

Inverse source estimation problem in EEG

Maureen Clerc, Juliette Leblond, Jean-Paul Marmorat, Théo Papadopoulo

▶ To cite this version:

Maureen Clerc, Juliette Leblond, Jean-Paul Marmorat, Théo Papadopoulo. Inverse source estimation problem in EEG. BaCI 2017 - Basic and Clinical Multimodal Imaging, Aug 2017, Bern, Switzerland. hal-03472757v2

HAL Id: hal-03472757 https://hal.science/hal-03472757v2

Submitted on 10 Dec 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Inverse source estimation problem in EEG Maureen Clerc¹, Juliette Leblond¹, Jean-Paul Marmorat², Theo Papadopoulo¹

¹INRIA, Teams APICS, ATHENA, Sophia Antipolis, France ²Ecole des Mines ParisTech, CMA, Sophia Antipolis, France

Abstract

Being given pointwise measurements of the electric potential taken by electrodes on part of the scalp, the EEG (electroencephalography) inverse problem consists in estimating current sources within the brain that account for this activity. A model for the behaviour of the potential rests on Maxwell equations in the quasi-static case, under the form of a Poisson-Laplace partial differential equation (PDE). We solve the inverse problem (IP) in spherical geometry, for piecewise constant electric conductivity values, and pointwise dipolar source terms.

The algorithm relies on consecutive steps and is encoded in the software FindSources3D:

- (i) Singular value decomposition (SVD), in order to separate the time independant activities. (ii) Data transmission from scalp to cortex.
- (iii) Best quadratic rational approximation on families of 2D slices, compute singularities in circular sections.
- (iv) Clustering of these singularities in order to localize the sources.

[CLMP] Clerc, Leblond, Marmorat, Papadopoulo. Source localization in EEG using rational approximation on plane sections, Inverse Problems 28, 2012.

1. Model, assumptions, IP

• Potentials *u*, subject to pointwise dipolar *J* supported within the brain

div (σ grad u) = div $J = \sum_{k \in I} p_k \cdot \text{grad } \delta_{C_k}$

• Spherical head geometry, 3 homogeneous isotropic layers $\Omega_2, \Omega_1, \Omega_0$ (scalp, skull, brain) constant conductivity values $\sigma_2 = \sigma_0 > \sigma_1 > 0$ & $\partial_n u = 0$ on S_2

• EEG data set: u depends on time t through $|p_k(t)|$ pointwise values of potential $u = u(t_i, e_j)$ at electrodes locations e_j on S_2 • IP: estimate quantity K and locations C_k in Ω_0 of sources & moments p_k

2. Step (i) **SVD** \rightarrow static ativities

Singular value decomposition of EEG matrix time window, $EEG = U \Sigma V$, rk R • main asynchronous activities columns u_r of $U, r = 1, \ldots, R$

• best linear combination, in view of source estimation

change basis in span

BEM, BEP

3. step (iii)

2d slices of $S_0 \rightarrow$ poles \simeq singularities

Best quadratic rational approximation on circles

• $\sigma_0 \Delta u = \text{div } J$, convolution by fundamental solution $\rightsquigarrow u = u_s + \text{harmonic}, u_s(X) \simeq \sum_{k=1}^{K} \frac{\langle p_k, X - C_k \rangle}{|X - C_k|^3}$

• from u, $\partial_n u$ on planar sections of S_0

 $\min_{\pi,q} \left\| f - \frac{\pi}{q} \right\|_{L^2(\Gamma_p)}$ iterate on degree $q \nearrow K$ \rightsquigarrow roots of q in D_p = poles

• lines of singularities maximum modulus in D_p containing sources

3. step (iv)

2d singularities \rightarrow 3d sources

Clustering 2d singularities for suitable directions

k = 1, 2

 \rightarrow source locations C_k

\rightarrow up to K = 3 or 4 pointwise sources

+ moments recovery (linear system)

• actual data

FindSources3D

cortical mapping $S_2 \rightsquigarrow S_0$

Compute harmonic extension of the data on S_2 in Ω_2 , then in Ω_1 $\Delta u = 0$ in $\Omega_1 \& \Omega_2 + \text{transmission conditions on } S_i: u, \sigma \partial_n u$ continuous

integral representation, single & double layer potentials Best constrained quadratic approximation on spheres S_i i = 1, 2by harmonic functions in Ω_i , with norm constraint on S_{i-1} • expansions on spherical harmonics data at electrodes e_i • transmission $S_2 \rightarrow S_1$ then $S_1 \rightarrow S_0$

Boundary Element Methods, Bounded Extremal Problems

$$\min_{u_{ap}} \left(\left\| u - u_{ap} \right\|_{L^2(S_i)} + \lambda \left\| \text{grad } u_{ap} \right\|_{L^2(S_{i-1})} \right)$$

 u_{ap} on spherical harmonic basis $r' Y_{I}^{m}(\theta, \varphi)$, Lagrange parameter $\lambda > 0$

http://team.inria.fr/apics/

juliette.leblond@inria.fr