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Introduction
PESHMELBA model

INRAE Lyon currently developing PESHMELBA model [Rouzies et al.
2019].

Simulates water and pesticide transfers on a watershed scale, while
considering the heterogeneity of landscape elements (plots).

Type of output studied : surface moisture outputs.

Perform a sensitivity analysis on PESHMELBA outputs while taking into
consideration both the temporal and the spatial aspect.

Katarina Radǐsić Sensitivity Analysis in Spatio-Temporal case 30 November 2021 2 / 19



Introduction
PESHMELBA model

INRAE Lyon currently developing PESHMELBA model [Rouzies et al.
2019].

Simulates water and pesticide transfers on a watershed scale, while
considering the heterogeneity of landscape elements (plots).

Type of output studied : surface moisture outputs.

Perform a sensitivity analysis on PESHMELBA outputs while taking into
consideration both the temporal and the spatial aspect.
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Introduction
Challenges on PESHMELBA


Y (1)(t)
Y (2)(t)

...

Y (M)(t)

 = M(X , t), t ∈ T

where M is the number of areal units.

time dependent outputs
spatial interactions
high number of input
parameters (145)
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Katarina Radǐsić Sensitivity Analysis in Spatio-Temporal case 30 November 2021 4 / 19



Table of contents

1 Screening

2 Temporal aspect
Generalisation of Sobol’ indices
Estimation of Sobol’ indices
Results for Sobol’ indices on one areal unit at a time

3 Spatial aspect
Vector projections
Comparison between Gamboa and Xu approach
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2. Screening

Morris method : computationally cheap, classifies input parameters in
two groups, influential and non-influential.

Developed for scalar outputs.

Apply the Morris method to the scores on the functional principal
components of one areal unit at a time.
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Input parameters reduced from 145 to 52 influential parameters at the
watershed scale.
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2. Temporal aspect
2.1. Generalisation of Sobol’ indices [Lamboni et al. 2010]

How to generalize Sobol’ indices to functional outputs ?

Y (t) = M(X , t), t ∈ T , m ∈ {1..M}
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How to generalize Sobol’ indices to functional outputs ?

Y (t) = M(X , t), t ∈ T , m ∈ {1..M}

Y (t) = µ(t) +
k∑

j=1
ξjψj(t)

k∑
j=1

ξj = M∗(X)

The output is scalar now, we fall back into the classical formulation for
Sobol’ indices calculation.
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2. Temporal aspect
2.2. Estimation of Sobol’ indices [Sudret 2008]

Polynomial Chaos Expansion (PCE) metamodel :

Y =
∑

α∈NK

yαΨα(X)

where K is the number of input parameters.
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Polynomial Chaos Expansion (PCE) metamodel :

Y =
∑

α∈NK

yαΨα(X)

where K is the number of input parameters.
Sobol’ indices are obtained analytically from PCE :

Si =
∑
α∈Ii

y2
α/D

Ii =
{
α ∈ NK : αi > 0, αj ̸=i = 0

}
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Y =
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α∈AK ,p
q
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where K is the number of input parameters.
Sobol’ indices are obtained analytically :

Ŝi =
∑

α∈I∗
i

y2
α/D

I∗
i =

{
α ∈ AK ,p

q : αi > 0, αj ̸=i = 0
}

The precision of the Sobol’ indices obtained depends on the precision of
the PCE metamodel w.r.t. the real model M.
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3. Temporal aspect
3.3. Results for Sobol’ indices on one areal unit at a time

Figure – Validation set metamodel output vs
PESHMELBA simulation.

Quality of the PCE
metamodel :
R2 > 0.95 on
validation set.
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3.3. Results for Sobol’ indices on one areal unit at a time

Figure – Sobol’ indices for areal unit UH503. Bar
colours refer to soil types.

Quality of the PCE
metamodel :
R2 > 0.95 on
validation set.
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2. Temporal aspect
2.3. Results for Sobol’ indices on one areal unit at a time

Figure – Sobol’ indices for areal unit UH481. Bar
colours refer to soil types.

Quality of the PCE
metamodel :
R2 > 0.95 on
validation set.
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3. Spatial aspect
3.1. Vector projections [Xu et al. 2019]
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3. Spatial aspect
3.1. Vector projections [Xu et al. 2019]

Var(Y (1)) = Var(E[Y (1)|X1]) + Var(E[Y (1)|X2])+

Var(E[Y (1)|X1,X2]) − Var(E[Y (1)|X1]) − Var(E[Y (1)|X2])
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3. Spatial aspect
3.2. Gamboa vs. Xu, aggregation to the watershed scale
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3. Spatial aspect
3.3. Correlations among outputs
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Conclusion

Successful application to surface moisture outputs.

Sobol’ indices obtained with high precision.
Meaningful physical interpretations, increased comprehension of model
behaviour.

The methodology was tested on pesticide mass outputs.
Due to the complexity of the physical processes the PCE metamodels
need a bigger basis and become too expensive.
Further adaptations : replace polynomial chaos expansion metamodel
with more flexible metamodels (random forests).
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Merci de votre attention !
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