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ABSTRACT

Vibratory energy channelling between a linear and a nonlinear oscillator is studied at different time
scales. The nonlinear system possesses a time-dependent periodic restoring forcing function. Detec-
tion of fast and slow system dynamics leads to revealing different dynamical characteristics namely
slow invariant manifold, equilibrium and singular points. We show that the time-dependent nonlin-
earity produces phase-dependent slow invariant manifold, frequency responses and modifications
concerning stability borders of its slow invariant manifold and singularities zones. The backbone
curves of the system and also isola are detected; the later should be taken into account carefully if the
aim is system control.

Keywords vibration control · vibratory energy channellig · time-dependent nonlinear rigidity · multiple scales method ·
equilibrium/singular points

1 Introduction

Most structural systems such as buildings, bridges and vehicles are subjected to vibrations resulting, for example, from
traffic, winds, earthquakes and motors, which have different impacts on these systems. Thus, control of vibrations
is an important issue as it can prevent fatigue, partial or global damages and even collapse of structural systems and
can guarantee their functionalities. Several types of control strategies exist: active, passive and semi-active/passive
controls [1]. The active control systems [2] possess sensors that measure movements as well as actuators that generate
forces to control vibrations. This type of control technique requires a large amount of external energy. Unlike the active
control, the passive control strategy does not need any external power source for its activation and the control process
is carried out via direct interactions between the main system and the absorber. Hybrid control systems combine the
properties of active and passive absorbers [3]. Semi-active devices are the same as active systems which require less
external energy than conventional systems [4, 5]. Semi-passive ones are similar to passive systems but with exploitation
of interesting properties of multi-physics systems, for example electro-mechanical devices (e.g. piezoelectric ceramics).
These multi-physics systems can be used as sensors and actuators [6]. Their parameters can be changed with a low
amount of energy, which give some adaptabilities to the such control systems [7, 8, 9, 10, 11].
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Passive control systems are divided into two categories: linear [12] and nonlinear [13]. Linear passive systems can
be tuned to a targeted frequency (the mode to be controlled) of the main system. Thus, these control systems are
very efficient for narrow frequency ranges. The fact that linear vibration absorbers can act as a vibration amplifiers
of the main system for some frequency ranges, was motivation of Roberson [13] to supplement a cubic part to the
linear restoring forcing function of the absorber. He showed that the suppression band of a nonlinear absorber is wider
compared to a corresponding linear system. Unlike linear systems, pure nonlinear ones do not have especial natural
frequencies and can resonate with any frequency. Thus, the nonlinear systems allow to control the vibrations of main
systems over wide frequency bands [14]. For such nonlinear systems, the response of the system can be attracted by
periodic or non-periodic regimes [15].

One of the nonlinear control systems which were developed in early twenty one century, is named as Nonlinear
Energy Sink (NES) [16, 17]. The control process by NES is carried out via nonlinear interactions and (possible)
bifurcation(s) between the main system and the NES leading to different regimes. The nonlinearity of the NES in its
early developments was pure cubic (without any linear part) [14]. Meanwhile, other types of the NES are developed
during the past years, such as vibro-impact [18, 19, 20], piecewise linear [21, 22, 23] and hysteresis systems [24]. The
NES in its different forms has been applied in many domains of mechanics and acoustics. In mechanics, it has been
applied in controlling linear main system with constant or variable parameters (e.g. time-dependent mass) [25] or
nonlinear system (Bouc-Wen model) [26]. In the domain of acoustics, the nonlinear vibro-acoustical energy exchanges
between an acoustical mode and a viscoelastic membrane (as a mechanical NES) have been developed by Cochelin et
al. [27] and Bellet et al. [28]. Some authors [29, 30, 31] proposed to use a pure acoustical nonlinear absorber to control
an acoustical mode. In all those previous studies, the acoustical level of NES activation was very high. That is why
some modifications of the system are necessary. Among all possible modifications, an interesting possible option for
practical application may be using varying nonlinear stiffness.

That is why in this paper, we are interested in using a NES with a variable cubic rigidity. The considered system can
correspond to an acoustical mode which is linearly coupled to an Helmholtz resonator in nonlinear domains [29, 30, 31].
The objective of the paper is to study theoretically this kind of system to be able to provide design tools for tuning
parameters and obtaining interesting dynamical regimes for applications.

The paper is organized as it follows: the general methodology for detection of different dynamics of such systems with
general nonlinearity is presented in Sect. 2. The explained methodology is applied to the systems with constant and
time-dependent cubic nonlinearities in Sects. 3 and 4, respectively. Finally, the paper is concluded in Sect. 5.

2 The general presentation of the system with a general nonlinearity

2.1 General description of the system

The system under consideration is illustrated in Fig. 1. It is composed of two coupled oscillators. The main one is
linear which possesses a mass M , a stiffness k1 and a damper c1. Its generalized displacement is represented by u1 and
it is submitted to an external force F (t). This oscillator is coupled (by a linear spring γ) to a second nonlinear oscillator
with a mass m, a general restoring forcing function Λ and a damper c2. Its generalized displacement represented by
u2. Moreover, we assume that the mass ratio between two oscillators is small, i.e. 0 < ε =

m

M
� 1. This system

corresponds to an acoustical mode linearly coupled to an absorber with nonlinear behaviour. We consider this system
because, until now, most applications of NES in acoustics are mainly realized by a linear coupling term between the
main system and the nonlinear oscillator [28, 32, 30], while in mechanics the coupling is generally nonlinear [14]. The
governing equations of the system at the time t are:

k1

c1

γ

F (t)

u1

u2

Λ

c2

M m

Figure 1: The system under consideration: the linear oscillator with the mass M is linearly coupled to a nonlinear
oscillator with the mass m and a general nonlinear restoring forcing function Λ.

{
Mü1 + k1u1 + c1u̇1 + γ(u1 − u2) = F (t)
mü2 + c2u̇2 + γ(u2 − u1) + Λ(u2) = 0

(1)

2
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We set that ˙(·) =
∂

∂t
. Let us introduce the new time τ as:

τ = t

√
k1
M

= tω1 (2)

and we set that (·)′ =
∂

∂τ
. Following equations is obtained in the time domain τ :{

u′′1 + u1 + εξ1u
′
1 + εγ0(u1 − u2) = εf0 sin(ντ)

εu′′2 + εξ2u
′
2 + εγ0(u2 − u1) + εΛ0(u2) = 0

(3)

Where
c1√
k1M

= εξ1;
γ

k1
= εγ0 ;

Λ(u2)

k1
= εΛ0(u2) ;

F0

k1
= εf0 ;

c2√
k1M

= εξ2 ;
Ω

ω1
= ν. The orders of magnitude

are chosen to according to practical applications.

We are interested in studying system behaviours in the vicinity of the 1:1 resonance; consequently we set ν = 1 + σε.

In the next subsections, the system variables will be complexified and via a time multiple scales method [33], different
system dynamics [34] will be detected.

2.2 Complexifications

Let us introduce the complex variables of Manevitch [35, 36] (i2 = −1):{
φ1e

iντ = u′1 + iνu1
φ2e

iντ = u′2 + iνu2
(4)

The multiple scales method [33] is used to detect different dynamics of the system. We introduce different scales of
time: T0 = τ (fast time scale) and Tj = εjτ (j = 1, 2...) (slow time scales). These time scales are coupled to each
other via the mass ratio of two oscillators, i.e. the ε parameter. With these definitions of different time scales, we have:

∂

∂τ
=

∂

∂T0
+ ε

∂

∂T1
+ ... (5)

We use the Galerkin method to keep only first harmonics of the system and to truncate other ones. For an arbitrary
function s(φ1, φ2, φ∗1, φ

∗
2) this task is carried out via:

S(φ1, φ2, φ
∗
1, φ

∗
2) =

ν

2π

∫ 2π
ν

0

s(φ1, φ2, φ
∗
1, φ

∗
2)e−jiωτdτ (6)

with j = 1. The (.)* represents the complex conjugate of a variable.

In applying Eq. (6), we will suppose that φ1, φ2, φ∗1, φ∗2 are independent of the fast time T0 = τ . This hypothesis will
be verified during the multiple scales method or when we will consider an asymptotic state when T0 → +∞ (Sect.
2.3.1).

After using the Galerkin method via applying Eqs. (6), Eq. (3) reads:


φ′1 +

i

2
νφ1 +

1

2
εξ1φ1 +

1

2iν
φ1 + εγ0

1

2iν
(φ1 − φ2) =

εf0
2i

ε(φ′2 +
i

2
νφ2) +

1

2
εξ2φ2 + εγ0

1

2iν
(φ2 − φ1) + εG(u2) = 0

(7)

with

G(u2) =
ν

2π

∫ 2π
ν

0

Λ0(u2)e−iντdτ (8)

As ε is a small parameter (0 < ε� 1), the different terms of Eq. (7) can be developed in terms of Taylor series in ε.

3
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2.3 Detection of fast and slow dynamics of the system

To detect fast and slow dynamics of the system, Eq. (7) will be treated by the multiple scales method [33] via studying
system equations at different orders of ε. The global idea is to provide design tools for tuning parameters of the
nonlinear oscillator. These tools are based on the vision of the evaluation of the slow invariant manifold (SIM) of
the system [37] and detection of all of its characteristic points (equilibrium and singular points) around the SIM [38].
They will lead to prediction of periodic and non-periodic regimes of the system for given intervals of deriving forcing
amplitudes and frequencies.
However, there are many works which use multiple scales method for finding solutions of system variables or detection
of periodic regimes (e.g. see [39, 40, 41, 42, 43, 44, 45, 46]), which is not the aim of this paper.

2.3.1 Fast system dynamics: O(ε0) of system equations

Here, we consider the behaviour of the system at fast time scale. Equation (7) at O(ε0) reads:


∂φ1
∂T0

= 0 (9.1)

∂φ2
∂T0

+ H (φ1, φ
∗
1, φ2, φ

∗
2) = 0 (9.2)

(9)

The hypothesis
∂φ1
∂T0

= 0 is verified. Let us seek for fixed points of the system. This means that we would like to detect

an asymptotic state when T0 → +∞, i.e.
∂φ2
∂T0

= 0. It leads to:

H (φ1, φ2, φ
∗
1, φ
∗
2) =

1

2
iφ2 +

1

2
ξ2φ2 −

iγ0
2

(φ2 − φ1) +G(u2) = 0 (10)

Equation (10) is called Slow Invariant Manifold (SIM) in the complex domain. Let us consider the complex variables in
the polar domain as:

φj = Nje
iδj (11)

Nj ∈ R+ and δj ∈ R, j = 1, 2 with Nj the amplitude and δj the phase of φj . Let us assume that after applying Eq.
(11) in Eq. (10), the SIM in real domain reads:

H(N1, δ1, N2, δ2) = 0 (12)

2.3.2 Detection of unstable zone of the SIM

In this section, the unstable zone of the SIM will be determined. To carry out the stability analysis of the SIM, we
linearly perturb system variables as: {

φ2 → φ2 + ∆φ2
φ∗2 → φ∗2 + ∆φ∗2

(13)

with |∆φ2| � |φ2|. We do not perturb φ1 as
∂φ1
∂T0

= 0 (see Eq. (9)).

The perturbation is introduced in Eq. (9.2). This leads to the following system:


∂∆φ2
∆T0

∂∆φ∗2
∆T0

 = M
(

∆φ2
∆φ∗2

)
(14)

The eigenvalues of the matrix M can be calculated to determine the boundaries of the unstable zone of the SIM.

4
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2.3.3 Slow system dynamics: O(ε) of system equations

In this subsection, we consider the system behaviour at the slow time scale and we will detect the equilibrium and
singular points. The first equation of the system (7) at O(ε) reads:

∂φ1
∂T1

= − if0
2
−
[

1

2
iσφ1 +

1

2
ξ1φ1 +

1

2
iσφ1 −

iγ0
2

(φ1 − φ2)

]
︸ ︷︷ ︸

E(φ1,φ2,φ∗
1 ,φ

∗
2)

(15)

Then, the evolution of the SIM (see Eq. (10)) at the time scale T1 is developed as:
∂H

∂T1
=
∂H

∂φ1

∂φ1
∂T1

+
∂H

∂φ2

∂φ2
∂T1

+
∂H

∂φ∗1

∂φ∗1
∂T1

+
∂H

∂φ∗2

∂φ∗2
∂T1

= 0

∂H ∗

∂T1
=
∂H

∂φ1

∂φ1
∂T1

+
∂H ∗

∂φ2

∂φ2
∂T1

+
∂H ∗

∂φ∗1

∂φ∗1
∂T1

+
∂H ∗

∂φ∗2

∂φ∗2
∂T1

= 0

(16)

After some mathematical manipulations, Eq. (16) in matrix form reads:


∂H

∂φ2

∂H

∂φ∗2
∂H ∗

∂φ2

∂H ∗

∂φ∗2


︸ ︷︷ ︸

A

∂φ2∂T1
∂φ∗2
∂T1

 = −


∂H

∂φ1

∂H

∂φ∗1
∂H ∗

∂φ1

∂H ∗

∂φ∗1


∂φ1∂T1
∂φ∗1
∂T1

 (17)

Equilibrium points are defined by [38] : { E(φ1, φ2, φ
∗
1, φ
∗
2) = 0

H (φ1, φ2, φ
∗
1, φ
∗
2) = 0

det (A) 6= 0
(18)

Singular points are defined by [38] : { E(φ1, φ2, φ
∗
1, φ
∗
2) = 0

H (φ1, φ2, φ
∗
1, φ
∗
2) = 0

det (A) = 0
(19)

After providing a general methodology for detection of different dynamics of explained coupled oscillators, the
application of the method will be shown for a nonlinear system with constant and time-dependent cubic nonlinearities.

3 Detection of different dynamics of the system with constant cubic nonlinearity

Here, we apply the general methodology described in the Sect. 2 to study the energy exchanges between two oscillators
where one of them possesses a constant cubic nonlinearity. Such systems have been already studied and also applied in
many domains such as civil engineering [47, 48, 49], aeroelastic/aerospace systems [50, 51, 52, 53, 54] and acoustic
[27, 28]. In the following we give details to be able to compare the results with the case of variable rigidity which will
be treated in the Sect. 4.

3.1 General presentation of the system

Let us assume that the stiffness of the nonlinear oscillator is constant and it presents cubic behaviour, i.e. Λ(u2) = k2u
3
2,

as presented in Fig. 1.

We suppose that
k2
k1

= εk0. The G(u2) function of Eq. (7) becomes:

G(φ2, φ
∗
2) =

−3ik0
8ν3

φ2|φ2|2 (20)

In the following subsection, we will consider Eq. (7) at different orders of ε to detect the fast and slow dynamic of the
system [34].

5
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3.2 Fast system dynamics

To detect the fast dynamic of the system, O(ε0) of Eq. (7) should be investigated. This leads to similar equations as
shown in Eq. (9). Here, we have:

H =
1

2
iφ2 +

1

2
ξ2φ2 −

iγ0
2

(φ2 − φ1)− 3

8
ik0φ2|φ2|2 = 0 (21)

Hence,

φ1 =
φ2
γ0

(
−1 + iξ2 + γ0 +

3

4
k0|φ2|2

)
(22)

Going to the polar domain as explained in Eq. (11) and after separation of real and complex parts, the equations of the
SIM in the real domain reads:

N1 =
N2

γ0

√
ξ22 +

(
−1 + γ0 +

3

4
k0N2

2

)2

(23)

δ1 = δ2 + arctan

(
ξ2

−1 + γ0 + 3
4k0N

2
2

)
(24)

To determine the local extrema of the SIM, we seek
∂N2

1

∂N2
2

= 0. After some mathematical manipulations, we obtain:

27

6
k20X

2 − 3 (1− γ0) k0X + (1− γ0)
2

+ ξ22 = 0 (25)

with X = N2
2 . The solutions of Eq. (25) are:

X1,2 =
(1− γ0)∓ 1

2

√
(1− γ0)2 − 3ξ22

9
8k0

(26)

Hence, if (1− γ0)2 − 3ξ22 ≥ 0 the local extrema of the SIM correspond to N2,1 =
√
X1 and N2,2 =

√
X2. Otherwise,

if (1− γ0)2 − 3ξ22 < 0, the SIM does not possess local extrema.

3.3 Unstable zones of the SIM

To determine the boundaries of the unstable zones, we investigate Eq. (9.2); it reads:

∂φ2
∂T0

+
1

2
φ2

(
i

(
1− γ0 −

3

4
k0|φ2|2

)
+ ξ2

)
+ i

γ0
2
φ1 = 0 (27)

After taking into account the complex conjugate of Eq. (27), and introducing the perturbed from of variables (see Eq.
(13)), we obtain the following equation:


∂∆φ2
∆T0

∂∆φ∗2
∆T0

 =
1

2


−i
(

1− γ0 −
3

4
k0|φ2|2

)
− ξ2

3

4
ik0φ

2
2

−3

4
ik0φ

∗2
2 i

(
1− γ0 −

3

4
k0|φ2|2

)
− ξ2


︸ ︷︷ ︸

M

(
∂∆φ2

∂∆φ∗2

)
(28)

The eigenvalues (λ) of the matrix M are evaluated to analyse the stability of the SIM:

6
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(M11 − λ) (M22 − λ)− 9

64
k20|φ2|4 = 0 (29)

which lead to:
λ2 − αλ+ β = 0 (30)

with α = (M11 + M22) and β = M11M22 −
9

64
k20|φ2|4.

If λ1 and λ2 are solutions of Eq. (30), then we can claim:{
λ1 + λ2 = α = −ξ2 < 0
λ1λ2 = β

(31)

The system is stable if the real parts of λ1 and λ2 are negatives. We distinguish two global cases:

• if β > 0 then, the eigenvalues can be complex or real:
– if they are real, they should be negative, so fixed points are stable.

– if they are complex, then they share the same real negative parts equal to
α

2
. So, fixed points are stable.

• if β < 0 then, real part of λ1 or λ2 is positive, so the system is unstable.

As a summary, the condition β = 0, clarifies boundaries between stable and unstable zones of the SIM. Let us set
X = N2

2 . The condition of β = 0 leads to the same equation as the one of the extrema of the SIM (see Eq. (25)). Hence,
N2,1 =

√
X1 and N2,2 =

√
X2 (see Eq. (26)) correspond to the boundaries of the unstable zone. Consequently, we

see that the stability borders of the SIM pass from its local extrema (see Eq. (26)).

3.4 Slow system dynamics

3.4.1 Singular points

Let us build the matrix A from the Eq. (21) which is explained in Eq. (17):

A =
1

2

ξ2 − i
(
−1 + γ0 +

3

2
k0|φ2|2

)
−3

4
ik0φ

2
2

3

4
ik0φ

∗2
2 ξ2 + i

(
−1 + γ0 +

3

2
k0|φ2|2

)
 (32)

So,

det (A) = 0⇒ ξ22 +

(
1− γ0 −

3

2
k0N

2
2

)2

−
(

3

4
k0N

2
2

)2

= 0 (33)

Let us set X = N2
2 . Equation (33) yields to:

27

16
k20X

2 + (1− γ0)2 + 3(−1 + γ0)k0X + ξ22 + (1− γ0)2 = 0 (34)

Thus, the two real solutions of Eq. (34) are the same which are presented in Eq. (26). So, positions of possible singular
points of the system will be on N2,1 =

√
X1 and N2,2 =

√
X2. Then, in addition to Eq. (33), other two conditions of

Eq. (19) should be verified as well in order to have confirmation of existence of singularities in system for given σ and
f0 [55].

In order to have two distinct solutions described in Eq. (26), the rescaled damping of the nonlinear oscillator must not
exceed a critical value namely ξ2,c, which is defined as:

ξ2,c =
1√
3

(1− γ0) (35)

7
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If ξ2 > ξ2,c, the SIM becomes monotonic and it does not possess singular points nor local extrema. A similar condition
for mechanical systems has been already detected by Starosvetsky and Gendelman [56]. Figure 2 shows the SIM for
different values of ξ2. The red dotted, black solid, blue dashed and green circled lines represent the SIM for ξ2 = 0,
ξ2 < ξ2,c, ξ2 = ξ2,c and ξ2 > ξ2,c, respectively.

0 0.5 1 1.5 2 2.5 3 3.5 4

N
2

0

1

2

3

4

5

6

N
1

2
=0

2
=0.05

2
=

2,c

2
=0.8

Figure 2: The SIM for different values of ξ2: ξ2 = 0 (red dotted line), ξ2 = 0.05 < ξ2,c (black solid line), ξ2 = ξ2,c
(blue dashed line) and ξ2 = 0.8 > ξ2,c (green circled line). System parameters are reported in Table 1.

The associated values of N1 with N2,1 and N2,2 can be calculated using the SIM equation (see Eq. (23)). Thus, the
geometrical places of possible singularities can be clarified completely. Figure 3 shows the SIM of the system with its
unstable zone (green) and the geometrical places of singular points. We consider the parameters defined in the Table 1.
We observe that the singular points are located on the boundaries of the unstable zone and also on the position of local
extrema of the SIM.

Parameter Value
k0 0.1
ξ2 0.1
γ0 0.5

Table 1: Parameters of the system.

0 0.5 1 1.5 2 2.5 3 3.5 4

N
2

0

1

2

3

4

5

6

N
1

Analytical SIM

Unstable zone

Singular points

Unstable zone

Figure 3: The SIM of the system accompanied by its unstable zone (green) and positions of singularities (×).

3.4.2 Detection of equilibrium points of the system

To find equilibrium points of the system, we seek for those values of N2 when E in Eq. (15) becomes zero.

8
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Via injection of Eq. (22) in Eq. (15) and after some mathematical manipulations we have (see Appendix A):

aX3 + bX2 + cX + d = 0 (36)

with X = N2
2 and

a =

(
3

4
k0

)2 [
ξ21 + (2σ − γ0)2

]
b =

3

2
k0
[
(−1 + γ0)

[
ξ21 + (2σ − γ0)2

]
+ (2σ − γ0)γ20

]
c = (−1 + γ0)2

[
ξ21 + (2σ − γ0)2

]
+ 2(−1 + γ0)(2σ − γ0)γ20 +

(
ξ1ξ2 + γ20

)2
+ (2σ − γ0)2ξ22

d = −f20 γ20

(37)

Equation (36) can be solved with the Cardano’s method. So, we can find the N2 values for which correspond to
equilibrium or singular points. Then, one can obtain N1 from detected N2 by Eq. (23).

3.4.3 Detection of the backbone curve of the system

To determine the backbone curve of the system, we seek for periodic responses of the undamped system without any
external excitation. That is to say in Eq. (36) we set f0 = 0 and ξ1 = ξ2 = 0 (see Eq. (3)). It reads:

abcX
2 + bbcX + cbc = 0 (38)

with 
abc =

(
3

4
k0(2σ − γ0)

)2

bbc =
3

2
k0(2σ − γ0) [2σ(−1 + γ0) + γ0]

cbc = (−1 + γ0)(2σ − γ0)
[
(−1 + γ0)(2σ − γ0) + 2γ20

]
+ γ40

(39)

AsX = N2
2 , then we should admit only real and positive solutions ofX in Eq. (38). For a sweeping detuning parameter

σ, Eq. (38) can be solved easily to collect real and positive solutions as N2 =
√
X . The associate values of N1 can be

obtained from the equation of the SIM (see Eq. (23)).

3.5 Numerical results

Let us consider system parameters which are presented in Table 2. The equilibrium points obtained from Eq. (36)
for sweeping σ are illustrated on Fig. 4a. These curves are in fact the frequency response of the system. Different
two-dimension views of Fig. 4a are depicted in Figs. 4b-4d. Figure 4b projects the possible parts of the SIM which
cover the equilibrium points for the system under external excitation amplitude f0 = 1.1. Figures 4c and 4d show
the amplitudes of equilibrium points (N1 and N2) as functions of the σ parameter. The green parts in these figures
correspond to the unstable zone of the SIM. For this example, we observe that the frequency response curve possesses
a main branch and an isola. Depending on the value of σ, one, two or three equilibrium points exist which could be
stable or unstable. To check the validity of obtained analytical predictions, we carry out numerical integrations of the
governing equations of the system (see Eq. (3)) with the Runge-Kutta method.

Parameter Value
k0 0.1
ξ1 0.1
ξ2 0.1
γ0 0.5
ε 0.01

Table 2: Parameters of the system.

3.5.1 Analytical predictions versus resultats of direct numerical integrations

Here, we provide some examples where the system possesses only one equilibrium point, e.g. for σ = 1, and three
equilibrium points, e.g. for σ = −0.3 (see Fig. 4).

9



Detection of different dynamics of two coupled oscillators including
a time-dependent cubic nonlinearity A PREPRINT

(a) (b)

(c) (d)

Figure 4: Equilibrium points of the system (Table 2, f0 = 1.1) for sweeping detuning parameters σ. a) Three-
dimensional view (σ, N2, N1); b) Two-dimensional view (N1, N2); c) Two-dimensional view (σ, N1) and d) Two-
dimensional view (σ, N2). Located equilibrium points in unstable zone of the SIM are represented by the green line.

• σ = 1

For σ = 1, there is only one equilibrium point as (N2, N1) = (2.41, 0.57), which is in the unstable zone of
the SIM (see Fig. 4). We suppose following initial conditions: (u1(τ = 0), u2(τ = 0), u′1(τ = 0), u′2(τ =
0)) = (0, 0, 0, 0). Figure 5a collects results obtained from direct numerical integration (blue line), the SIM
(red line) and the initial conditions (black point). Time histories of system responses are illustrated in Figs.
5b and 5c. Figure 5 indicates that the system presents a Strongly Modulated Response (SMR) [56] which
corresponds to repeated bifurcations between the stable branches of the SIM. This is because of positioning of
equilibrium point in the unstable area of the SIM.

• σ = −0.3

For σ = −0.3, there are three equilibrium points: one on the main branch namely, (i) (N2, N1) = (0.71, 0.67)
and two others on the isola namely, (ii) (N2, N1) = (2.82, 0.78) and (iii) (N2, N1) = (3.30, 2.19) (see Fig. 4).
We will carry out two numerical integrations with following initial conditions:

– (u1(τ = 0), u2(τ = 0), u′1(τ = 0), u′2(τ = 0)) = (0, 0, 0, 0) (see Fig. 6). The system is attracted by the
equilibrium point (i) located on the main branch (dotted lines in Fig. 6a).

– (u1(τ = 0), u2(τ = 0), u′1(τ = 0), u′2(τ = 0)) = (2.2, 3.4, 0, 0): these initial conditions are close to
the equilibrium point (iii) located at the upper part of the isola. Figure 7 shows that the system is attracted
by this point (dotted lines in Fig. 7a).

3.5.2 The backbone curve of the system

Figure 2 shows the backbone curve of the system with k0 = 0.1 and γ0 = 0.5. This figure is obtained from Eq. (38)
and collects two branches namely, (I) and (II). The two-dimensional view of the Fig. 8a is presented in Fig. 8b. This
curve is in fact the SIM of the undamped system which is presented in Fig. 2. The frequency response curves of the
system (parameters of the Table 2) under different forcing amplitudes, namely f0 = 0.7, f0 = 1.1 and f0 = 1.5 are
added to the same figure and are illustrated in Fig. 9. It is seen that the backbone curve collects (almost) local maxima
of the frequency response curves. Moreover, if the forced system presents possible isola, then they lie on the branch (II)

10



Detection of different dynamics of two coupled oscillators including
a time-dependent cubic nonlinearity A PREPRINT

(a)

0 2000 4000 6000 8000 10000
0

0.2

0.4

0.6

0.8

1

1.2

N
1

(b)

0 2000 4000 6000 8000 10000
0

1

2

3

4

N
2

(c)

Figure 5: Analytical predictions versus numerical results for the system (with parameters of Table 2) under external
excitation with f0 = 1.1 and σ = 1. Numerical results are obtained by direct integration of Eq. (3) with initial
conditions as (u1(τ = 0), u2(τ = 0), u′1(τ = 0), u′2(τ = 0)) = (0, 0, 0, 0) (represented by a solid point (•)). a) The
SIM and corresponding numerical results; b) Time histories of N1 obtained by numerical integration; c) Time histories
of N2 obtained by numerical integration.

of backbone curve and all types of frequency response curves of the forced system follow its backbone curve. For the
design aspects, detection of backbone and frequency response curves, provide good information about possible system
amplitudes as functions of the frequency and also amplitude of external excitations.
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Figure 6: Analytical predictions versus numerical results for the system (with parameters of Table 2) under external
excitation with f0 = 1.1 and σ = −0.3. Numerical results are obtained by direct integration of Eq. (3) with initial
conditions as (u1(τ = 0), u2(τ = 0), u′1(τ = 0), u′2(τ = 0)) = (0, 0, 0, 0) (represented by a solid point (•)). a) The
SIM and corresponding numerical results; b) Time histories of N1 obtained by numerical integration; c) Time histories
of N2 obtained by numerical integration. (i) is the first equilibrium point.

4 Detection of different dynamics of the system with time-dependent cubic nonlinearity

4.1 Description of the system

Here, the results of previous sections will be expanded to consider a time-dependent cubic nonlinearity for the second
oscillator with the mass m. We assume that the function Λ(u2) in Eq. (1) and Fig. 1 reads: Λ(u2) = k2(t)u32. After
introducing the new time domain τ (see Eq. (2)), the εΛ0(u2) in Eq. (3) is defined as:

εΛ0(u2) = εk0(τ)u32 (40)

and all other parameters which are defined in Sect. 2.1 remain unchanged. In Eq. (40), we assume that k0(τ) is
2π

ν
periodic around a constant value K0. Thus, we suppose that k0(τ) can be developed in term of Fourier series as:

k0(τ) =

+∞∑
n=−∞

Kne
inντ (41)
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Figure 7: Analytical predictions versus numerical results for the system (with parameters of Table 2) under external
excitation with f0 = 1.1 and σ = −0.3. Numerical results are obtained by direct integration of Eq. (3) with initial
conditions as (u1(τ = 0), u2(τ = 0), u′1(τ = 0), u′2(τ = 0)) = (2.2, 3.4, 0, 0) (represented by a hollow circle (◦)). a)
The SIM and corresponding numerical results. b) Time histories of N1 obtained by numerical integration; c) Time
histories of N2 obtained by numerical integration. (iii) is the third equilibrium point.

(a) (b)

Figure 8: Backbone curve of the system with the parameters of the Table 2. The backbone curve possesses two branches,
namely (I) and (II). a) Three-dimensional view (σ,N2, N1); b) Two-dimensional view (N2, N1).
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Figure 9: Backbone curves and equilibrium points of the system with different external forcing amplitudes: f0 = 0.7,
f0 = 1.1 and f0 = 1.5 (parameters of the Table 2).

4.2 Complexification of the system and applying the Galerkin method

Let us introduce the complex variables of Manevitch [35], see Eq. (4), and apply the Galerkin method to keep the first
harmonics. Following system is obtained:

φ′1 +
i

2
νφ1 +

1

2
εξ1φ1 +

1

2iν
φ1 + εγ0

1

2iν
(φ1 − φ2) =

εf0
2i

(42.1)

ε(φ′2 +
i

2
νφ2) +

1

2
εξ2φ2 + εγ0

1

2iν
(φ2 − φ1) + εG(u2) = 0 (42.2)

(42)

Where G(u2) is defined in Eq. (8). Applying Eq. (41) in Eq. (8), we obtain:

G(φ2, φ
∗
2) =

i

8ν3
[
φ32K−2 − 3K0|φ2|2φ2 + 3K2|φ2|2φ∗2 − φ∗32 K4

]
(43)

In the following section, Eq. (42) will be considered at different orders of ε to identify the fast and slow dynamics of
the system, as explained in Sect. 2.3.

4.3 Fast system dynamics

After obtaining Eq. (9), the H function for this case reads:

H =
1

2
iφ2 +

1

2
ξ2φ2 −

iγ0
2

(φ2 − φ1) +
i

8

[
φ32K−2 − 3K0|φ2|2φ2 + 3K2|φ2|2φ∗2 − φ∗32 K4

]
(44)

So equation of the SIM in complex domain becomes:

φ1 = (−1 + γ0 + iξ2)
φ2
γ0
− 1

4γ0

(
φ32K−2 + 3|φ2|2 [−φ2K0 + φ∗2K2]− φ3∗2 K4

)
(45)

Where K0 ∈ R and Kj = KjR + iKjI , j = {2, 4}. Moreover, K−j = K∗j . After going to polar domain (see Eq. 11),
following system can be obtained:

N1 =
N2

γ0

√
A2 +B2 (46)

δ1 = δ2 + arctan

(
B

A

)
(47)
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with A(N2, δ2) and B(N2, δ2) defined in Appendix B. Equation (46), reveals that for a system with a periodic
time-dependent nonlinearity, the SIM becomes three-dimensional depending on N1, N2 and δ2.

To detect the local extrema of the SIM and for the sake of simplicity in Eq. (46), we analyse functions
∂N2

1

∂N2
= 0 and

∂N2
1

∂δ2
= 0, whose details are presented in Appendix C. Let us set X = N2

2 :


∂N2

1

∂N2
= 0⇒ α4X

2 + α2X + α0 = 0

∂N2
1

∂δ2
= 0⇒ β2X + β0 = 0

(48)

Hence,

X = −β0
β2

(49)

By injecting Eq. (49) into Eq. (48), we obtain:

P (δ2) = α4β
2
0 − α2β0β2 + α0β

2
2 = 0 (50)

Equation (50) depends only on δ2, so the values of δ2 which verified the equation P (δ2) = 0 can be found. Consequently,
the obtained values of δ2 correspond to local extrema of the SIM. Then, associate values of N2 and N1 can be calculated
from Eqs. (49) and (46), respectively. The points collecting these sets of (δ2, N2, N1) correspond to coordinates of
local extrema of the SIM.

4.4 Unstable zones of the SIM

To determine the boundaries of the unstable zones, we are interested in Eq. (9.2) which is written as:

∂φ2
∂T0

+
1

2

[
iφ2 + ξ2φ2 − iγ0(φ2 − φ1) +

i

4

(
φ32K

∗
2 − 3φ22φ

∗
2K0 + 3φ2φ

∗2
2 K2 − φ∗32 K4

)]
= 0 (51)

After taking into account the complex conjugate of Eq. (51), and introducing the perturbation from of the variables (see
Eq. (13)), the arrays of M matrix in Eq. (14), become:



M11 = − i
2

(
1− γ0 +

3

4

[
φ22K

∗
2 − 2φ2φ

∗
2K0 + φ∗22 K2

])
− ξ2

2

M12 = −3i

8

(
−φ22K0 + 2φ2φ

∗
2K2 − φ∗22 K4

)
M21 =

3i

8

(
−φ∗22 K0 + 2φ2φ

∗
2K
∗
2 − φ22K∗4

)
M22 =

i

2

(
1− γ0 +

3

4

[
φ∗22 K2 − 2φ2φ

∗
2K0 + φ22K

∗
2

])
− ξ2

2

(52)

Eigenvalues (λ1, λ2) of M matrix can be obtained from Eq. (30). Then, α and β in Eq. (31) read:

{
α = −ξ2
β = avN

4
2 + bvN

2
2 + cv

(53)

with (av , bv and cv defined in Appendix D). As explained in Sect. 3.3, the condition β = 0, clarifies boundaries between
stable and unstable zones of the SIM. Let us set X = N2

2 . If X1 and X2 are real and positive solutions of β = 0 in Eq.
(53), then N21 =

√
X1 and N22 =

√
X2 correspond to boundaries of the unstable zones of the SIM.
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4.5 Slow system dynamics

The A matrix of Eq. (17) becomes:

A =
1

2

i(1− γ0) + ξ2 +
3i

4

(
φ22K

∗
2 − 2|φ2|2K0 + φ∗22 K2

) i

4

(
−3φ22K0 + 6|φ2|2K2 − 3φ∗22 K4

)
− i

4

(
−3φ∗22 K0 + 6|φ2|2K∗2 − 3φ22K

∗
4

)
−i(1− γ0) + ξ2 −

3i

4

(
φ∗22 K2 − 2|φ2|2K0 + φ22K

∗
2

)


(54)

To determine the slow dynamic of the system, we consider Eq. (42.1) at O(ε) and we use the method which is explained
in Sect. 2.3.3.

4.5.1 Singular points

The geometrical position of singular points corresponds to the N2 values which verify det(A) = 0 as explained in Eq.
(19). Let us assume that X = N2

2 and after some mathematical developments, we will have (see Appendix E):

det(A) = aX2 + bX + c (55)

We notice that Eq. (55) is the same equation as the one of the boundaries of the unstable zone of the SIM (β = 0 in Eq.
(53)). Thus, for each δ2, the singular points correspond to N2,1 =

√
X1 and N2,2 =

√
X2. Consequently, we see that

the boundaries of the unstable zone coincide with the geometrical places of possible singularities. The associate N1 are
found via the SIM equation (see Eq. 46). Figure 10 shows the SIM of the system with its local extrema (pink point), the
unstable zone (green line) which coincide with the geometrical places of singular points. The system parameters are
defined in the Table 3. We observe that, unlike the system with constant nonlinear rigidity, some limited numbers of
stability boundaries (or geometrical curves of singularities) correspond to local extrema.

Parameter Value
K0 0.1
K2R 0.009
K2I 0.009
K4R 0
K4I 0
ξ2 0.1
γ0 0.5

Table 3: Parameters of the system

(a) (b)

Figure 10: The SIM of the system accompanied by its unstable zone (green line) and the local extrema (pink point). a)
Three dimensional view (δ2, N2, N1); b) Two dimensional view (N2,N1) (parameters of the system are provided in
Table 3).

Necessary condition for having real and positive solutions of Eq. (55) leads to following conditions for damping:
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ξ2 ≤ ξ2,cv (56)

where

ξ2,cv = −(−1 + γ0)2(K2
0 + 4K2

2I + 4K2
2R +K2

4I +K2
4R − 4(K2IK4I +K2R(K0 +K4R)) cos(2δ2)

+ 2K0K4R cos(4δ2)− 4(K0K2I +K2RK4I −K2IK4R) sin(2δ2) + 2K0K4I sin(4δ2))

[−3K2
0 + 2K2

2I + 2K2
2R +K2

4I +K2
4R − 4(−K0K2R +K2IK4I +K2RK4R) cos(2δ2)

+2(K2
2I−K2

2R+K0K4R) cos(4δ2)+4(−K2RK4I+K2I(K0+K4R)) sin(2δ2)+2(−2K2IK2R+K0K4I) sin(4δ2)]−1

(57)

If ξ2 > ξ2,cv , the SIM becomes monotone, without possessing any singularities and local extrema.

4.5.2 Detection of equilibrium points of the system

The equilibrium points correspond to E = 0, from Eq. (15):

if0 + (i (2σ − γ0) + ξ1)φ1 + iγ0φ2 = 0 (58)

After injecting Eq. (45) (SIM) in Eq. (58) and some mathematical manipulations, following system is obtained (see
Appendix F):

p10N
10
2 + p8N

8
2 + p7N

7
2 + p6N

6
2 + p5N

5
2 + p4N

4
2 + p3N

3
2 + p2N

2
2 + p0 = 0 (59)

with pj , j = 0, ...10 defined in Appendix F. The sets of (δ2 ∈ R, N2 ∈ R+ and σ ∈ R) verifying Eq. (59) correspond
to the equilibrium points of the system. The roots of Eq. (59) in term of N2 are calculated with the “roots” function of
MATLAB® for a range of given δ2 and σ. The associate N1 can be find via the equation of the SIM (Eq. (46)).

4.5.3 Detection of backbone curves of the system

To determine the backbone curves of the system with the time-dependent nonlinear rigidity, as in Sect. 3.5.2 we seek
for periodic responses of the free and undamped system. That is to say in Eq. (58) we set f0 = 0 and ξ1 = ξ2 = 0.
After some mathematical manipulations, we have:

pbc,4X
4 + pbc,3X

3 + pbc,2X
2 + pbc,1X + pbc,0 = 0 (60)

with X = N2
2 and pbc,j , j = 0, ...4 defined in Appendix G. As in the previous part, X = N2

2 and we admit only real
and positive solutions of X in Eq. (60). The associates values of N1 can be obtained from Eq. (46).

In the next section, some numerical results will be presented. They will be considered as base results concerning the
evolution of system behaviours and will be compared with the analytical predictions.

4.6 Numerical results

We consider the system parameters which are presented in Table 3. We suppose that the amplitude of external excitation
is f0 = 1.1. Figure 11a collects equilibrium points in terms of δ2, N2 and N1 and Fig. 11b is the two-dimensional view
of the Fig. 11a. Figure 11c represents the equilibrium points in terms of σ, N2 and N1. All of these figures are the
frequency responses of the system. Figures 11d and 11e correspond to the two-dimensional views of Fig. 11c. The
green part corresponds to equilibrium points which are housed by the unstable zone of the SIM. From these figures we
observe that the equilibrium points are located on two global branches: a main branch (i) and isola (ii).

4.6.1 Analytical predictions versus resilts of direct numerical integrations

Some numerical integrations of the governing equations of the system (see Eq. (3)) are carried out to check the
validity of obtained analytical predictions. We provide some examples for two different values of σ and different initial
conditions.
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(a) (b)

(c) (d)

(e)

Figure 11: Different views of collected equilibrium points for the system with f0 = 1.1. a) (δ2, N2, N1); b) (N2, N1);
c) (σ,N2, N1); d) (σ,N2); e) (σ,N1). The equilibrium points located in unstable zone of the SIM are represented in
green.
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• σ = 0.5

For σ = 0.5, the equilibrium points are in the unstable zone of the SIM (see Fig. 11). We suppose following
initial conditions: (u1(τ = 0), u2(τ = 0), u′1(τ = 0), u′2(τ = 0)) = (0, 0, 0, 0). Figures 12a and 12b collect
results obtained from direct numerical integration of Eq. (3) (blue line), the SIM and the initial conditions
(white point). Time histories of system responses are illustrated in Figs. 12c, 12d and 12e. Figure 12 indicates
that the system presents a SMR [56] which corresponds to repeated bifurcations between the stable branches
of the SIM. This is because of positioning of the equilibrium point in the unstable area of the SIM.

(a)

(b) (c)

(d) (e)

Figure 12: Analytical predictions versus numerical results for the system (with parameters of Table 3) under external
excitation with f0 = 1.1 and σ = 0.5. Numerical results are obtained by direct numerical integration of Eq. (3) with
initial conditions as (u1(τ = 0), u2(τ = 0), u′1(τ = 0), u′2(τ = 0)) = (0, 0, 0, 0) (represented by a hollow circle (◦)).
a) Three-dimensions view of the SIM and corresponding numerical results; b) Two-dimensions view of the SIM and
corresponding numerical results; c) Time histories of N2 obtained by numerical integration; d) Time histories of N1

obtained by numerical integration; e) Time histories of δ2 obtained by numerical integration. The phase δ2 is wrapped
to [0, π].

• σ = −0.56

For σ = −0.56, there are several equilibrium points which are located on isola (see Fig. 11). We carry out two
numerical integrations with the following initial conditions:
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– (u1(τ = 0), u2(τ = 0), u′1(τ = 0), u′2(τ = 0)) = (0, 0, 0, 0) (see Fig. 13). The system is attracted by
the main branch of frequency responses (i) (see Figs. 11c and 11d).

(a)

(b) (c)

(d) (e)

Figure 13: Analytical predictions versus numerical results for the system (with parameters of Table 3) under external
excitation with f0 = 1.1 and σ = −0.56. Numerical results are obtained by direct numerical integration of Eq. (3) with
initial conditions as (u1(τ = 0), u2(τ = 0), u′1(τ = 0), u′2(τ = 0)) = (0, 0, 0, 0) (represented by a hollow circle (◦)).
a) Three-dimensions view of the SIM and corresponding numerical results; b) Two-dimensions view of the SIM and
corresponding numerical results; c) Time histories of N2 obtained by numerical integration; d) Time histories of N1

obtained by numerical integration; e) Time histories of δ2 obtained by numerical integration. The phase δ2 is wrapped
to [0, π].

– (u1(τ = 0), u2(τ = 0), u′1(τ = 0), u′2(τ = 0)) = (3.5, 4, 0, 0) (see Fig. 14). The system is attracted by
the isola of frequency responses (ii) (see Figs. 11c and 11d).

4.6.2 Backbone curve of the system

Figure 15a obtained from Eq. (60) shows the backbone curve of the system with the parameters of the Table 3 but
with ξ1 = ξ2 = 0 and f0 = 0. This figure collects two branches namely, (I) and (II). Figure 15b represents the
two-dimensional view of the Fig. 15a. The frequency responses of the system (parameters of the Table 3) under a
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(a)

(b) (c)

(d) (e)

Figure 14: Analytical predictions versus numerical results for the system (with parameters of Table 3) under external
excitation with f0 = 1.1 and σ = −0.56. Numerical results are obtained by direct numerical integration of Eq. (3) with
initial conditions as (u1(τ = 0), u2(τ = 0), u′1(τ = 0), u′2(τ = 0)) = (3.5, 4, 0, 0) (represented by a hollow circle
(◦)). a) Three-dimensions view of the SIM and corresponding numerical results; b) Two-dimensions view of the SIM
and corresponding numerical results; c) Time histories of N2 obtained by numerical integration; d) Time histories of N1

obtained by numerical integration; e) Time histories of δ2 obtained by numerical integration. The phase δ2 is wrapped
to [0, π].
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forcing amplitude f0 = 1.1 are added to the backbone curve and illustrated in Fig. 16. As in Sect. 3, we can see that
the backbone curve collects (almost) local maxima of the frequency response curve.

(a) (b)

Figure 15: Backbone curve of the system with the parameters of the Table 3. The backbone curve possesses two
branches, namely (I) and (II). a) Three-dimensional view (σ,N2, N1); b) Two-dimensional view (N2, N1).

Figure 16: Backbone curves and equilibrium points of the system with the external forcing amplitude as f0 = 1.1
(parameters of the Table 3).

5 Conclusions

The energy channelling between two oscillators is studied: one of oscillators supposed to be linear, is weakly coupled to
a cubic nonlinear oscillator which its nonlinearity can be constant or time-dependent. Fast and slow system dynamics are
detected which result in detection of slow invariant manifold of the system and its characteristic points, i.e. equilibrium
and singular points. All of these, provide tools for prediction of different possible periodic or non-periodic regimes
as functions of excitation amplitude and its deriving frequency. It is spotted that: i) the time-dependent nonlinearity
produces a phase-dependent slow invariant manifold which its unstable zone can cover a zone of the slow invariant
manifold in a continuous manner or some closed form portions of it; ii) in slow invariant manifolds of both time-
dependent and constant nonlinear systems, the positions of stability borders and geometrical places of singularities
coincide while positions of local extrema in time-dependent systems correspond to some few points of the stability
borders; iii) the phase of the system interacts in frequency responses of time-dependent nonlinear systems and in both
types of nonlinear systems, the frequency responses can present isola. The latter should be examined and identified
carefully if the final goal is systems control; iv) studying frequency responses of the system permits to grasp all possible
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zones of the slow invariant manifold which house equilibrium and singular points as functions of characteristics of
external excitation.
The perspective of this paper could be performing stability analysis at slow time scale and also optimization of system
parameters. Experimental tests will be carried out as well based on developments of this paper.
Our developments provide design tools for tuning parameters of the second oscillators for mastering energy channelling
between two oscillators or all possible dynamical regimes. The system under consideration can be seen as a meta-cell
which can produce special characteristics to be used later chain or a network of such cells.
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A Treatment of E = 0

E = 0⇒ if0 + [i(2σ − γ0) + ξ1]φ1 + iγ0φ2 = 0 (61)

Let us inject Eq. (22) in Eq. (61),

if0 + [i(2σ − γ0) + ξ1]
φ2
γ0

[
−1 + iξ2 + γ0 +

3

4
k0|φ2|2

]
+ iγ0φ2 = 0 (62)

if0 + [i(2σ − γ0) + ξ1]
N2e

iδ2

γ0

[
−1 + iξ2 + γ0 +

3

4
k0N

2
2

]
+ iγ0N2e

iδ2 = 0 (63)

if0 +
N2(cos(δ2) + i sin(δ2))

γ0

[
−ξ2(2σ − γ0) + i (2σ − γ0)

(
−1 + γ0 +

3

4
k0N

2
2

)
+iξ1ξ2 + ξ1

(
−1 + γ0 +

3

4
k0N

2
2

)]
+ iγ0N2(cos(δ2) + i sin(δ2)) = 0 (64)

Real part:

cos(δ2)

[
−ξ2(2σ − γ0) + ξ1

(
−1 + γ0 +

3

4
k0N

2
2

)]
︸ ︷︷ ︸

A11

− sin(δ2)

[
(2σ − γ0)

(
−1 + γ0 +

3

4
k0N

2
2

)
+ ξ1ξ2 + γ20

]
︸ ︷︷ ︸

A12

= 0 (65)

Imaginary part:

cos(δ2)

[
(2σ − γ0)

(
−1 + γ0 +

3

4
k0N

2
2

)
+ ξ1ξ2 + γ20

]
︸ ︷︷ ︸

A12

+ sin(δ2)

[
−ξ2(2σ − γ0) + ξ1

(
−1 + γ0 +

3

4
k0N

2
2

)]
︸ ︷︷ ︸

A11

= −f0γ0
N2︸ ︷︷ ︸
C2

(66)
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{
A11 cos(δ2)−A12 sin(δ2) = 0
A12 cos(δ2) +A11 sin(δ2) = C2

(67)

A2
11 +A2

12 = C2
2 (68)

ξ22(2σ − γ0)2 − 2ξ2ξ1(2σ − γ0)

(
−1 + γ0 +

3

4
k0N

2
2

)
+ ξ21

(
−1 + γ0 +

3

4
k0N

2
2

)2

+ (2σ − γ0)
2

(
−1 + γ0 +

3

4
k0N

2
2

)2

+ 2 (2σ − γ0)

(
−1 + γ0 +

3

4
k0N

2
2

)(
ξ1ξ2 + γ20

)
+
(
ξ1ξ2 + γ20

)2
=
f20 γ

2
0

N2
2

(69)

Let us consider X = N2
2

X3

(
3

4
k0

)2 [
ξ21 + (2σ − γ0)2

]
+X2 3

2
k0
[
(−1 + γ0)

[
ξ21 + (2σ−γ0)2

]
+ (2σ − γ0)γ20

]
+X

[
(−1 + γ0)2

[
ξ21 + 2(σ − γ0)2

]
+ 2(−1 + γ0)(2σ − γ0)γ20 +

(
ξ1ξ2 + γ20

)2
+ (2σ − γ0)2ξ22

]
= f20 γ

2
0 (70)

aX3 + bX2 + cX + d = 0 (71)

B Development of fast dynamic for the system with time-dependent nonlinearity

γ0N1e
iδ1 = (−1 + γ0 + iξ2)N2e

iδ2 − N3
2

4

(
e3iδ2 (K2R − iK2I) +3

[
−K0e

iδ2 + (K2R + iK2I) e
−iδ2

]
− (K4R + iK4I) e

−i3δ2
)

(72)

Real part:

γ0
N1

N2
cos(δ1 − δ2) = (−1 + γ0)− N2

2

4
(4K2R cos(2δ2) + 4K2I sin(2δ2) −3K0 −K4R cos(4δ2)−K4I sin(4δ2))︸ ︷︷ ︸

A

(73)

Imaginary part:

γ0
N1

N2
sin(δ1 − δ2) = ξ2 −

N2
2

4
(−2K2R sin(2δ2) + 2K2I cos(2δ2) +K4R sin(4δ2)−K4I cos(4δ2))︸ ︷︷ ︸

B

(74)

So,

N1 =
N2

γ0

√
A2 +B2 (75)
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A2 +B2 =
1

16
[16ξ22 + (−8K4RN

2
2 sin(4δ2) + 8K4IN

2
2 cos(4δ2) + 16K2RN

2
2 sin(2δ2)

− 16K2IN
2
2 cos(2δ2))ξ2 + ((−4K2RK4R − 8K2IK4I)N

4
2 sin(2δ2) + (4K2IK4R − 8K2RK4I)N

4
2 cos(2δ2)

+ 6K0K4IN
4
2 + (8K4Iγ0 − 8K4I)N

2
2 ) sin(4δ2) + ((4K2RK4I − 8K2IK4R)N4

2 sin(2δ2)

+ (−8K2RK4R − 4K2IK4I)N
4
2 cos(2δ2) + 6K0K4RN

4
2 + (8K4Rγ0 − 8K4R)N2

2 ) cos(4δ2)+

(24K2IK2RN
4
2 cos(2δ2)− 24K0K2IN

4
2 + (32K2I − 32K2Iγ0)N2

2 ) sin(2δ2) + (12K2
2R

− 12K2
2I)N

4
2 cos2(2δ2) + ((32K2R − 32K2Rγ0)N2

2

− 24K0K2RN
4
2 ) cos(2δ2) + (K2

4R +K2
4I + 4K2

2R + 16K2
2I + 9K2

0 )N4
2

+ (24K0γ0 − 24K0)N2
2 + 16γ20 − 32γ0 + 16] (76)

C Extrema of the SIM for the system with time-dependent nonlinearity

∂N2
1

∂N2
=
−1

8γ20
[((12K2RK4R + 24K2IK4I)N

5
2 sin(2δ2) + (24K2RK4I − 12K2IK4R)N5

2 cos(2δ2)

− 18K0K4IN
5
2 + (16K4Rξ2 + (16− 16γ0)K4I)N

3
2 ) sin(4δ2) + ((24K2IK4R − 12K2RK4I)N

5
2 sin(2δ2)

+ (24K2RK4R + 12K2IK4I)N
5
2 cos(2δ2)− 18K0K4RN

5
2 + ((16− 16γ0)K4R − 16K4Iξ2)N3

2 ) cos(4δ2)

+ (−72K2IK2RN
5
2 cos(2δ2) + 72K0K2IN

5
2 + ((64γ0 − 64)K2I − 32K2Rξ2)N3

2 ) sin(2δ2) + (36K2
2I

− 36K2
2R)N5

2 cos2(2δ2) + (72K0K2RN
5
2 + (32K2Iξ2 + (64γ0 − 64)K2R)N3

2 ) cos(2δ2)

+ (−3K2
4R− 3K2

4I − 12K2
2R− 48K2

2I − 27K2
0 )N5

2 + (48− 48γ0)K0N
3
2 + (−16ξ22 − 16γ20 + 32γ0− 16)N2] = 0

(77)

∂N2
1

∂δ2
=

1

2γ20
[(3K2IK4RN

6
2 sin(2δ2) + 3K2RK4RN

6
2 cos(2δ2)− 3K0K4RN

6
2

+ ((4− 4γ0)K4R − 4K4Iξ2)N4
2 ) sin(4δ2) + (−3K2IK4IN

6
2 sin(2δ2)− 3K2RK4IN

6
2 cos(2δ2)

+ 3K0K4IN
6
2 + ((4γ0 − 4)K4I − 4K4Rξ2)N4

2 ) cos(4δ2) + ((6K2
2I

− 6K2
2R)N6

2 cos(2δ2) + 6K0K2RN
6
2 + (4K2Iξ2 + (8γ0 − 8)K2R)N4

2 ) sin(2δ2) + 12K2IK2RN
6
2 cos2(2δ2)

+ ((4K2Rξ2 + (8− 8γ0)K2I)N
4
2 − 6K0K2IN

6
2 ) cos(2δ2)− 6K2IK2RN

6
2 ] = 0 (78)

Eq. (77) and (78) read as a polynomial of N2.

N2

8γ20
(16− 32γ0 + 16γ20 + 16ξ22) +

N3
2

8γ20
(48K0(−1 + γ0) + 64K2R cos(2δ2)− 64K2Rγ0 cos(2δ2)

− 32K2Iξ2 cos(2δ2)− 16K4R cos(4δ2) + 16K4Rγ0 cos(4δ2) + 16K4Iξ2 cos(4δ2) + 64K2I sin(2δ2)

− 64K2Iγ0 sin(2δ2) + 32K2Rξ2 sin(2δ2)− 16K4I sin(4δ2) + 16K4Iγ0 sin(4δ2)− 16K4Rξ2 sin(4δ2))

+
N5

2

8γ20
(27K2

0 + 30K2
2I + 30K2

2R + 3K2
4I + 3K2

4R − 72K0K2R cos(2δ2)− 18K2IK4I cos(2δ2)

− 18K2RK4R cos(2δ2)− 18K2
2I cos(4δ2) + 18K2

2R cos(4δ2) + 18K0K4R cos(4δ2) + 6K2IK4I cos(6δ2)

− 6K2RK4R cos(6δ2)− 72K0K2I sin(2δ2)− 18K2RK4I sin(2δ2) + 18K2IK4R sin(2δ2)

+ 36K2IK2R sin(4δ2) + 18K0K4I sin(4δ2)− 6K2RK4I sin(6δ2)− 6K2IK4R sin(6δ2)) = 0 (79)
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N4
2

8γ20
(−32K2I(−1 + γ0) cos(2δ2) + 16K2Rξ2 cos(2δ2)− 16K4I cos(4δ2) + 16K4Iγ0 cos(4δ2)

− 16K4Rξ2 cos(4δ2) + 32K2R(−1 + γ0) sin(2δ2) + 16K2Iξ2 sin(2δ2) + 16K4R sin(4δ2)− 16K4Rγ0 sin(4δ2)

− 16K4Iξ2 sin(4δ2)) +
N6

2

8γ20
(−6K2RK4I cos(2δ2) + 6K2I(−4K0 +K4R) cos(2δ2) + 24K2IK2R cos(4δ2)

+ 12K0K4I cos(4δ2)− 6(K2RK4I +K2IK4R) cos(6δ2) + 6K2IK4I sin(2δ2) + 6K2R(4K0 +K4R) sin(2δ2)

+ 12(K2I −K2R)(K2I +K2R) sin(4δ2)− 12K0K4R sin(4δ2)− 6(K2IK4I −K2RK4R) sin(6δ2)) = 0 (80)

Setting X = N2
2 , then Eq. (79) can be written as is simplified:

∂N2
1

∂N2
= 0⇒ α4X

2 + α2X + α0 = 0 (81)

with

α0 = 16(1− 2γ0 + γ20 + ξ22) (82)

α2 = 48K0 (−1 + γ0) + 64K2R cos(2δ2)− 64K2Rγ0 cos(2δ2)− 32K2Iξ2 cos(2δ2)− 16K4R cos(4δ2)

+16K4Rγ0 cos(4δ2)+16K4Iξ2 cos(4δ2)+64K2I sin(2δ2)−64K2Iγ0 sin(2δ2)+32K2Rξ2 sin(2δ2)−16K4I sin(4δ2)

+ 16K4Iγ0 sin(4δ2)− 16K4Rξ2 sin(4δ2) (83)

α4 = 27K2
0 +30K2

2I+30K2
2R+3K2

4I+3K2
4R−72K0K2R cos(2δ2)−18K2IK4I cos(2δ2)−18K2RK4R cos(2δ2)

− 18K2
2I cos(4δ2) + 18K2

2R cos(4δ2) + 18K0K4R cos(4δ2) + 6K2IK4I cos(6δ2)− 6K2RK4R cos(6δ2)

− 72K0K2I sin(2δ2)− 18K2RK4I sin(2δ2) + 18K2IK4R sin(2δ2) + 36K2IK2R sin(4δ2) + 18K0K4I sin(4δ2)

− 6K2RK4I sin(6δ2)− 6K2IK4R sin(6δ2) (84)

Equation (80) can be written as:

∂N2
1

∂δ2
= 0⇒ β2X + β0 = 0 (85)

with

β0 = −32K2I (−1 + γ0) cos(2δ2)+16K2Rξ2 cos(2δ2)−16K4I cos(4δ2)+16K4Iγ0 cos(4δ2)−16K4Rξ2 cos(4δ2)

+ 32K2R (−1 + γ0) sin(2δ2) + 16K2Iξ2 sin(2δ2) + 16K4R sin(4δ2)− 16K4Rγ0 sin(4δ2)− 16K4Iξ2 sin(4δ2)
(86)

β2 = −6K2RK4I cos(2δ2) + 6K2I (−4K0 +K4R) cos(2δ2) + 24K2IK2R cos(4δ2) + 12K0K4I cos(4δ2)

− 6 (K2RK4I +K2IK4R) cos(6δ2) + 6K2IK4I sin(2δ2) + 6K2R (4K0 +K4R) sin(2δ2)

+ 12 (K2I −K2R) (K2I +K2R) sin(4δ2)− 12K0K4R sin(4δ2)− 6 (K2IK4I −K2RK4R) sin(6δ2) (87)

D Development unstable zone of the SIM of the system with time-dependent nonlinearity

av =
9

64
(3K2

0 − 2K2
2I − 2K2

2R −K2
4I −K2

4R + 4(−K0K2R +K2IK4I +K2RK4R) cos(2δ2)

−2(K2
2I−K2

2R+K0K4R) cos(4δ2)−4(−K2RK4I+K2I(K0+K4R)) sin(2δ2)+2(2K2IK2R−K0K4I) sin(4δ2))
(88)
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bv =
3

4
(−1 + γ0) (K0 −K2R cos(2δ2)−K2I sin(2δ2)) (89)

cv =
1

4
((−1 + γ0)2 + ξ22) (90)

E Development of det(A) (singular points of the system with time-dependent nonlinearity)

det(A) =
∂H

∂φ2

∂H ∗

∂φ∗2
− ∂H ∗

∂φ2

∂H

∂φ∗2
(91)

det(A) =
1

4

[
ξ22 +

(
−1 + γ0 −

3

4

(
φ22K

∗
2 − 2|φ2|2K0 + φ∗22 K2

))2

−
(

3

4

)2 (
|φ2|4 − 2|φ2|2φ∗22 K0K2

+φ∗42 K0K4 − 2|φ2|2φ22K0K
∗
2 + 4|φ2|4|K2|2

−2|φ2|2φ∗22 K∗2K4 + φ42K0K
∗
4 − 2|φ2|2φ22K2K

∗
4 + |φ2|4|K4|2

)]
(92)

det(A) =
1

4
[ξ22 + (−1 + γ0)2 − 3(−1 + γ0)N2

2 (K2R cos(2δ2) +K2I sin(2δ2)−K0)

+
9

4
N4

2 (K2R cos(2δ2) +K2I sin(2δ2)−K0)2 −N4
2 (

3

4
)2(K2

0 − 4K0(K2R cos(2δ2) +K2I sin(2δ2))

+ 2K0(K4R cos(4δ2) +K4I sin(4δ2))− 4(K2RK4R cos(2δ2)−K2IK4R sin(2δ2)

+K4IK2I cos(2δ2) +K2RK4I sin(2δ2)) + 4(K2
2R +K2

2I) +K2
4R +K2

4I)] (93)

det(A) = aN4
2 + bN2

2 + c (94)

Let us consider X = N2
2 :

det(A) =
1

4

(
aX2 + bX + c

)
(95)

with

a =
−1

64
[18K0K4I sin(4δ2) + 18K0K4R cos(4δ2) + (−72K2IK2r cos(2δ2) + 36K2IK4R − 36K2RK4I

+ 36K0K2I) sin(2δ2) + (36K2
2I − 36K2

2R) cos(2δ2)2 + (−36K2RK4R − 36K2IK4I + 36K0K2R) cos(2δ2)

+ 9K2
4R + 9K2

4I + 36K2
2R − 27K2

0 ] (96)

b =
−3

4
(−1 + γ0) (K2R cos(2δ2) +K2I sin(2δ2)−K0) (97)

c =
ξ22
4

(−1 + γ0)
2 (98)
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F Development of equilibrium points of the system with time-dependent nonlinearity

if0 + (i (2σ − γ0) + ξ1)φ1 + iγ0φ2 = 0 (99)

Injecting Eq. (45) in Eq. (99):

if0 + (i (2σ − γ0) + ξ1)
1

γ0
(−1 + γ0 + iξ2)φ2 −

1

4

(
φ32K

∗
2 − 3|φ2|2φ2K0 + 3|φ2|2φ∗2K2 − φ∗32 K4

)
+ iγ0φ2 = 0

(100)

if0 + (i (2σ − γ0) + ξ1)
N2e

iδ2

γ0

[
−1 + γ0 + iξ2 −

N2
2

4

(
K∗2e

2iδ2 − 3K0 + 3e−2iδ2K2 − e−4iδ2K4

)]
+ iγ0N2e

iδ2 = 0 (101)

Real part:

N2((3γ0K2IN
2
2 − 6K2IN

2
2σ + 4ξ1 − 4γ0ξ1 − 3K0N

2
2 ξ1 + 3K2RN

2
2 ξ1 − 4γ0ξ2 + 8σξ2) cos(δ2)

+ (−γ0K2IN
2
2 − γ0K4IN

2
2 + 2K2IN

2
2σ + 2K4IN

2
2σ +K2RN

2
2 ξ1 −K4RN

2
2 ξ1) cos(3δ2) + (4γ0

− 3γ0K0N
2
2 − 3γ0K2RN

2
2 − 8σ + 8γ0σ + 6K0N

2
2σ + 6K2RN

2
2σ + 3K2IN

2
2 ξ1 + 4ξ1ξ2) sin(δ2)

+ (γ0K2RN
2
2 + γ0K4RN

2
2 − 2K2RN

2
2σ − 2K4RN

2
2σ +K2IN

2
2 ξ1 −K4IN

2
2 ξ1) sin(3δ2)) (102)

Imaginary part:

4f0γ0 + (4γ0N2 − 3γ0K0N
3
2 + 3γ0K2RN

3
2 − 8N2σ + 8γ0N2σ + 6K0N

3
2σ − 6K2RN

3
2σ

− 3K2IN
3
2 ξ1 + 4N2ξ1ξ2) cos(δ2) + (γ0K2RN

3
2 − γ0K4RN

3
2 − 2K2RN

3
2σ + 2K4RN

3
2σ +K2IN23ξ1

+K4IN
3
2 ξ1) cos(3δ2) + (3γ0K2IN

3
2 − 6K2IN

3
2σ − 4N2ξ1 + 4γ0N2ξ1 + 3K0N

3
2 ξ1 + 3K2RN

3
2 ξ1 + 4γ0N2ξ2

− 8N2σξ2) sin(δ2) + (γ0K2IN
3
2 − γ0K4IN

3
2 − 2K2IN

3
2σ + 2K4IN

3
2σ −K2RN

3
2 ξ1 −K4RN

3
2 ξ1) sin(3δ2)

(103)

Hence, {
a1 cos(δ2) + b1 sin(δ2) = c1
a2 cos(δ2) + b2 sin(δ2) = c2

(104)

with

a1 = (3γ0K2IN
2
2 − 6K2IN

2
2σ + 4ξ1 − 4γ0ξ1 − 3K0N

2
2 ξ1 + 3K2RN

2
2 ξ1 − 4γ0ξ2 + 8σξ2)

b1 = (4γ0 − 3γ0K0N
2
2 − 3γ0K2RN

2
2 − 8σ + 8γ0σ + 6K0N

2
2σ + 6K2RN

2
2σ + 3K2IN

2
2 ξ1 + 4ξ1ξ2)

c1 = −((−γ0K2IN
2
2 − γ0K4IN

2
2 + 2K2IN

2
2σ + 2K4IN

2
2σ +K2RN

2
2 ξ1 −K4RN

2
2 ξ1) cos(3δ2)

+(γ0K2RN
2
2 + γ0K4RN

2
2 − 2K2RN

2
2σ − 2K4RN

2
2σ +K2IN

2
2 ξ1 −K4IN

2
2 ξ1) sin(3δ2))

a2 = (4γ0N2 − 3γ0K0N
3
2 + 3γ0K2RN

3
2 − 8N2σ + 8γ0N2σ + 6K0N

3
2σ − 6K2RN

3
2σ

−3K2IN
3
2 ξ1 + 4N2ξ1ξ2)

b2 = (3γ0K2IN
3
2 − 6K2IN

3
2σ − 4N2ξ1 + 4γ0N2ξ1 + 3K0N

3
2 ξ1 + 3K2RN

3
2 ξ1 + 4γ0N2ξ2 − 8N2σξ2)

c2 −(4f0γ0 + (γ0K2RN
3
2 − γ0K4RN

3
2 − 2K2RN

3
2σ + 2K4RN

3
2σ +K2IN

3
2 ξ1+

K4IN
3
2 ξ1) cos(3δ2) + (γ0K2IN

3
2 − γ0K4IN

3
2 − 2K2IN

3
2σ + 2K4IN

3
2σ −K2RN

3
2 ξ1

−K4RN
3
2 ξ1) sin(3δ2))

(105)

So,
(b2c1 − b1c2)2 + (a2c1 − a1c2)2 − (−a2b1 + a1b2)2 = 0 (106)

Equation (106) can be reorganised as a polynomial of N2:

p10N
10
2 + p8N

8
2 + p7N

7
2 + p6N

6
2 + p5N

5
2 + p4N

4
2 + p3N

3
2 + p2N

2
2 + p0 = 0 (107)
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with

p10 = −9((γ0 − 2σ)2 + ξ21)2(9K4
0 +K0(8K2IK2RK4I − 4K2

2IK4R + 4K2
2RK4R)+

(K2
2I +K2

2R)(8K2
2I + 8K2

2R −K2
4I −K2

4R)−K2
0 (19K2

2I + 19K2
2R +K2

4I +K2
4R)

− 2(K2
0 (K2IK4I −K2RK4R) + (K2

2I +K2
2R)(K2IK4I −K2RK4R) +K0(−3K2

2I

K2R +K3
2R −K2RK

2
4I + 2K2IK4IK4R +K2RK

2
4R)) cos(6δ2) + 2(K2

0 (K2RK4I +K2IK4R)

+ (K2
2I +K2

2R)(K2RK4I +K2IK4R) +K0(K3
2I − 2K2RK4IK4R +K2I(−3K2

2R −K2
4I +K2

4R))) sin(6δ2)
(108)

p8 = 24((γ0 − 2σ)2 + ξ21)(γ0(−(18K3
0 + 4K2IK2RK4I − 2K2

2IK4R + 2K2
2RK4R

−K0(19K2
2I + 19K2

2R +K2
4I +K2

4R))(4σ(1 + σ) + ξ21)− 8(K2
2IK4I −K2

2RK4I

+ 2K2IK2RK4R)σξ2) + (4σ2 + ξ21)(18K3
0 −K0(19K2

2I + 19K2
2R +K2

4I +K2
4R)− 2K2

2I

(K4R −K4Iξ2) + 2K2
2R(K4R −K4Iξ2) + 4K2IK2R(K4I +K4Rξ2)) + γ20(18K3

0 (1 + 2σ)

−K0(19K2
2I + 19K2

2R +K2
4I +K2

4R)(1 + 2σ) + 2K2
2R(K4R + 2K4Rσ −K4I(ξ1 + ξ2))

+ 2K2
2I(−K4R(1 + 2σ) +K4I(ξ1 + ξ2)) + 4K2IK2R(K4I + 2K4Iσ +K4R(ξ1 + ξ2)))

+ (γ0(−(3K2
2IK2R − 2K2IK4I(K0 +K4R)−K2R(K2

2R −K2
4I − 2K0K4R +K2

4R))(4σ(1 + σ) + ξ21)

− 4(K3
2I + 2K2RK4IK4R +K2I(−3K2

2R +K2
4I −K2

4R))σξ2) + (4σ2 + ξ21)(3K2
2IK2R − 2K2IK4I(K0 +K4R)

+K3
2Iξ2 +K2I(−3K2

2R +K2
4I −K2

4R)ξ2 +K2R(−K2
2R +K2

4I + 2K0K4R −K2
4R + 2K4IK4Rξ2))

+ γ20(3K2
2I(K2R + 2K2Rσ) +K3

2I(ξ1 + ξ2) +K2R(−K2
2R(1 + 2σ) +K2

4I(1 + 2σ)−K4R(−2K0 +K4R)

(1 + 2σ) + 2K4IK4R(ξ1 + ξ2))−K2I(2K0(K4I + 2K4Iσ) + 2K4I(K4R + 2K4Rσ)−K2
4I(ξ1 + ξ2)

+ (3K2
2R +K2

4R)(ξ1 + ξ2)))) cos(6δ2) + (−γ0((K3
2I + 2K2RK4I(K0 −K4R) +K2I(−3K2

2R −K2
4I

+ 2K0K4R +K2
4R))(4σ(1 + σ) + ξ21) + 4(−3K2

2IK2R − 2K2IK4IK4R +K2R(K2
2R +K2

4I −K2
4R))σξ2)

+ γ20(K3
2I(1 + 2σ)− 3K2

2IK2R(ξ1 + ξ2)−K2I(K
2
4I(1 + 2σ)−K4R(2K0 +K4R)(1 + 2σ) +K2

2R(3 + 6σ)

+ 2K4IK4R(ξ1 + ξ2)) +K2R(2K0(K4I + 2K4Iσ)− 2K4I(K4R + 2K4Rσ) +K2
4I(ξ1 + ξ2) + (K2R −K4R)

(K2R +K4R)(ξ1 + ξ2))) + (4σ2 + ξ21)(K3
2I + 2K2RK4I(K0 −K4R)− 3K2

2IK2Rξ2 +K2R(K2
2R

+K2
4I −K2

4R)ξ2 +K2I(−3K2
2R +K4R(2K0 +K4R)−K4I(K4I + 2K4Rξ2)))) sin(6δ2) (109)

p7 = 72f0γ0((γ0 − 2σ)2 + ξ21)(((K2
0 (K2R −K4R) + (K2

2I +K2
2R)(K2R −K4R)

− 2K0(K2I(K2I +K4I) +K2R(−K2R +K4R)))(γ0 − 2σ) + (K2
0 (K2I +K4I)

+ (K2
2I +K2

2R)(K2I +K4I)− 2K0K2R(2K2I +K4I) + 2K0K2IK4R)ξ1) cos(3δ2)

+ ((K2
0 (K2I −K4I) + (K2

2I +K2
2R)(K2I −K4I)− 2K0K2RK4I + 2K0K2I(2K2R +K4R))(γ0 − 2σ)

− (2K0K2I(K2I −K4I)+K2
0 (K2R+K4R)−2K0K2R(K2R+K4R)+(K2

2I +K2
2R)(K2R+K4R))ξ1) sin(3δ2)

(110)
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p6 = −16(γ20(−(−54K2
0 + 19K2

2I + 19K2
2R +K2

4I +K2
4R)(8σ2(3 + 2σ(3 + σ)) + 2(1 + 6σ + 4σ2)ξ21 + ξ41)

− 2(−18K2
0 + 19K2

2I + 19K2
2R +K2

4I +K2
4R)ξ1(4σ2 + ξ21)ξ2 − 2(−18K2

0 + 19K2
2I + 19K2

2R +K2
4I +K2

4R)

(12σ2 + ξ21)ξ22) + (4σ2 + ξ21)2(−(19K2
2I + 19K2

2R +K2
4I +K2

4R)(1 + ξ22) + 18K2
0 (3 + ξ22))+

2γ30((19K2
2I + 19K2

2R +K2
4I +K2

4R)((1 + 2σ)(4σ(1 + σ) + ξ21) + 4σξ1ξ2 + 4σξ22)− 18K2
0 (3(1 + 2σ)

(4σ(1 + σ) + ξ21) + 4σξ1ξ2 + 4σξ22)) + γ40(−(19K2
2I + 19K2

2R +K2
4I +K2

4R)(1 + 4σ(1 + σ) + (ξ1 + ξ2)2)

+ 18K2
0 (3 + 12σ(1 + σ) + (ξ1 + ξ2)2))− 2γ0(4σ2 + ξ21)(−(19K2

2I + 19K2
2R +K2

4I +K2
4R)(ξ21 + 4σ(1 + σ+ ξ22))

+ 18K2
0 (3ξ21 + 4σ(3 + 3σ + ξ22)))− 2((γ0 − 2σ)2 + ξ21)((4σ2 + ξ21)(1 + ξ22) + γ20(1 + 4σ(1 + σ) + (ξ1 + ξ2)2)

− 2γ0(ξ21 + 2σ(1 + 2σ + ξ22)))((K2IK4I −K2RK4R) cos(6δ2])− (K2RK4I +K2IK4R) sin(6δ2))) (111)

p5 = 192f0γ0((γ30(K2
2I(1 + 2σ)−K0(K2R −K4R)(1 + 2σ)−K2R(K2R −K4R + 2K2Rσ

− 2K4Rσ +K4I(ξ1 + ξ2)) +K2I(K4I + 2K4Iσ − (2K2R −K4R)(ξ1 + ξ2)))

− (4σ2 + ξ21)(K0(−2K2Rσ + 2K4Rσ +K4Iξ1) +K2
2I(2σ − ξ1ξ2)−K2R(2K2Rσ

− 2K4Rσ +K4Iξ1 + 2K4Iσξ2 −K2Rξ1ξ2 +K4Rξ1ξ2) +K2I((K0 − 2K2R +K4R)ξ1 + 2(−2K2R +K4R)σξ2

+K4I(2σ − ξ1ξ2)))− γ20(K0(−2(K2R −K4R)σ(3 + 4σ) +K4Iξ1 + 2K4Iσξ1 + (−K2R +K4R)ξ21)

+K2
2I(6σ + 8σ2 − ξ1ξ2)−K2R(2(K2R −K4R)σ(3 + 4σ) +K4Iξ1 + 4K4Iσξ1 + 6K4Iσξ2

+ (−K2R +K4R)ξ1ξ2) +K2I(K0(ξ1 + 2σξ1)− (2K2R −K4R)(ξ1 + 4σξ1 + 6σξ2) +K4I(6σ + 8σ2 − ξ1ξ2)))

+ γ0(K0(−4(K2R −K4R)σ2(3 + 2σ) + 4K4Iσ(1 + σ)ξ1 − (K2R −K4R)(1 + 2σ)ξ21 +K4Iξ
3
1)

+K2
2I(ξ

2
1 + 2σ(6σ + 4σ2 + ξ1(ξ1 − 2ξ2))) +K2I((K0 − 2K2R +K4R)ξ1(4σ(1 + σ) + ξ21)

+K4I(ξ
2
1 + 2σ(6σ + 4σ2 + ξ1(ξ1 − 2ξ2)))− (2K2R −K4R)(12σ2 + ξ21)ξ2)

−K2R(K2R(ξ21 + 2σ(6σ + 4σ2 + ξ1(ξ1 − 2ξ2)))−K4R(ξ21 + 2σ(6σ + 4σ2 + ξ1(ξ1 − 2ξ2)))

+K4I(4σξ1 + ξ21(ξ1 + ξ2) + 4σ2(ξ1 + 3ξ2))))) cos(3δ2) + (γ30(−K0(K2I −K4I)(1 + 2σ)−K2
2I(ξ1 + ξ2)

−K2I(K4R + 2(K2R + 2K2Rσ +K4Rσ)−K4I(ξ1 + ξ2)) +K2R(K4I + 2K4Iσ + (K2R +K4R)(ξ1 + ξ2)))

+ (4σ2 + ξ21)(2K0(K2I −K4I)σ +K0(K2R +K4R)ξ1 +K2
2I(ξ1 + 2σξ2) +K2I(4K2Rσ + 2K4Rσ −K4Iξ1

− (2K4Iσ + (2K2R +K4R)ξ1)ξ2)−K2R((K2R +K4R)(ξ1 + 2σξ2) +K4I(2σ − ξ1ξ2)))

+ γ20(K0(2(K2I −K4I)σ(3 + 4σ) + (K2R +K4R)(1 + 2σ)ξ1 + (K2I −K4I)ξ
2
1) +K2

2I(ξ1 + 4σξ1 + 6σξ2)

+K2I(2(2K2R +K4R)σ(3 + 4σ)−K4Iξ1 − 4K4Iσξ1 − (6K4Iσ + (2K2R +K4R)ξ1)ξ2)

−K2R((K2R +K4R)(ξ1 + 4σξ1 + 6σξ2) +K4I(6σ + 8σ2 − ξ1ξ2))) + γ0(K0(−4(K2I −K4I)σ
2(3 + 2σ)

− 4(K2R +K4R)σ(1 + σ)ξ1 − (K2I −K4I)(1 + 2σ)ξ21 − (K2R +K4R)ξ31) +K2I(−4(2K2R +K4R)σ2(3 + 2σ)

+ 4K4Iσ(1 + σ)ξ1 − (2K2R +K4R)(1 + 2σ)ξ21 +K4Iξ
3
1 + 4(2K2R +K4R)σξ1ξ2 +K4I(12σ2 + ξ21)ξ2)

−K2
2I(4σξ1 + ξ21(ξ1 + ξ2) + 4σ2(ξ1 + 3ξ2)) +K2R(K4I(ξ

2
1 + 2σ(6σ + 4σ2 + ξ1(ξ1 − 2ξ2)))

+ (K2R +K4R)(4σξ1 + ξ21(ξ1 + ξ2) + 4σ2(ξ1 + 3ξ2))))) sin(3δ2) (112)

p4 = −128(2(4σ2 + ξ21)2(1 + ξ22)2 − 8γ0(4σ2 + ξ21)(1 + ξ22)(ξ21 + 2σ(1 + 2σ + ξ22)) + γ40(3f20 (K0 +K2R

+ 2(K0 +K2R)σ +K2I(ξ1 + ξ2)) + 2(1 + 4σ(1 + σ) + (ξ1 + ξ2)2)2) + γ20(192σ3(1 + ξ22) + 64σ4(3 + ξ22)

+12σξ1(f20 (K2I−K2Rξ2)+4ξ1(1+ξ22))+4σ2(3f20 (K0+K2R+K2Iξ2)+12(1+ξ22)2+8ξ21(3+ξ22)+8ξ1(ξ2+ξ32))

+ ξ21(4 + 12ξ21 + 3f20 (K0 −K2R −K2Iξ2) + 4ξ2(ξ1 + ξ2)(2 + ξ2(ξ1 + ξ2))))− γ30(128σ4 + 64σ3(3 + ξ22)

+4σ2(3f20 (K0 +K2R)+8(3+2ξ21 +2ξ1ξ2 +3ξ22))+ξ1(8ξ1(1+(ξ1 +ξ2)2)+3f20 (2K2I +K0ξ1−K2R(ξ1 +2ξ2)))

+ 4σ(3f20 (K0 +K2R +K2I(ξ1 + ξ2)) + 4((1 + ξ22)2 + ξ21(3 + ξ22) + 2ξ1(ξ2 + ξ32))))) (113)
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p3 = 128f0γ0((4σ2 + ξ21)(1 + ξ22) + γ20(1 + 4σ(1 + σ) + (ξ1 + ξ2)2)− 2γ0(ξ21 + 2σ(1 + 2σ + ξ22)))

(((K2R −K4R)(γ0 − 2σ) + (K2I +K4I)ξ1) cos(3δ2) + ((K2I −K4I)(γ0 − 2σ)− (K2R +K4R)ξ1) sin(3δ2))
(114)

p2 = −128(2(4σ2 + ξ21)2(1 + ξ22)2 − 8γ0(4σ2 + ξ21)(ξ22)(ξ21 + 2σ(1 + 2σ + ξ22))

+ γ40(3f20 (K0 +K2R + 2(K0 +K2R)σ +K2I(ξ1 + ξ2)) + 2(1 + 4σ(1 + σ) + (ξ1 + ξ2)2)2)

+ γ20(192σ3(1 + ξ22) + 64σ4(3 + ξ22) + 12σξ1(f20 (K2I −K2Rξ2) + 4ξ1(1 + ξ22)) + 4σ2(3f20 (K0 +K2R +K2Iξ2)

+12(1+ξ22)2+8ξ21(3+ξ22)+8ξ1(ξ2+ξ32))+ξ21(4+12ξ21 +3f20 (K0−K2R−K2Iξ2)+4ξ2(ξ1+ξ2)(2+ξ2(ξ1+ξ2))))

− γ30(128σ4 + 64σ3(3 + ξ22) + 4σ2(3f20 (K0 +K2R) + 8(3 + 2ξ21 + 2ξ1ξ2 + 3ξ22)) + ξ1(8ξ1(1 + (ξ1 + ξ2)2)

+3f20 (2K2I+K0ξ1−K2R(ξ1+2ξ2)))+4σ(3f20 (K0+K2R+K2I(ξ1+ξ2))+4((1+ξ22)2+ξ21(3+ξ22)+2ξ1(ξ2+ξ32)))))
(115)

p0 = 256f20 γ
2
0((4σ2 + ξ21)(1 + ξ22) + γ20(1 + 4σ(1 + σ) + (ξ1 + ξ2)2)− 2γ0(ξ21 + 2σ(1 + 2σ + ξ22))) (116)

G Development backbone curve with variable rigidity

pbc,0 = −256(γ0 + 2(−1 + γ0)σ)4 (117)

pbc,1 = 768K0(γ0 − 2σ)(γ0 + 2(−1 + γ0)σ)3 (118)

pbc,2 = −16(γ0 − 2σ)2(γ0 + 2(−1 + γ0)σ)2(54K2
0 − 19K2

2I − 19K2
2R −K2

4I −K2
4R

+ (−2K2IK4I + 2K2RK4R) cos(6δ2) + 2(K2RK4I +K2IK4R) sin(6δ2)) (119)

pbc,3 = 24(γ0 − 2σ)3(γ0 + 2((−1) + γ0)σ)(18K3
0 + 4K2IK2RK4I − 2K2

2IK4R + 2K2
2RK4R −K0(19K2

2I

+ 19K2
2R +K2

4I +K2
4R) + (3K2

2IK2R − 2K2IK4I(K0 +K4R)−K2R(K2
2R −K2

4I − 2K0K4R +K2
4R)) cos(6δ2)

+ (K3
2I + 2K2RK4I(K0 −K4R) +K2I(−3K2

2R −K2
4I + 2K0K4R +K2

4R)) sin(6δ2)) (120)

pcb,4 = −9(γ0−2σ)4(9K4
0 +K0(8K2IK2RK4I −4K2

2IK4R+ 4K2
2RK4R) + (K2

2I +K2
2R)(8K2

2I + 8K2
2R−K2

4I

−K2
4R)−K2

0 (19K2
2I + 19K2

2R+K2
4I +K2

4R)−2(K2
0 (K2IK4I −K2RK4R) + (K2

2I +K2
2R)(K2IK4I −K2RK4R)

+K0(−3K2
2IK2R +K3

2R −K2RK
2
4I + 2K2IK4IK4R +K2RK

2
4R)) cos(6δ2) + 2(K2

0K2RK4I +K2IK4R)

+ (K2
2I +K2

2R)(K2RK4I +K2IK4R) +K0(K3
2I − 2K2RK4IK4R +K2I(−3K2

2R −K2
4I +K2

4R))) sin(6δ2)
(121)

References

[1] G.W. Housner, L.A. Bergman, T.K. Caughey, A.G. Chassiakos, R.O. Claus, S.F. Masri, R.E. Skelton, T.T. Soong,
B.F. Spencer, and J.T.P. Yao. Structural control: past, present and future. Journal of Engineering Mechanics,
123:897–971, 1997.

[2] S. Korkmaz. A review of active structural control: challenges for engineering informatics. Computers and
Structures, 89:2113–2132, 2011.

[3] S.Y. Chu, T.T. Soong, and A.M. Reinhorn. Active, Hybrid, and Semi-active Structural Control: A Design and
Implementation Handbook. Wiley, United Kingdoms, 2005.

31



Detection of different dynamics of two coupled oscillators including
a time-dependent cubic nonlinearity A PREPRINT

[4] Y. Liu, T.P. Waters, and M.J. Brennan. A comparison of semi-active damping control strategies for vibration
isolation of harmonic disturbances. Journal of Sound and Vibration, 280(1):21–39, 2005.

[5] Y. Liu, H. Matsuhisa, and H. Utsuno. Semi-active vibration isolation system with variable stiffness and damping
control. Journal of Sound and Vibration, 313(1):16–28, 2008.

[6] S.R. Moheimani and A.J. Fleming. Piezoelectric transducers for vibration control and damping. Springer Science
& Business Media, 2006.

[7] D. Guyomar and A. Badel. Nonlinear semi-passive multimodal vibration damping: An efficient probabilistic
approach. Journal of sound and vibration, 294(1-2):249–268, 2006.

[8] D. Guyomar, C. Richard, and S. Mohammadi. Semi-passive random vibration control based on statistics. Journal
of Sound and Vibration, 307(3-5):818–833, 2007.

[9] S. Mohammadi. Semi-passive vibration control using shunted piezoelectric materials. PhD thesis, Electronic,
Electrotechnic and Automatic (EEA), INSA-Lyon, Lyon, n° 2008-ISAL-0043, 2008.

[10] V. Guillot, A. Givois, M. Colin, O. Thomas, A. Ture Savadkoohi, and C.-H. Lamarque. Theoretical and
experimental investigation of a 1:3 internal resonance in a beam with piezoelectric patches. Journal of Vibration
and Control, 26(13-14):1119–1132, 2020.

[11] V. Guillot, A. Ture Savadkoohi, and C.-H. Lamarque. Study of an electromechanical nonlinear vibration absorber:
Design via analytical approach. Journal of Intelligent Material Systems and Structures, 32(4):410–419, 2021.

[12] H. Frahm. Device for damping vibrations of bodies. US Patent 989,958, 1911.
[13] R. E. Roberson. Synthesis of a nonlinear dynamic vibration absorber. Journal of the Franklin Institute, 254(3):205–

220, 1952.
[14] A.F. Vakakis, O.V. Gendelman, L.A. Bergman, D.M. McFarland, G. Kerschen, and Y.S. Lee. Nonlinear targeted

energy transfer in mechanical and structural systems. Springer, Dordrecht, 2008.
[15] O.V. Gendelman, Y. Starosvetsky, and M. Feldman. Attractors of harmonically forced linear oscillator with

attached nonlinear energy sink I: description of response regimes. Nonlinear Dynamics, 51(1):31–46, 2008.
[16] O. Gendelman, L.I. Manevitch, A.F. Vakakis, and R. M’closkey. Energy pumping in nonlinear mechanical

oscillators: part I—dynamics of the underlying hamiltonian systems. Journal of Applied Mechanics, 68(1):34–41,
2001.

[17] A.F. Vakakis and O. Gendelman. Energy pumping in nonlinear mechanical oscillators: part II—resonance capture.
Journal of Applied Mechanics, 68(1):42–48, 2001.

[18] F. Nucera, A.F. Vakakis, D.M. McFarland, L.A. Bergman, and G. Kerschen. Targeted energy transfers in
vibro-impact oscillators for seismic mitigation. Nonlinear Dynamics, 50(3):651–677, 2007.

[19] O. Gendelman. Analytic treatment of a system with a vibro-impact nonlinear energy sink. Journal of Sound and
Vibration, 331:4599–4608, 2012.

[20] E. Gourc, G. Michon, S. Seguy, and A. Berlioz. Targeted energy transfer under harmonic forcing with a vibro-
impact nonlinear energy sink: Analytical and experimental developments. Journal of Vibration and Acoustics,
137(3), 2015.

[21] C.-H. Lamarque, O.V. Gendelman, A. Ture Savadkoohi, and E. Etcheverria. Structural control by means of
non-smooth nonlinear energy sink. In 7th European Nonlinear Dynamics Conference (ENOC 2011), 2011.

[22] M. Weiss, B. Vaurigaud, A. Ture Savadkoohi, and C.-H. Lamarque. Control of vertical oscillations of a cable by a
piecewise linear absorber. Journal of Sound and Vibration, 435:281–300, 2018.

[23] G. Hurel, A. Ture Savadkoohi, and C.-H. Lamarque. Design of a nonlinear absorber for a 2 degrees of freedom
pendulum and experimental validation. Structural Control and Health Monitoring, 28(11):e2814, 2021.

[24] A. Ture Savadkoohi, C.-H. Lamarque, and M.V. Contessa. Trapping vibratory energy of main linear structures
by coupling light systems with geometrical and material non-linearities. International Journal of Non-Linear
Mechanics, 80:3–13, 2016.

[25] C.-H. Lamarque, A. Ture Savadkoohi, and Z. Dimitrijevic. Dynamics of a linear system with time-dependent
mass and a coupled light mass with non-smooth potential. Meccanica, 49(1):135–145, 2014.

[26] C.-H. Lamarque and A. Ture Savadkoohi. Dynamical behavior of a Bouc-Wen type oscillator coupled to a
nonlinear energy sink. Meccanica, 49(8):1917–1928, 2014.

[27] B. Cochelin, P. Herzog, and P.-O. Mattei. Experimental evidence of energy pumping in acoustics. Comptes
Rendus Mécanique, 334(11):639–644, 2006.

32



Detection of different dynamics of two coupled oscillators including
a time-dependent cubic nonlinearity A PREPRINT

[28] R. Bellet, B. Cochelin, P. Herzog, and P.-O. Mattei. Experimental study of targeted energy transfer from an
acoustic system to a nonlinear membrane absorber. Journal of Sound and Vibration, 329(14):2768–2791, 2010.

[29] V. Alamo Vargas, E. Gourdon, and A. Ture Savadkoohi. Nonlinear softening and hardening behavior in helmholtz
resonators for nonlinear regimes. Nonlinear Dynamics, 91(1):217–231, 2018.

[30] E. Gourdon, A. Ture Savadkoohi, and V. Alamo Vargas. Targeted energy transfer from one acoustical mode to an
helmholtz resonator with nonlinear behavior. Journal of Vibration and Acoustics, 140(6):061005 (8), 2018.

[31] M. Volpe, S. Bellizzi, and R. Côte. Polyharmonic distortion approach for nonlinear acoustic load characterization.
Journal of Sound and Vibration, page 116426, 2021.

[32] X. Guo, H. Lissek, and R. Fleury. Improving sound absorption through nonlinear active electroacoustic resonators.
Phys. Rev. Applied, 13:014018, 2020.

[33] A.H. Nayfeh and D.T. Mook. Nonlinear oscillations. Wiley classics library, 1995.

[34] S. Charlemagne, A. Ture Savadkoohi, and C.-H. Lamarque. Interactions between two coupled nonlinear forced
systems: fast/slow dynamics. International Journal of Bifurcation and Chaos, 26(09):1650155, 2016.

[35] L.I. Manevitch. The description of localized normal modes in a chain of nonlinear coupled oscillators using
complex variables. Nonlinear Dynamics, 25:95–109, 2001.

[36] V.V. Smirnov and L.I. Manevitch. Complex envelope variable approximation in nonlinear dynamics. Russian
Journal of Nonlinear Dynamics, 16(3):491–515, 2020.

[37] L.I. Manevitch and O.V. Gendelman. Tractable Models of Solid Mechanics. Foundations of Engineering
Mechanics. Springer-Verlag Berlin Heidelberg, 2011.

[38] A. Ture Savadkoohi, C.-H. Lamarque, M. Weiss, B. Vaurigaud, and S. Charlemagne. Analysis of the 1:1 resonant
energy exchanges between coupled oscillators with rheologies. Nonlinear Dynamics, 86(4):2145–2159, 2016.

[39] A. Luongo, D. Zulli, and G. Piccardo. Analytical and numerical approaches to nonlinear galloping of internally
resonant suspended cables. Journal of Sound and Vibration, 315(3):375–393, 2008.

[40] J. Awrejcewicz, R. Starosta, and G. Sypniewska-Kamińska. Asymptotic analysis of resonances in nonlinear
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