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Dissipativity analysis of negative resistance circuits
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bUniversity of Cambridge, Department of Engineering. Trumpington Street, CB2 1PZ, Cambridge, United Kingdom.

Abstract

This paper deals with the analysis of nonlinear circuits that interconnect passive elements (capacitors, inductors, and resistors)
with nonlinear resistors exhibiting a range of negative resistance. Active elements are necessary to design physical circuits that
switch and oscillate. We generalize the classical passivity theory of circuit analysis to develop a port interconnection theory
for such non-equilibrium behaviors. The approach closely mimics the classical methodology of (incremental) dissipativity
theory, but with dissipation inequalities that combine signed storage functions and signed supply rates to account for the port
interconnection of passive and active elements.
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1 Introduction

The concept of passivity is a foundation of circuit theory
[1]. It led to the generalized concept of dissipativity [37],
[38], which has become a foundation of nonlinear system
theory [19,35]. Yet the applications of nonlinear system
theory have been dominated by mechanical and electro-
mechanical systems [6], [13], [28], [32], with significantly
less attention to nonlinear circuits [5,7].

Starting with the seminal work of Chua [10] and the
textbook of Chua and Desoer [11], the research on non-
linear circuits has somewhat diverged from the research
on nonlinear dissipative systems. The emphasis in non-
linear circuit theory has been on non-equilibrium behav-
iors whereas the focus of dissipativity theory is an in-
terconnection framework for systems that converge to
equilibrium.

Negative resistance devices are the essence of non-
equilibrium behaviors such as switches [9], [18], [23],
nonlinear oscillations [20], [24], or chaotic behavior [22],
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[31]. In contrast, dissipativity theory is a stability the-
ory for physical systems that only dissipate energy and
that relax to equilibrium when disconnected from an
external source of energy.

The present paper is a step towards generalizing passiv-
ity theory to a port interconnection theory of negative
resistance circuits. In the spirit of passivity theory, we
seek to analyze nonlinear circuits that constrain the ex-
change of energy through the element ports.

The two basic elements of dissipativity theory are the
storage function and the supply function. A dissipative
system obeys a dissipation inequality, which expresses
that the rate of change of the storage does not exceed
the supply. The physical interpretation is that the stor-
age is a measure of the internal energy, whereas the in-
tegral of the supply is a measure of the supplied energy.
For stability analysis purposes, the storage becomes a
Lyapunov function.

The approach in this paper is based on two modifications
of the basic theory. First, the analysis is in terms of in-
cremental variables, that is, differences of voltages and
currents rather than voltages and currents. Incremental
analysis is classical in nonlinear circuit theory. Starting
with the seminar work of [25], incremental analysis has
also been increasingly used in nonlinear stability theory
[2], [14], and in nonlinear dissipativity theory [17], [29],
[33], [36]. Second, we allow for dissipation inequalities
that combine signed storage functions and signed supply
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rates. Signed storage functions have the interpretation
of a difference of energy stored in different storage ele-
ments whereas signed supply rates are useful for identi-
fying the sign of the interconnection (positive or nega-
tive feedback).

For analysis purposes, the interconnection theory de-
veloped in the present paper makes contact with the
dominance theory recently proposed in [15], [16]. Signed
Lyapunov functions with a restricted number of negative
terms are used to prove convergence to low-dimensional
dynamics that dominate the asymptotic behavior. A
one-dimensional dominant behavior is sufficient to
model bistable switches whereas a two-dimensional
dominant behavior is sufficient to model nonlinear os-
cillators. Combined with the interconnection theory of
this paper, dominance theory opens the way to analysis
of nonlinear switches and nonlinear oscillators in large
nonlinear circuits.

We deliberately restrict the scope of the present paper to
nonlinear circuits with negative resistance to facilitate a
concrete interpretation of the results. Not surprisingly,
the concepts are not restricted to electrical circuits and
apply to any physical domain. For concreteness, the en-
tire paper is restricted to signed passivity supplies, an
inner product between currents and voltages, with the
convenient interpretation of electrical power.

A main contribution of the present paper with respect
to [16] is the consideration of physical interconnections
between elements that can be active, that is, include in-
ternal sources of energy. The consideration of port in-
terconnections is key to the application of dissipativity
theory to physical systems.

The paper is organized as follows. Section 2 deals with
the dissipation properties of negative resistance devices
and Section 3 extends dominance theory in an incremen-
tal framework that is suitable for the analysis of circuits
with piecewise linear characteristics. In Section 4 we an-
alyze basic electrical switches and oscillators with one or
two storage elements, whereas Section 5 covers the de-
sign of coupling networks that allows us to interconnect
circuits with different signatures in the supply rates.

Preamble.

The circuits studied in this paper are built from intercon-
nections of linear passive elements, such as capacitors and
inductors, and nonlinear resistors. The time evolution of the
family of circuits studied here is described by the state-space
model

Σ :

{
ẋ = f(x) +Bu x(0) = x0

y = Cx+Du
(1)

where x ∈ Rn is the state of the system and u, y ∈ Rm are
the so-called manifest variables. For electrical circuits, the
manifest variables are conjugated in terms of voltages v, and

currents i, that is, the inner product u⊤y has units of power.
The map f : Rn → Rn is Lipschitz continuous and models
interactions between linear storage elements and nonlinear
resistors. Moreover, the matrices B, C, and D are of the ap-
propriate dimensions and such that the system is well-posed.
Henceforth, every circuit in this paper is assumed to be of
the form (1). We adopt a differential (or incremental) ap-
proach, that is, we will study circuit properties by looking
at the difference between trajectories. For simplicity, we de-
note the difference between any two generic signals w1, w2

as ∆w := w1 − w2. In this way, the mismatches between
any two states/currents/voltages are denoted as ∆x, ∆i and
∆v respectively. Finally, we will use symmetric matrices
P ∈ Rn×n constrained to have inertia (p, 0, n − p), that is,
with p negative eigenvalues and n− p positive eigenvalues.

2 Signed supply rates for nonlinear resistors

The nonlinear element shown in Figure 1 is a fundamen-
tal element of nonlinear circuits. The range of negative
slope in the nonlinear characteristic models an element
that reduces its energy dissipation for increasing val-
ues of voltage/current. By adding power sources, such a
nonlinear element can model an active device injecting
power into the circuit. We follow the common terminol-
ogy of negative resistance device [12], [21], with the usual
caveat that negative refers to the increment ∆v rather
than to the value of the voltage v. A more precise (but
also heavier) terminology would be negative incremen-
tal (or differential) resistance. The analysis in this paper
will be exclusively in terms of incremental quantities,
which is common practice in nonlinear circuit theory.
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Fig. 1. Slope-bounded voltage-current characteristic of a tun-
nel diode. Tunnel diodes are (incrementally) negative resis-
tance devices. When a power source is added to work on the
region of negative slope, the device becomes active.

We are motivated by the property that this nonlinear
element satisfies the two inequalities

0 ≤ ∆i∆v +Gg(∆v)2, 0 ≤ −∆i∆v +Gd(∆v)2 (2)

where Gd > 0 and −Gg < 0 represent, respectively,
the maximum positive slope and negative slope of the
voltage-current characteristic of Figure 1. Both inequali-
ties have an obvious energetic interpretation: the first in-
equality expresses the shortage of incremental passivity
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of the element: the element becomes incrementally pas-
sive when connected in parallel with a resistor of resis-
tance lesser than 1/Gg. The second inequality expresses
the shortage of incremental anti-passivity of the element:
the element becomes purely a source of energy when con-
nected to a negative resistance larger than −1/Gd.

The element illustrated in Figure 1 is passive, but the
addition of a constant power source does not change the
incremental dissipation inequality (2). As a consequence,
incremental dissipation inequalities apply to both pas-
sive and active elements.

Describing negative resistors in terms of dissipation in-
equalities opens the way to the use of dissipativity theory
to characterize circuit interconnections. As an illustra-
tion, consider the parallel interconnection of a voltage-
controlled 1 negative resistance element with a capaci-
tor (Figure 2, left).
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Fig. 2. Basic prototype circuits of a current-driven (above)
and a voltage-driven (below) 1-passive circuit. The resistors
Rvc and Rcc are voltage-controlled and current-controlled
resistors respectively.

Let ic, vc and ir, vr be the currents and voltages associ-
ated to the capacitor and the controlled resistor, respec-
tively. The capacitor is a classical lossless element that
satisfies the power-preserving equality

d

dt
C
(∆vc)2

2
= ∆vc∆ic (3)

In the language of dissipativity theory, the quantity on
the left-hand side is the time-derivative of the storage
C (∆vc)2

2 . The negative resistance element together with
the source and the resistor RE satisfy −∆vr∆ir+(Gd+
1

RE
)(∆vr)2 ≥ 0. The parallel interconnection defined by

1 A voltage-controlled resistor is a device for which the cur-
rent flowing through its terminals is a single-valued map of
its voltage. The dual element, for which the voltage across
its terminals is a single-valued function of its current, is a
current-controlled resistor.

v = vc = vr and i = ic + ir satisfies the dissipation
(in)equality

− d

dt
C
(∆vc)2

2
≤ −∆v∆i+

(
Gd +

1

RE

)
(∆v)2 (4)

The quantity that appears on the left hand-side is the
time-derivative of a negative storage. More generally, the
storage functions in this paper will be quadratic forms
defined by a symmetric matrix P = P⊤ with p negative
eigenvalues (and n−p positive eigenvalues). In the same
way, we will consider quadratic supply rates as

σ(∆i,∆v) =

[
∆i

∆v

]⊤ [
Q I
I R

][
∆i

∆v

]
(5)

where the signature matrix I ∈ Rm×m is a diagonal
matrix with ±1 in the main diagonal, and Q ∈ Rm×m,
R ∈ Rm×m are symmetric matrices. In the special case
I = I, this family of supply rates characterize incremen-
tally passive elements with an excess or a shortage of
passivity in the external variables [32].

We call (5) a signed passivity supply rate to stress that
the only difference with respect to the conventional pas-
sivity supply is the signature matrix I generalizing the
conventional identity matrix I.

Signed storage functions generalize the conventional pos-
itive definite storages of passivity theory. Positive def-
inite storages are natural candidates for the stability
analysis of closed equilibrium systems. In its incremental
form, stability analysis appears in the literature under
different names, including contraction theory [25], in-
cremental stability analysis [2], or differential Lyapunov
analysis [14]. Signed storages generalize this stability
analysis for non-equilibrium behaviors characterized by
a low-dimensional asymptotic behavior. This generaliza-
tion is the topic of dominance analysis, reviewed in the
next section.

3 Differential dissipativity

3.1 Signed passivity

Dissipativity theory [37], [38] is grounded in dissipation
inequalities, which generalize the physical characteriza-
tion of a passive circuit as a system that can only absorb
energy: the variation of energy stored in the elements of
the circuit (capacitors and inductors) is upper bounded
by the electrical power supplied to the circuit. For a linear
circuit, the storage is a quadratic function of the state,
and the dissipation inequality takes the standard form

d

dt
x⊤Px+ 2λx⊤Px ≤ v⊤i+ i⊤v
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The scalar λ ≥ 0 determines a dissipation rate. Each
pair of voltage vk and current ik appearing in the volt-
age vector v and current vector i determines a port of
the circuit. Motivated by the signed supply rates and
signed storages introduced in Section 2, we generalize
incremental passivity to signed passivity.

d

dt
S(∆x) + 2λS(∆x) ≤ σ(∆i,∆v) (6)

where S(∆x) = ∆x⊤P∆x, and the inequality has to
hold for any mismatch ∆i, ∆v, and ∆x satisfying (1)
(with the appropriate identification of the elements of
the vectors u and y in (1)). The signed supply σ : Rm ×
Rm → R is determined by the signature matrix I. The
signed quadratic storage S : Rn → R is determined
by the symmetric matrix P with p negative eigenvalues
and n − p positive eigenvalues. Signed quadratic stor-
ages arise from the difference between two non-negative
functions. If the storage function S is positive definite,
the scalar λ ≥ 0 indicates a dissipation rate. For generic
signed storage functions, the rate λ splits the circuit dy-
namics into a contracting part, whose dissipation rate is
upper bounded by λ, and a dominant part, whose dissi-
pation is only lower bounded by λ. The objective of the
generalized theory is to consider port-interconnections
of circuits whose elements can possibly inject energy into
the environment rather than exclusively dissipating en-
ergy from the environment.

Definition 1 A nonlinear circuit (1) is called signed
passive with rate λ ≥ 0, if the inequality (6) holds along
any pair of trajectories. The property is strict if ε > 0.

Definition 1 is very close to the classical definition of in-
cremental passivity. The only difference is that (i) we
consider signed storages, i.e. differences of nonnegative
storages and (ii) signed supply rates, i.e. differences of
the classical passivity supply rates. As illustrated in Sec-
tion 2, such storages and supply rates appear naturally
when considering circuits with both passive and active
elements and ports that can both absorb and deliver en-
ergy.

3.2 Dissipative interconnections

The central property of passivity theory is that passiv-
ity is preserved by interconnection. More precisely, port
interconnections of passive circuits are passive. In order
to generalize this property to signed-passivity, we intro-
duce the following definition.

Definition 2 Let Σa and Σb be two signed-passive cir-
cuits with rate λ ≥ 0. Their interconnection is called
dissipative if

∆ia⊤Ia∆va +∆ib
⊤Ib∆vb ≤ ∆iI∆v (7)

for some new port variables i, v ∈ Rm̃ and I ∈ Rm̃×m̃.
If equality holds in (7), then the interconnection is called
neutral.

The conventional passivity supply assumes I = I. In
this case, an interconnection is neutral if

∆ia⊤∆va +∆ib
⊤
∆vb = ∆i⊤∆v

Hence, port interconnections of passive circuits are neu-
tral. Concretely, we consider the following interconnec-
tion pattern,

ia = −ib + icc ib = −ivc

va = vb + vvc va = vcc
(8)

with
icc⊤k vvck = 0, for all k ∈ {1, . . . ,m} (9)

The connection pattern (8) describe combinations of the
two most common interconnection patterns for circuits,
that is, parallel connection (vvc = 0), and series connec-
tion (icc = 0). Note that a circuit is closed or terminated
whenever both icc = 0 and vvc = 0. Substitution of (8)
on the left-hand side of (7) shows that port intercon-
nections of signed-passive systems with supplies shar-
ing the same signature (i.e., Ia = Ib) are neutral in the
sense of Definition 2 with respect to i = [icc⊤, ivc⊤]⊤,
v = [vcc⊤, vvc⊤]⊤, and I = Diag[Ia, Ib].

The question of how to realize a neutral or dissipative in-
terconnection when interconnecting signed-passive cir-
cuits is deferred to Section 5. But the definition allows
for the following generalization of the passivity theorem.

Theorem 3 The dissipative interconnection of two
signed-passive circuits with rate λ ≥ 0 is signed-passive
with the same rate. The storage of the interconnected
system is the sum of the storages.

PROOF. Let us consider the aggregated state
x = [x⊤

a , x
⊤
b ]

⊤, and the block-diagonal matrix P =
Diag[Pa, Pb] such that S(∆x) = ∆x⊤P∆x. The sum of
storages satisfies,

d

dt
S(∆x) + 2λS(∆x) ≤

∑
k∈{a,b}

σk(∆ik,∆vk) (10)

Simple, yet cumbersome, computations show that the
substitution of the interconnection pattern (8) into (10)
together with the dissipativity of the interconnection
yield,

d

dt
S(∆x) + 2λS(∆x) ≤ σ̂(∆i,∆v) (11)
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where Î = Diag[Ia, Ib] and

Q̂ =

[
Qa Qa

Qa Qa +Qb

]
R̂ =

[
Ra +Rb −Rb

−Rb Rb

]

and the result follows. 2

The dissipation rate λ splits the circuit dynamics be-
tween contracting and dominant parts. The common
rate in Theorem 3 guarantees that the interconnection
preserves the splitting of the parts. This does not force
the two circuits to have the same dissipation elements or
equal dissipated powers. For example, for a given rate λ,
Σa may dissipate at a fast rate, faster than λ, while Σb

may be slow or not dissipate at all (the rate λ is a lower
bound). Under the assumptions of Theorem 3, the inter-
connection of Σa and Σb is sign-passive with a well de-
fined splitting into contractive and dominant parts sep-
arated by the rate λ (respectively given by the dynamics
of Σa and Σb, in this case).

3.3 Closing the ports: Dominant systems

Signed passivity enables the analysis of interconnected
circuits that combine passive and active components. In
this section we show how signed passivity constrains the
behavior of the system. The bridge is given by domi-
nance theory, which takes advantage of the splitting into
dominant and contractive components of signed passi-
tity, to characterize the non-equilibrium behaviors of the
system. The approach is based on the intuitive idea that
the long run behavior of the system is dictated by low-
dimensional dynamics, identified through the study of
the system linearization [14], [15], [16]. In what follows,
we adapt the differential approach of [16] into an incre-
mental setting.

Definition 4 Let f : Rn → Rn be a Lipschitz continu-
ous map. A system of the form

ẋ ∈ f(x), x ∈ Rn, (12)

is p-dominant with rate λ ≥ 0 if there exists a matrix
P = P⊤ ∈ Rn×n with inertia (p, 0, n − p) such that for
any two trajectories of (12)

[
∆ẋ

∆x

]⊤ [
0 P

P 2λP + εI

][
∆ẋ

∆x

]
≤ 0. (13)

The property is strict if ε > 0.

When P is positive definite, (13) becomes the incremen-
tal analogue of the classical Lyapunov inequality, mean-
ing that any two trajectories converge to each other with

decay rate at least λ ≥ 0, [4]. When f is a differentiable
map, (13) reduces to the simple matrix inequality

∂f(x)

∂x

⊤
P + P

∂f(x)

∂x
+ 2λP ≤ −εI, ∀x ∈ Rn (14)

which provides a basic test for dominance, [15], [16].

The property of dominance strongly constrains the
asymptotic behavior of the system as described for the
following theorem.

Theorem 5 ([16, Corollary 1]) Let (12) be strictly p-
dominant with rate λ ≥ 0. Then every bounded trajectory
of (12) converges to

• A unique equilibrium point if p = 0.
• An equilibrium point if p = 1.
• A simple attractor if p = 2. That is, an equilibrium

point, a set of equilibria and connecting arcs, or a
closed orbit.

Summing up, closed dynamic systems with smaller de-
grees of dominance p will show simpler behaviors com-
pared with systems with higher degrees.

A key consequence of the classical passivity theorem is
that terminated passive circuits converges to a unique
stable equilibrium. The storage becomes a Lyapunov
function for the closed system. In a similar way, ter-
minated signed-passive circuits are dominant systems,
whose behavior satisfies Theorem 5. The number of neg-
ative eigenvalues of their storage function is connected
to the degree of dominance of the circuit.

Theorem 6 Let Σa be a strictly signed-passive circuit
with rate λ > 0 and dominance degree p. The terminated
circuit built from the dissipative interconnection of Σa

with a resistor (Σb) defines a p-dominant system with
the same rate λ > 0 provided that Qa + Qb ≤ 0 and
Ra +Rb ≤ 0.

PROOF. Recall that a resistor (linear or nonlinear)
satisfies a dissipation inequality as (5). Thus, from The-
orem 3, the interconnection satisfies (11). In addition,
the termination of the ports, i.e., icc = 0 and vvc = 0,
transforms (11) into

d

dt
S(∆x) + 2λS(∆x) ≤ ∆ivc⊤(Qa +Qb)∆ivc

+∆vcc⊤(Ra +Rb)∆vcc ≤ 0

and the conclusion follows from Definition 4. 2
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4 Elementary switching and oscillating circuits

In this section we review classical elementary circuits
and illustrate their signed passivity properties. In what
follows, we make extensive use of Theorems 5 and 6 for
the analysis of interconnected circuits.

4.1 Switching circuits

We start with the parallel nonlinear RC circuit and the
series nonlinear RL circuit shown in Figure 2. For the
nonlinear RC circuit, we rewrite the dissipation inequal-
ity (4) with state x = vc and storage S(∆x) = −C

2 (∆x)2

as

d

dt
S(∆x) + 2λS(∆x) ≤ −∆i∆v

+

(
Gd +

1

RE
− λC

)
(∆v)2 (15)

The dissipation inequality involves the standard storage
of a capacitor and the standard supply of a one port cir-
cuit, but both with a negative signature. The intercon-
nection is neutral as a port interconnection of elements
with negative signature I = −1. Terminating the cir-
cuit, that is, setting i = 0, results in a 1-dominant sys-
tem when Gd + 1

RE
− λC < 0 (Theorem 6). This closed

circuit has one or three equilibria. With three equilib-
ria, one of which unstable, the circuit is an elementary
example of bistable switch (Theorem 5).

The dissipativity analysis of the series RL circuit in Fig-
ure 2 is similar. Taking as state variable ξ and storage
function S(∆ξ) = −L

2 (∆ξ)2, the circuit satisfies the dis-
sipation inequality

d

dt
S(∆ξ) + 2λS(∆ξ) ≤ −∆i∆v

+ (Rd +RJ − λL)(∆i)2 (16)

By applying once again Theorems 5 and 6 we conclude
that the circuit is 1-passive whenever Rd+RJ −λL < 0,
and a bistable switch whenever there are three equilibria
one of which unstable. Both circuits can be seen as ab-
stract realizations of the classical Schmitt trigger circuit
in which the negative resistor is usually made by using
an operational amplifier in positive feedback [26].

Both switches in Figure 2 have a signed storage and a
signed supply rate. The sign in the storage function dic-
tates the degree of dominance p, whereas the sign in the
supply rate constrains the feasible dissipative intercon-
nections for the port. For instance, consider the circuits
of Figure 2 with different interconnection ports as indi-
cated in Figure 3. In this case, the dissipation inequal-
ity associated to the nonlinear RC circuit with the same

−+ E

RE

Rvc

g(x)

C

+

−
x

−+ vi

i

+

−

v J RJ

Rcc

− +
r(ξ)

Lξ

Fig. 3. Other two basic switches with supply rate given by
I = 1 (in contrast to the circuits in Figure 2 where I = −1).

storage function S(∆x) = −C
2 (∆x)2, is

d

dt
S(∆x) + 2λS(∆x) ≤ ∆i∆v − 1

RE
(∆v)2

+

(
Gd +

1

RE
− λC

)
(∆x)2 (17)

That is, the circuit is strictly 1-passive when Gd+ 1
RE

−
λC < 0. The associated supply rate is positive in this
situation (I = 1). Similarly, for the nonlinear RL circuit
of Figure 3, the corresponding dissipation inequality is

d

dt
S(∆ξ) + 2λS(∆ξ) ≤ ∆i∆v −RJ(∆i)2

+ (RJ +Rd − λL)(∆ξ)2 (18)

Note that both set of circuits in Figures 2 and 3 are 1-
passive with the same storage functions and even the
same rate λ > 0. However, the difference of sign in the
supply rate will yield to different types of dissipative
interconnections.

4.2 Oscillating circuits

We proceed with the analysis of the nonlinear RLC cir-
cuits shown in Figure 4.

The parallel nonlinear RLC circuit is the port intercon-
nection of the nonlinear RC circuit in the previous sec-
tion with a lossless inductor via the pattern (8) with
vvc = 0. The port interconnection is neutral as an inter-
connection of two circuits with supply signature I = −1.
The total storage is the sum of two negative storages
(defining the state ∆z = [∆x ∆ξ]T )

S(∆z) := −C

2
(∆x)2 − L

2
(∆ξ)2.
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Fig. 4. Basic prototype circuits of a current-controlled
(above) and a voltage-controlled (below) signed-passive cir-
cuits with degree of dominance 2.

The interconnection satisfies the dissipation inequality

d

dt
S(∆z) + 2λS(∆z) ≤ −∆i∆v − λL(∆i)2

+ (Gd +
1

RE
− λC)(∆v)2

The storage has a dominance degree 2 and the supply has
a negative signature I = −1. When terminated, that is,
when i = 0, the circuit is 2-dominant for Gd+ 1

RE
< λC

(Theorem 6). If in addition, the closed circuit has a
unique unstable equilibrium and bounded trajectories,
then a self-sustained oscillation appears. This is a proto-
type of negative resistance nonlinear oscillator, see The-
orem 5, such as the circuits studied by Van der Pol [34]
and Nagumo [27].

The series interconnection in Figure 4 can be studied
in a similar way, as a neutral interconnection between
the nonlinear RL circuit in the previous section and a
lossless capacitor. The circuit is signed dissipative with
the same storage and with the supply

σ(∆i,∆v) =
1

2

[
∆i

∆v

]⊤ [
2(Rd +RJ − λL) −1

−1 −2λC

][
∆i

∆v

]

5 Dissipative interconnections

The examples of Section 4 are built from the dissipa-
tive connection of circuits with the same sign on their
supply rate, so that Theorem 3 can be applied. How-
ever, the simple port-interconnection of signed-passive
circuits with opposite supply rates, i.e., Ia + Ib = 0,
is non-dissipative. For such circuits, dissipative inter-
connections require coupling through additional circuits
that may be active as well.

We illustrate the construction of such coupling networks
with the static coupling network shown in Figure 5. The

Σa ΣbΣc

ia

+

−
va

ĩa

+

−
ṽa

ĩb

+

−
ṽb

ib

+

−
vb

Fig. 5. Dissipative interconnection of circuits Σa and Σb

through the static coupling network Σc.

interconnection equations are

ik = −ĩk + ik,cc, ĩk = −ik,vc

vk = ṽk + vk,vc, vk = vk,cc (19)

where the variables ik,cc, vk,cc, ik,vc and vk,vc, k ∈ {a, b},
represent the range of possible ports available after in-
terconnection. With this notation, a port is closed or ter-
minated when ik,cc = 0 and vk,vc = 0, k ∈ {a, b} which
is the case shown in Figure 5.

The following theorem provides conditions on the static
coupling network Σc that lead to a dissipative intercon-
nection (in the sense of Definition 2), between the cir-
cuits Σa and Σb so that Theorem 3 can be applied. In
what follows σ̃(∆ĩ,∆ṽ) denotes the supply rate associ-
ated to Σc, that is,

σ̃(∆ĩ,∆ṽ) =

[
∆ĩ

∆ṽ

]⊤ [
Q̃ Ĩ
Ĩ R̃

][
∆ĩ

∆ṽ

]

where ∆ĩ = [∆ĩa⊤,∆ĩb⊤]⊤, ∆ṽ = [∆ṽa⊤,∆ṽb⊤]⊤, Ĩ =

Diag[Ia, Ib], Q̃ = Diag[Q̃a, Q̃b], R̃ = Diag[R̃a, R̃b].

Theorem 7 The interconnection between Σa and Σb is
dissipative, in the sense of Definition 2, if and only if
the static coupling network Σc is signed-passive without
any shortage of signed-passivity, that is, if and only if Σc

satisfies, for any mismatch ∆ĩ,∆ṽ,

0 ≤ σ̃(∆ĩ,∆ṽ) (20)

with Q̃ ≤ 0, R̃ ≤ 0. In addition, the interconnection is
neutral if and only if,

0 = ∆ĩaIa∆ṽa +∆ĩbIb∆ṽb (21)

PROOF. The left-hand side of (7) under the intercon-
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nection pattern (19) yields,

∆iaIa∆va +∆ibIb∆vb

=
∑

k∈{a,b}

−∆ĩkIk∆ṽk

+
∑

k∈{a,b}

∆ik,ccIk∆vk,cc +∆ik,vcIk∆vk,vc (22)

≤
∑

k∈{a,b}

∆ik,ccIk∆vk,cc +∆ik,vcIk∆vk,vc

where we have made use of (20) in the last step. Hence,
(7) follows by taking i = [ia,cc, ib,cc, ia,vc, ib,vc]⊤, v =
[va,cc, vb,cc, va,vc, vb,vc]⊤, and I = Diag[Ia, Ib, Ia, Ib].
Finally, it follows from (22) that the connection is neu-
tral if and only if (21) holds. 2

The addition of the network Σc adds signed dissipation
to both systems, allowing the following extension of The-
orem 6 for circuits whose port-interconnection is origi-
nally non-dissipative.

Corollary 8 Let Σa be a strictly signed-passive circuit
with rate λ > 0 and dominance degree p. The terminated
circuit built from the dissipative interconnection of Σa

with a resistor (Σb) through a static coupling Σc defines
a p-dominant system with the same rate λ > 0 provided
that for any pair (∆ik,∆vk), k ∈ {a, b},

∑
k∈{a,b}

[
∆ik

∆vk

]⊤ [
Qk + Q̃k 0

0 Rk + R̃k

][
∆ik

∆vk

]
≤ 0 (23)

In what follows, we look into networks that satisfy the
conditions of Theorem 7, focusing on static (resistive)
“T” and “Π” configurations. Such configurations are
widely used in the design of circuits for impedance
matching and optimal power transfer between ports,
see e.g., [3]. Figure 6 illustrate practical realizations of
dissipative interconnections where resistive elements
model power losses.

Ra
ĩa

+

−
ṽa Rc

i

αi

Rb
ĩb

+

−
ṽb

ĩa

+

−
ṽa Ra

Rc i

αi Rb

ĩb

+

−
ṽb

Fig. 6. “T” (left) and “Π” (right) coupling systems Σc (see
Figure 5), using a current-controlled current source for the
cases when Ia = −Ib.

The “T” connection in Figure 6 imposes the constraints
ia = −ĩa, ib = −ĩb, va = ṽa = Raĩ

a− Rc

α−1 (̃i
a+ ĩb), vb =

ṽb = Rbĩ
b − Rc

α−1 (̃i
a + ĩb) where α > 1. Without loss of

generality we assume that Ia = −1 and Ib = 1. It follows
from direct computations that the “T” bridge satisfies
(20) with Q̃a = Ra− Rc

α−1 , R̃a = 0, Q̃b =
Rc

α−1 −Rb, and
R̃b = 0. Hence, according to Theorem 7, the “T” bridge
achieves a dissipative interconnection for circuits with
supply rates Ia = −1, Ib = 1, whenever α > 1 and

Ra ≤ Rc

α− 1
≤ Rb (24)

Neutrality of the interconnection is achieved if equality
holds in (24).

The dual version of the “T” connection is the “Π” con-
nection as shown in Figure 6. In this case the network im-
poses the relations va = ṽa, vb = ṽb, −ia = ĩa = 1

Ra
ṽa−

α−1
Rc

(
ṽa − ṽb

)
, and −ib = ĩb = 1

Rb
ṽb + α−1

Rc

(
ṽa − ṽb

)
where α > 1. Hence, direct computations show that
the “Π” bridge also satisfies (20) with Q̃a = 0, R̃a =
1
Ra

− α−1
Rc

, Q̃b = 0, and R̃b =
α−1
Rc

− 1
Rb

. Following again
Theorem 7, the “Π” bridge provides an interconnection
that is dissipative whenever

1

Ra
≤ α− 1

Rc
≤ 1

Rb
. (25)

Neutrality of the interconnection is achieved if equality
holds in (25). Both dissipative interconnections above
can be implemented by using negative resistance devices
as shown in Figure 7. One should stress that the imple-
mentations in Figure 7 only consider the active range of
the controlled resistors Rvc and Rcc.

Ra
ĩa

Rcc

+

−
r(i)

i

+

−
ṽa

Rb
ĩb

+

−
ṽb

ĩa

+

−
ṽa Ra

Rvc

+ −v

g(v)

Rb

ĩb

+

−
ṽb

Fig. 7. Implementation of dissipative “T” (left) and “Π”
(right) interconnections via controlled resistors. Both inter-
connection networks are dissipative for systems with oppo-
site supply signature Ia = −Ib in the active range of the
controlled resistors.

6 Example

As an illustration, we consider the circuit shown in Fig-
ure 8. The circuits Σa1 and Σa2 are the negative re-
sistance switches analyzed in Section 4. From (15)-(16)
it becomes clear that their interconnection (denoted as
Σa) is neutral. In addition, Theorem 3 reveals that the
resulting circuit is signed-passive with a negative stor-
age (of dominance degree 2) and a passivity supply with
negative signature −1, for all λ > max{Gd

C0
, Rd

L0
}, where
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Σa2
Σa1 Σb

Ra
cc

−

+

r2(x
a
2)

L0xa
2

C0

+

−
xa
1 Ra

vc

g1(x
a
1)

ia

+

−
va

ib

C1

+

−
xb
1

+

−
vb R1

R12

C2

+

−
xb
2 R2

R23

C3

+

−
xb
3 R3

Fig. 8. Negative resistance oscillator (left) and passive RC load (right). Each circuit has opposite signature making necessary
a coupling network to achieve a dissipative interconnection.

Gd and Rd are the positive slopes of the voltage-current
characteristics of Ra

cc and Ra
vc respectively.

The circuit Σb is a classical linear RC passive load. It
is signed-passive with positive signature supply +1, for
λ < mink∈{1,2,3}

{
1

RkCk

}
.

According to Theorems 5 and 6, closing the circuit Σa

will result in an oscillatory behavior, whenever the asso-
ciated equilibrium is unique and unstable. On the other
hand, closing the circuit Σb will result in a circuit whose
state variables go exponentially to zero. However, be-
cause the supply rates of both circuits have opposite
signs, the methods developed in [16] are inconclusive
regarding the behavior of the port interconnection. In-
deed, in the language of [16], the interconnected system
is 2-dissipative but it is not 2-dominant. Hence, a cou-
pling network Σc is needed in order to get a dissipative
interconnection in the sense of Definition 2.

When the two circuits are interconnected through the
“Π” bridge discussed in the previous section, (following
the pattern shown in Figure 5), the interconnection be-
comes dissipative as long as (25) holds. As a consequence,
the interconnected circuit is signed-passive (Theorem 7).
Its storage is the difference of two positive definite stor-
ages. It has a dominance degree 2. The supply of the in-
terconnected system is a passivity supply with positive
signature +1. This time, Theorem 6 guarantees that the
terminated circuit is 2 dominant for any rate λ satisfying

max

{
Gd

C0
,
Rd

L0

}
< λ < min

k∈{1,2,3}

{
1

RkCk

}
.

Finally, the simulation in Figure 9 is for the set of param-
eters L0 = 50mH, C0 = 10µF , C1 = C2 = C3 = 0.1µF ,
R1 = R2 = R3 = R12 = R23 = 1Ω, Ra = 20Ω, and
Rb = 10Ω. The nonlinear resistors Ra

vc, Ra
cc and Rc

vc
have voltage-current characteristics given by

g1(x1) =


0.1x1 x1 < 2V

−0.1x1 + 0.4 2V ≤ x1 ≤ 3V

0.1x1 − 0.2 3V < x1

r2(x2) =


10x2 + 5 x2 < −0.2A

−10x2 + 1 −0.2A ≤ x2 ≤ −0.1A

10x2 + 3 −0.1A < x2

g2(v) =


0.1375v + 0.9625 v < −5V

−0.055v −5V ≤ v ≤ 5V

0.1375v − 0.9625 5V ≤ v

Note that the resistor Rc
vc has region of negative resis-

tance with gain of−0.055 and satisfies 1
Ra

≤ 0.055 ≤ 1
Rb

,
thus providing a dissipative coupling locally. Also, with
these set of parameters the circuit has a unique unstable
equilibrium. The simulated behavior is bounded and en-
tirely in the active range of the controlled resistors. By
2-dominance of the circuit, the trajectory must converge
to a limit cycle according to Theorem 5.

0.0 0.1 0.2-30

-15

0
10

t[s]

x
b 3
[m

V
]

Fig. 9. Time trajectory of the voltage across the capacitor
C3 of the circuit in Figure 8.

7 Conclusions

We presented a methodology for the global analysis of
nonlinear circuits obtained as the physical interconnec-
tion of conventional linear elements and negative resis-
tors. We identified two families of circuits sorted by its
signature in the supply rate and provided simple cou-
pling mechanisms for connections of circuits with op-
posite signature. Future work will investigate the ex-
tension of the theory to general physical systems and
a larger class of nonlinear elements including nonlinear
capacitors, nonlinear inductors, and memristors. Such a
theory would find a direct application in the design of
neuromorphic systems that assemble large collections of
switching and spiking elements as in [8], [30].
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