useful to humans.

Evaluations based on human data A third class of ap-
proaches consists in evaluating the ability of humans to
leverage explanations for different purposes [2, 8, 10, 23, 33,
35, 36, 39, 41, 43]. For instance, in [41] and [39], explana-
tions are evaluated according to how much they help human
participants’ to identify biases in models. In [39], a classifier
was trained on a biased dataset of wolves and huskies: the
model consistently uses the background to classify. They
asked participants if they would trust the model a first time
after showing images and predictions without explanations,
and a second time after showing the explanations on the
same images. Showing explanations had an effect on the re-
ported trust. We also report results on this dataset. However,
our psychophysical experiments differ greatly from those
presented in [39] in that we do not ask users if they feel a
sentiment of trust, but directly measure their ability to pre-
dict the output of the model in the absence of explanations
on unseen test images. We also introduce several controls
with noisy explanations.

Another line of closely related work [23, 35, 43] centers
around the notion of simulatability which was first intro-
duced in [30] and later refined in [15]. They introduce dif-
ferent experimental procedures to measure if humans can
learn from the explanations how to copy the model predic-
tion on unseen images. Some provide the explanations at
test time [35, 43]. Similar to ours but for tabular data, [23]
proposes a more difficult procedure where the explanations
are hidden at test time. This forces the participants to learn
the mechanisms to simulate the model at training time where
the explanations are shown. Differently to ours, they also
provide the groundtruth class associated with the input image
during training. We argue that it should be removed since the
end goal is to predict the model outputs and not to identify
when the model gets an accurate prediction. A second key
difference is that they have two phases with each time a train-
ing and testing time. They measure the difference between
the first phase where the participants do not see any explana-
tions and the second phase with the same examples where
explanations are shown at training time. We argue that any
improvement observed during the experimental condition
could be the result of a learning effect because participants
saw the same samples and the associated class label twice.
Instead, we only have a single phase and we measure the
impact of explanations by comparing results of participants
that had explanations at training time with others that did
not. We made sure that our results are statistically significant

by having enough participants in our study.

3. A Meta-predictor evaluation framework

3.1. Formalism

We consider a standard supervised learning setting where
f is a black-box predictor that maps an input x ∈ X (e.g.,
an image) to an output f(x) ∈ Y (e.g., a class label). One
of the main goals of explainable AI is to yield useful rules
to understand the inner-working of a model f such that it is
possible to infer its behavior on unseen data points. To this
end, a current approach consists in studying explanations
(attribution map, concept vectors, feature visualization) for
several predictions. Formally, Φ is any explanation func-
tional which, given a predictor f and a point x, provides an
information Φ(f ,x) about the prediction of the predictor.
In our experiments, Φ is an attribution method.

Understandability-Completeness trade-off. Different
attribution methods will typically produce different
heatmaps – potentially highlighting different image regions
and/or presenting the same information in a different format.
The quality of an explanation can thus be affected by two
factors: faithfulness of the explanation (i.e., how much
pixels or input dimensions deemed important effectively
drive the classifier’s prediction) and the understandability of
the explanation for a user.

At one extreme, an explanation can be entirely faithful
and provide all the information necessary to predict how a
classifier will assign a class label to an arbitrary image (by
rendering all the parameters of the classifiers). However,
such information will obviously be overly complex to be
understood by a user and hence it is not understandable.
It should be noted that when this is understandable, for a
linear model, for example, it is generally the most suitable
explanation. Conversely, a simple explanation will be un-
derstandable but it may ultimately mislead a user if it is not
faithful. That is to say, just because a human agrees with an
explanation does not necessarily mean that it reflects how
the model is working.

In the end, this means that there is a trade-off between the
amount of information provided by an explanation and its
comprehensibility to humans. In the middle of this trade-off
lies the most useful explanation.

Focus on usefulness. We describe a new human-centered
measure that incorporates this trade-off into a single useful-
ness measure by empirically evaluating the ability of human
participants to learn to “predict the predictor”, i.e., to be an
accurate Meta-predictor. Indeed, if an explanation allows
users to infer precise rules for the functioning of the predic-
tor on past data, the correct application of these same rules
should allow the user to correctly anticipate the model’s



Figure 2. We describe a human-centered framework to evaluate explainability methods borrowing from the concept of Meta-predictor. The
framework requires a black box model f , an explanation method Φ and a human subject ψ which will try to predict the predictor, hence,
the name Meta-predictor. The first step is the learning phase where the Meta-predictor is training using K samples x, together with the
associated model predictions f(x) and explanations Φ(f ,x). The goal of this learning phase is for the Meta-predictor to try to uncover a
rule describing the functioning of the model from the triplets (x,Φ(f ,x),f(x)). Then, the second step is the evaluation phase where we
test the Meta-predictor accuracy on new samples x̃ by comparing its predictions ψ(x̃) to those of f(x̃). The better his predictions are, the
more useful the rules learned during his training are and therefore the method is relevant.

decisions on future data. Scrutable but inaccurate explana-
tions will result in an inaccurate Meta-predictor – just like
accurate inscrutable ones. This Meta-predictor framework
avoids current pitfalls such as confirmation bias - just be-
cause a user likes the explanation does not mean they will
be a better Meta-predictor - or prediction leakage on the ex-
planation - in simulatability experiments, as the explanation
is available during the test phase, any explanation that leak
the prediction would have a perfect score, without giving us
any additional information about the model-. We will now
formally describe the metric build using this framework.

We assume a dataset D = {(xi,f(xi),Φ(f ,xi)}Ki=1

used to train human participants to learn to predict a classi-
fier’s output f from K samples made of an input image xi,
the associated predictions f(xi) and explanations Φ(f ,xi).
We denote ψ(K) a human Meta-predictor after being trained
on the dataset D (see Fig. 2) using explanations. We de-
note ψ(0) human meta-predictions after participants were
trained on the same dataset but without explanations to offer
baseline accuracy scores.

We can now define the usefulness of an explainability
method Φ after training participants on K samples through
the accuracy score of the Meta-predictor normalized by the
baseline Meta-predictor accuracy:

Utility-K =
P(ψ(K)(x) = f(x))

P(ψ(0)(x) = f(x))
(1)

Utility-K score thus measures the improvement in accuracy
that the explanation has brought. It is important to empha-
size that this Utility measure only depends on the classifier
prediction and not on the ground-truth label as recommended
by [28]. After fixing the number of training samples K, we
compare the normalized accuracy of different Meta-predictor.
The Meta-predictor with the highest score is then the one

whose explanations were the most useful as measures com-
pared to a no-explanation baseline.

Utility metric. In practice, we propose to vary the num-
ber of observations K ∈ {K0, ...,Kn} and to consider
an aggregated Utility score by computing the area under
the curve (AUC) of the Utility-K. The higher the AUC
the better the corresponding explanation method is. For-
mally, given a curve represented by a set of n points C =
{(K0,Utility-K0), ..., (Kn,Utility-Kn)} where Ki−1 <
Ki we define our main metric Utility = AUC(C).

3.2. Experimental design

We first describe how participants were enrolled in the
study, the exclusion criteria used to filter out uncooperative
online participants, and our general experimental design
(including both experimental and control conditions).

Participants Behavioral accuracy data were gathered
from n = 1, 150 participants using the Amazon Mechani-
cal Turk (AMT) platform (www.mturk.com). AMT is a
powerful tool that allows the recruitment of massive trials of
anonymous workers screened with a variety of criteria [12].
All participants provided informed consent electronically
and were compensated $1.4 for their time (∼ 5–8 min). The
protocol was approved by the University IRB and was carried
out in accordance with the provisions of the World Medical
Association Declaration of Helsinki.

For each of the three tested datasets, we make sure -after
filtering- to have the results from at least n = 240 partici-
pants (30 per condition, 8 conditions) in order to obtain a
statistical power* of 80% to detect a medium effect size with
our experimental design.

*The statistical power is the probability that we correctly reject the null
hypothesis (H0) if a specific alternative hypothesis (H1) is true

www.mturk.com


Pruning out uncooperative participants To prune out
uncooperative participants, we subjected them to a 3-stage
screening process. First, participants completed a short prac-
tice session to make sure they understood the task and how
to use the attribution methods to infer the rules used by the
model. Second, as done in [16], we asked participants to
answer a few questions regarding the instructions provided
to make sure they actually read and understood them. Third,
during the main experiment, we took advantage of the reser-
voir to introduce a catch trial. The reservoir is the place
where we store the training example of the current session,
which can be accessed during the testing phase. We added
a trial in the testing phase of each session where the input
image corresponded to one of the training samples used in
the current session: since the answer is still on the screen
(or a scroll away) we expect participants to be correct on
these catch trials. If they answered incorrectly, the partici-
pants were excluded from further analysis. Additional details
regarding the selection criteria are given in the Appendix.

General study design It included 3 conditions: an experi-
mental condition where an explanation is provided to human
participants during their training phase (see Fig. 2), a base-
line condition where no explanation was provided to the
human participants, and a control condition where a bottom-
up saliency map [27] was provided as a non-informative
explanation. This last condition provides a control for the
possibility that providing explanations along with training
images simply increases participants’ engagement in the task.
As we will show in Sec. 4, such non-informative explanation
actually led to a decrease in participants’ ability to predict
the classifier’s decisions.

Each participant was only tested on a single condition to
avoid possible experimental confounds (including learning
confounds introduced in [23] by testing the same partici-
pants on the same images with and without explanations).
The main experiment was divided into 3 training sessions
(with 5 training samples in each) each followed by a brief
test. In each individual trial, an image was presented with
the associated prediction of the model, either alone for the
baseline condition or together with an explanation for the
experimental and control condition. After a brief training
phase (5 samples), participants’ ability to predict the classi-
fier’s output was evaluated on 7 new samples during a test
phase. During the test phase, no explanation was provided
to participants to assess their understanding of the classifiers
while limiting confounds. One particularly problematic con-
found could arise from the presentation of the explanation in
case the explanation leaks information about the class label.†

We also propose to use a reservoir that subjects can refer

†Imagine an attribution method that would solely encode the classifiers’
prediction. Participants would be able to guess the classifier’s prediction
perfectly from the explanation but the explanation per se would not help
participants understand how the classifiers work.

to during the testing phase to minimize memory load as a
confounding factor which was reported in [23](see Appendix
for an illustration).

Controlling for prior class knowledge To control for
users’ own semantic knowledge, we balanced the samples
shown to participants so that the classifiers were correct 50%
of the time and incorrect 50% of the time. In this way, a
participant who tries to simply predict the true class label
of an image as opposed to learning to predict the model’s
outputs would only be correct 50% of the time. This allows
us to control for a semantic confound in our experiments and
avoid having participants receive a high score because they
simply guess the real label.

4. Experiments
We performed three distinct experiments in total – using a

variety of neural network architectures and 6 representative
attributions methods. Each of these experiments aimed at
testing the usefulness of the explanation in a different context
or for a different purpose.

Setup. One of the first uses of attribution methods was for
bias detection and [39] were the first to build an evaluation
around the usefulness of explanation for humans to detect
biases. The already existing positive results make it a good
control experiment to measure the effectiveness of the frame-
work proposed in Sec. 3.1. For this experiment, we used the
same model as in the original paper: InceptionV1 [50], and a
similar dataset of Husky and Wolf to bias the model. In this
situation where prior knowledge of subjects can affect their
score, we balance data by showing 50% of correct prediction
and 50% of incorrect prediction. A subject relying only on
their prior knowledge will therefore end up as a bad Meta-
predictorof the model. For this experiment, the results come
from 242 subjects who all passed our screening process.

As the first dataset was artificially designed, our second
experiment is a real dataset with practical application pro-
posed by [53]. This botany dataset contains over 5, 000
images divided into 19 classes. The predictor used is a
VGG-16 [45]. We then selected 2 classes that could not be
classified using shape in order to avoid that subjects solve
the task too easily and force them to rely on non-trivial fea-
tures provided by the explanations (veins, leaf margin...).
Let us note that this scenario is far from being artificial and
is a genuine problem for the paleobotanist [53]. The classes
Betulaceae and Celastraceae fulfill this condition and have
been chosen. As subjects are lay participants from Amazon
Mechanical Turk we do not expect them to be experts in
botany, therefore we do not control for prior knowledge. In
this experiment, 240 subjects have passed all our screening
processes.

Finally, for our third experiment we used ImageNet [14],
a very large image dataset widely used in computer vision



Figure 3. Example of experiments data. Triplets: image, explanation (Grad-CAM here), prediction shown to the participants at training
time. In our Meta-predictor framework, we suggest not to show the actual label during training since the goal is to predict the model.
Moreover, during the test phase (on images not seen at the training time) the explanation is not provided since we aim to measure how well a
user is able to predict the model and not the ability of the explanation to leak the label.

and the field of Explainable AI is no exception [18, 20, 25,
36, 43, 51]. We use this dataset because we expect it to be
representative of real-world scenarios where it is difficult to
understand what the model is relying on for its decisions.
Moreover, previous works have pointed out that attribution
methods were not useful on this dataset [43], we have thus
chosen to extend our analysis to this particular case. We
use a ResNet50 [24] pretrained on this dataset as predictor.
Because prior knowledge is a major confounding factor on
ImageNet, we select a pair of classes that was heavily miss-
classified by the model, to be able to show subjects 50% of
correct prediction and 50% of incorrect prediction to control
for prior knowledge: the pair Kit Fox and Red Fox fits this
requirement. In this experiment, the results come from 241
subjects who all passed our screening process.

For all experiments, we compared 6 representative attribu-
tion methods: Saliency (SA) [45], Gradient � Input (GI) [3],
Integrated Gradients (IG) [49], Occlusion (OC) [55],
SmoothGrad (SG) [46] and Grad-CAM (GC) [41]. Further
information on these methods can be found in the Appendix.

As a faithfulness evaluation, we used the Deletion [37]
metric which is commonly used to compare attribution meth-
ods [19, 20, 29, 37, 40, 51]. A low Deletion score indicates a
good faithfulness, and we report the faithfulness score as 1−
Deletion such that a higher faithfulness score is better.

4.1. Sanity check for Usefulness

The Utility score encodes the quality of the explanations
provided by a method, the higher the score, the better the
method. Fig. 4 shows the Utility-K scores for each method
after different number of training samples were used to train
participants for the biased dataset of Husky vs Wolf.

A first observation is that the explanations have a posi-
tive effect on the Utility-K score: the explanation allows
participants to better predict the model’s output (as the Util-

Figure 4. Utility-K for Husky vs Wolf dataset. The Utility-Kof
the explanation, or the accuracy of the human Meta-predictor after
training, is measured after each training session (3 in total). All
methods have a positive effect on the score obtained - they improve
the subjects’ ability to predict the model - and are thus useful.
Moreover, the difference between the scores of the methods and the
baseline implies that the humans used the explanations well. This
is confirmed by the fact that the explanation based on Gabors filters
(Control) misled the subjects, causing them to do worse than the
baseline. Grad-CAM is the method with the most positive effect
and is statistically significantly better than the other methods.

ity scores are above 1). This is confirmed with an Analysis
of Variance (ANOVA) for which we found a significant
main effect, with a medium effect size for our conditions
(F (7, 234) = 4.58, p < .001, η2 = 0.121). Moreover, the
only score below the baseline is that of the control expla-
nation (based on Gabor filters), which do not make use of
the model. We further explore the effect of our conditions
by performing pairwise comparisons using Tukey’s Hon-
estly Significant Difference [52] to compare the different
explanations between themselves. The users in the control
condition did not perform better than the condition without



explanation.
The control condition performing worse than the baseline

is an important result, as it suggests that attributions methods
suspected to be more image-based than model-based [1]
can be misleading. This finding also reinforces the idea
that participants did make use of the explanations to try to
understand the model, which led them to either get better
at predicting when the explanations highlighted a behavior
of the model, or misleading them when the explanations
were not unrelated to the model’s decision. Here Grad-
CAM seems to be the best method as it is the only method
significantly better than our baseline condition (p = .002)
and the control condition (p < .001). Thus, participants who
received the Grad-CAM explanations performed much better
than those who did not receive them. The attributions maps,
therefore, provided participants with essential information
about the model that allowed them to train a more accurate
Meta-predictor.

Finally, some attribution methods seem more useful than
others. We found that Integrated Gradients and Saliency are
the worst explanations as both of them are significantly less
useful than Grad-CAM (p = .01, and p = .02 resp.). In
between those 2 groups lies Integrated Gradients, Smooth-
Grad and Occlusion which do not seem to have any signifi-
cant difference in their usefulness to subjects.

Figure 5. Utility-K for Leaves dataset. The Utility-K score is
measured on [53] botany dataset. As in the previous series of
experiments, the participants were able to leverage the explanations
to learn to predict the model’s predictions. All the conditions tested
here were better than the baseline.

In Fig. 5, we show results on the Leaves dataset obtained
with 240 subjects. The ANOVA across all conditions re-
vealed a significant main effect, with a medium effect for
our conditions (F (7, 232) = 3.12, p = .004, η2 = 0.086).
This implies that explanation also had an effect on the con-
struction of a better Meta-predictor in this case. More pre-
cisely, according to Tukey’s Honestly Significant Difference
test we found that the best explanations are Saliency and
SmoothGrad as they are the only ones to be significantly

better than our baseline (WE) (p = .014 and p = .48 re-
spectively). Concerning the ranking of the methods, none
is significantly better than the others. However, the Util-
ity score of Gradient � Input seems to be worse than the
other method and SmoothGrad slightly leads the ranking. A
surprising result is that Saliency which was one of the worst
explanation on the first use case, is now the best explanation
on this use case.

These two experiments allow us to verify that attributions
maps could allow humans to better predict and thus to better
understand their model. We now wish to analyze the rela-
tionship between the methods being the most useful and the
current regularly used faithfulness metrics.

4.2. Faithfulness metric as a proxy for Usefulness?

Figure 6. Utility vs Faithfulness correlation. The utility scores on
the two datasets Husky vs. Wolf (point marker) and Leaves (square
marker) are plotted showing a poor or anti-correlation between the
two measures. Concerning the ImageNet dataset (triangle marker),
the Utility scores are insignificant since none of the methods im-
proves the baseline.

The results of our utility-based human evaluation show
that not only are attribution methods useful in helping users
understand their model, but that there are substantial dif-
ferences among these methods. It would then be useful to
be able to predict this ranking without resorting to human
experiments which can be costly. The literature currently
uses automatic metrics (which do not require humans) of
faithfulness to compare methods between them, it seems
legitimate to ask if the best method on these benchmarks is
the one that helps humans the most.

On the first dataset, where Grad-CAM is the most useful
method and Integrated Gradients, Saliency the worst ones,
the faithfulness ranking in Tab. 1 designates Grad-CAM as
the least faithful method behind Saliency which gets the
best score. Surprisingly, we can observe that these results
do not seem to be only independent of the utility score but
negatively correlated. Thus, the faithfulness score does not



Method Husky vs Wolf Leaves ImageNet

Control (Random) 0.14 0.29 0.83

Saliency [45] 0.18 0.55 0.84
Grad.-Input [7] 0.17 0.74 0.78
Integ.-Grad. [49] 0.16 0.77 0.85
SmoothGrad [46] 0.10 0.56 0.69
GradCAM [41] 0.07 0.58 0.73
Occlusion [55] 0.09 0.49 0.79

Table 1. Faithfulness scores. Average faithfullness score for each
of the 3 datasets considered. Higher is better. The first and second
best results are respectively bolded and underlined.

indicate how useful a method will be on the bias detection
task.

On the second dataset, the best explanations are Smooth-
Grad and Saliency , with Gradient � Input being the worst.
From a faithfulness point of view, it is the opposite (see
Tab. 1) since Gradient � Input appears as one of the most
faithful, behind Integrated Gradients. Moreover the most
useful method: Saliency is designated as the less faithfull,
just before Occlusion. Overall, all the methods tested here
are more faithful than the baseline.

In Fig. 6, we summarize our results on all 3 datasets by
showing that explanations are useful to the subjects on the
Husky versus Wolf and Leaves datasets as the Utility scores
are above 1. However, our scores are not correlated with
the faithfulness score. Indeed, we observe a weak corre-
lation (ρ = 0.27) for the Leaves experiment and a strong
anti-correlation for the Husky experiment (ρ = −0.75) indi-
cating that the actual faithfulness metrics are a poor proxy
of usefulness.

4.3. When explanations are Useless

Fig. 6 shows that, on the ImageNet dataset, the set of
methods tested (triangle marker) does not exceed 1, the base-
line accuracy. Indeed, the experiment carried out, even with
an improved experimental design, led us to the same conclu-
sion as previous works [43]: none of the tested attribution
methods are useful. The ANOVA done on the N = 241 sub-
jects tells us that there is no significant main effects of our
conditions (F (7, 233) = 1.2, p > .05). And as expected,
the follow-up Tukey’s Honestly Significant Difference test
showed that none of the methods tested are useful against the
baselines. Therefore no ranking based on usefulness could
be established. Our previous 2 experiments indicate that,
when explanations are useful to humans, their faithfullness
seems to be either weakly or inversely correlated. In contrast
to the Utility results, the faithfulness metric gives us a clear

ranking (see Tab. 1) of the methods, indicating that once
again it fails to predict the cases where none of the methods
is useful.

We note that the control condition -that only needs the im-
age to be generated- is the 3rd most faithfull explanation and
is very close to the leading method. This may indicate the
necessity for better baselines in the faithfullness evaluation
to put into perspective the results.

4.4. Discussion

In summary, the proposed experimental protocol allowed
us to verify two things: (1) that attributions methods can
be useful -some more than others-, and (2) that the current
faithfulness score of a method poorly reflects its practical
usefulness to understand a model.

Regarding (1), the experiments conducted on the Husky
vs Wolf dataset and on the Leaves dataset allowed us to see
that our experimental design effectively captures the useful-
ness of explanations: humans perform better with explana-
tion than without it. Moreover, with our control condition,
we have results that highlight the practical risk of attribu-
tions methods that rely too heavily on image and not enough
on model [1]. This reinforces the idea that it is critically
important to evaluate the usefulness of an explanation.

The second point concerns the evaluation currently used
to evaluate attribution methods. These faithfulness evalua-
tions are poor substitutes for utility. They can therefore only
be considered as sanity checks, in the strict and limited sense
of the term. Since these evaluations do not give an equiva-
lence of utility, to properly evaluate attribution methods, it is
necessary to correctly put the human in the loop to avoid the
previous pitfalls.

Finally, as pointed out in previous works [43], in some
cases the explanation is not useful to humans. More im-
portantly, this weakness cannot be predicted from current
metrics. One of the tracks considered to explain this dysfunc-
tion is linked to the attribution methods which are limited to
describe a spatial area, thus leaving to the human the care to
bring their semantics, leaving a possible ambiguity. These in-
herent weaknesses of attribution methods suggest that other
(potentially complementary) methods of explanation should
be considered.

5. Conclusion
In this work, we propose a new experimental design to

evaluate whether explanations are useful to humans using
a Meta-predictor perspective. We also perform an online
experiment on 3 datasets to obtain a ranking of the most
useful explanations for humans. In parallel, we evaluate
these same attribution methods according to Deletion, a
widely used faithfullness metric. We find that the ranking of
explainability methods based on their faithfullness does not
correlate with their practical usefulness, which may indicate



that we are straying too far away from the original goal of
explainable AI. Our results suggest a need to develop better
metrics and human-centered methods.
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Delseny, Christophe Gabreau, Adrien Gauffriau, Bernard
Beaudouin, Ludovic Ponsolle, Lucian Alecu, Hugues Bonnin,
Brice Beltran, Didier Duchel, Jean-Brice Ginestet, Alexandre
Hervieu, Sylvain Pasquet, Kevin Delmas, Claire Pagetti, Jean-
Marc Gabriel, Camille Chapdelaine, Sylvaine Picard, Mathieu
Damour, Cyril Cappi, Laurent Gardès, Florence De Grancey,
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A. Human experiments
A.1. Experimental design

Figure 7 summarizes the experimental design used for
our experiments. The participants that went through our
experiments are users from the online platform Amazon
Mechanical Turk (AMT). We prioritized users with a Master
qualification (which is a qualification attributed by AMT to
users who have proven to be of excellent quality) or normal
users with high qualifications (number of HIT completed
= 10000 and HIT accepted > 98%) .



Figure 7. Experimental design. First, every participant goes through a practice session (fig 8) to make sure they understand how to use
attribution methods to infer the rules used by a model, and a quiz (fig 9) to make sure they actually read and understand the instructions.
Then, participants are split into the different conditions – every participant will only go through one condition. The 3 possible conditions are:
an Explanation condition where an explanation is provided to human participants during their training phase, a Baseline condition where
no explanation was provided to the human participants, and a Control condition where a non-informative explanation was provided. The
main experiment was divided into 3 training sessions each followed by a brief test. In each individual training trial, an image was presented
with the associated prediction of the model, either alone for the baseline condition or together with an explanation for the experimental and
control condition. After a brief training phase (5 samples), participants’ ability to predict the classifier’s output was evaluated on 7 new
samples (only the image, no explanation) during a test phase. To filter out uncooperative participants we also add a catch trial (fig 10) in
each test session.



A.2. 3-stage screening proccess

In this section, we show screens of our experiments, for
each screening process: the practice session (fig 8), the quiz
(fig 9), and the catch trials (fig 10). Participants that failed
any of the 3 screening process were excluded from further
analysis.



Figure 8. Practice session. Through a practice session, which is a simplified version of the main experiment, we evaluate if users understand
how to read and use explanations. Participants that failed to predict correctly any of the 5 cat test images on the first try were excluded from
further analysis.



Figure 9. Quiz. Through a quiz, we make sure that users read and understood the instructions. Participants that did not answer correctly
every question on the first try were excluded from further analysis.



Figure 10. Catch trial. We use a reservoir (to store all the examples of the current training session) that participants can refer to during the
testing phase to minimize memory load. At the top of the screen is the reservoir, at the bottom of the screen is a trial from the testing phase.
We take advantage of the reservoir to introduce a catch trial. We added a trial in the testing phase of each session where the input image
corresponded to one of the training samples used in the current session: since the answer is still on the screen (or a scroll away) we expect
participants to be correct on these catch trials. Participants that failed any of the 3 catch trials (one per session) were excluded from further
analysis.



B. Attribution methods
B.1. Methods

In the following section, the formulation of the different
methods used in the experiment is given. We define
f(x) the logit score (before softmax) for the class of
interest. An explanation method provides an attribution
score for each input variables. Each value then corre-
sponds to the importance of this feature for the model results.

Saliency [45] is a visualization technique based on the
gradient of a class score relative to the input, indicating in an
infinitesimal neighborhood, which pixels must be modified
to most affect the score of the class of interest.

ΦSA(x) = ||∇xf(x)||

Gradient � Input [7] is based on the gradient of a class
score relative to the input, element-wise with the input, it
was introduced to improve the sharpness of the attribution
maps. A theoretical analysis conducted by [3] showed that
Gradient � Input is equivalent to ε-LRP and DeepLIFT [44]
methods under certain conditions: using a baseline of zero,
and with all biases to zero.

ΦGI(x) = x� ||∇xf(x)||

Integrated Gradients [49] consists of summing the gra-
dient values along the path from a baseline state to the current
value. The baseline is defined by the user and often chosen
to be zero. This integral can be approximated with a set ofm
points at regular intervals between the baseline and the point
of interest. In order to approximate from a finite number
of steps, we use a Trapezoidal rule and not a left-Riemann
summation, which allows for more accurate results and im-
proved performance (see [47] for a comparison). The final
result depends on both the choice of the baseline x0 and the
number of points to estimate the integral. In the context of
these experiments, we use zero as the baseline and m = 80.

ΦIG(x) = (x− x0)

∫ 1

0

∇xf(x0 + α(x− x0)))dα

SmoothGrad [46] is also a gradient-based explanation
method, which, as the name suggests, averages the gradient
at several points corresponding to small perturbations (drawn
i.i.d from a normal distribution of standard deviation σ)
around the point of interest. The smoothing effect induced by
the average helps reduce the visual noise and hence improve
the explanations. In practice, Smoothgrad is obtained by
averaging after sampling m points. In the context of these
experiments, we took m = 80 and σ = 0.2 as suggested in
the original paper.

ΦSG(x) = Eε∼N (0,Iσ)(∇xf(x+ ε))

Grad-CAM [41] can be used on Convolutional Neural
Network (CNN), it uses the gradient and the feature maps
Ak of the last convolution layer. More precisely, to obtain
the localization map for a class, we need to compute the
weights αkc associated to each of the feature map activation
Ak, with k the number of filters andZ the number of features
in each feature map, with αck = 1

Z

∑
i

∑
j
∂f(x)

∂Ak
ij

and

ΦGC = max(0,
∑
k

αckA
k)

Notice that the size of the explanation depends on the size
(width, height) of the last feature map, a bilinear interpola-
tion is performed in order to find the same dimensions as the
input.

Occlusion [55] is a sensitivity method that sweeps a patch
that occludes pixels over the images, and uses the variations
of the model prediction to deduce critical areas. In the con-
text of these experiments, we took a patch size and a patch
stride of of 1 tenth of the image size.

ΦOC
i = f(x)− f(x[xi=0])

B.2. Examples of explanations

Examples of explanations from the different attributions
methods evaluated through our experiments on the Husky
vs Wolf dataset (fig 11), the Leaves dataset (fig 12) and the
ImageNet dataset (fig 13).



Figure 11. Examples of images from the Wolf vs Husky experiment, alongside their respective: Control explanation (which is a non-
informative explanation) as well as the different Attribution methods evaluated in our experiment.



Figure 12. Examples of images from the Leaves experiment, alongside their respective: Control explanation (which is a non-informative
explanation) as well as the different Attribution methods evaluated in our experiment.



Figure 13. Examples of images from the ImageNet experiment, alongside their respective: Control explanation (which is a non-informative
explanation) as well as the different Attribution methods evaluated in our experiment.


