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COMPACTNESS AND STRUCTURE OF ZERO-STATES FOR
UNORIENTED AVILES–GIGA FUNCTIONALS

M. GOLDMAN, B. MERLET, M. PEGON, AND S. SERFATY

Abstract. Motivated by some models of pattern formation involving an unoriented
director field in the plane, we study a family of unoriented counterparts to the Aviles–
Giga functional.

We introduce a nonlinear curl operator for such unoriented vector fields as well as
a family of even entropies which we call “trigonometric entropies”. Using these tools
we show two main theorems which parallel some results in the literature on the classical
Aviles–Giga energy. The first is a compactness result for sequences of configurations with
uniformly bounded energies. The second is a complete characterization of zero-states,
that is, the limit configurations when the energies go to 0. These are Lipschitz continuous
away from a locally finite set of points, near which they form either a vortex pattern or
a disclination with degree 1/2. The proof is based on a combination of regularity theory
together with techniques coming from the study of the Ginzburg–Landau energy.
Our methods provide alternative proofs in the classical Aviles–Giga context.

Keywords and phrases. Aviles–Giga functional, entropies, compactness, rigidity, vortices,
disclinations, zero-states, Ginzburg–Landau functional.
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1. Introduction

In this paper we study unoriented variants of the two-dimensional Aviles–Giga func-
tional. We first recall the main features of the classical (oriented) Aviles–Giga functional,
which is nothing else than the Ginzburg–Landau energy restricted to curl-free vector
fields, i.e. gradients if the domain is simply connected. More precisely, the functional is
defined on the space of vector fields u : Ω ⊂ R2 → R2 by

Eε(u) :=


ε

2

∫
Ω

|∇u|2 +
1

2ε

∫
Ω

(1− |u|2)2 if curlu = 0,

+∞ otherwise.

This model, first introduced in [AG96], as well as some of its variants, appear in the
modelling of various phenomena in materials science such as blistering of thin films, liquid
crystals configurations and magnetization orientation in ferromagnetic materials. They
have attracted considerable attention in the mathematical literature over the last twenty
years, see e.g. [AG87, AG96, JK00, ADLM99, DKMO01, JP01, JOP02, RS01, ARS02,
AKLR02, DLO03, CDL07, Pol07, Ign12, IM11, IM12, Lor14] and are still the subject of
active research as witnessed by more recent articles [LP18, LLP20, GL20, Mar20, Mar21,
LP21].

The main question is to understand the behavior as ε ↓ 0 of configurations with bounded
energy (such as minimizers) and in particular to derive a Γ−limit of the energy. The
conjecture is that in the limit, the energy concentrates on line singularities corresponding
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to interfaces (“domain walls”) in micromagnetics. In full generality and despite substantial
progress, this question is still open to this date.
The first step of the program, which was carried in [ADLM99, DKMO01], is to prove
strong L1 convergence of sequences of bounded energy. This shows in particular that in
the limit we obtain curl-free unit-norm vector fields. The proof combines a compensated-
compactness argument together with the fact that the energy controls a certain entropy
production. The latter was already observed by [JK00] which introduced the first entropies
for this problem. This is inspired by the analysis of scalar conservation laws, observing
that the eikonal equation

(1.1) curlu = 0, |u| = 1

can be considered as a one-dimensional scalar conservation law ∂1u1 + ∂2(
√

1− u2
1) = 0.

To be more specific, an entropy is any mapping Φ ∈ C∞(S1,R2) such that

(1.2) µΦ[u] := ∇ · [Φ(u)] = 0

for any smooth u satisfying (1.1). For solutions u of (1.1) obtained as limits of bounded
energy configurations uε and any entropy Φ, the entropy production µΦ[u] is typically not
zero but a signed measure, of mass controlled by Eε(uε) in the sense that

(1.3) |µΦ[u]|(Ω) ≤ C lim inf
ε↓0

Eε(uε)

for some positive constant C depending on Φ. In the particular case of the so-called
Jin–Kohn entropies, [JK00, ADLM99] proved the sharp inequality (1.3) with C = 1,
leading to a characterization of the Γ−liminf (see also [RS01, ARS02, IM11, IM12]). For
BV vector fields, this was complemented by a corresponding Γ−limsup construction in
[CDL07, Pol07]. However, as shown in [ADLM99], limit configurations are in general
not BV . In order to complete the program, it was therefore necessary to investigate
further the fine structure of configurations u satisfying (1.1) such that µΦ[u] is a signed
measure for any entropy Φ. A first step considered in [JOP02], was to study the case of
configurations such that Eε(uε)→ 0 as ε ↓ 0, or more precisely, in regions of the domain
where the energy does not concentrate and where µΦ[u] vanishes by (1.3). In this case,
the limiting configurations, called zero-states, must be Lipschitz continuous away from
a locally finite singular set S. The singularities near the points of S must be of vortex-
type (i.e. u(x) = ±x/|x| locally, up to an origin-shift). Recently, [LP18, LLP20] proved
that the same conclusion can be obtained under the weaker assumption that the entropy
production coming from the Jin–Kohn entropies vanishes.
An important further step was obtained in [DLO03] (see also [AKLR02]), where it is
shown that configurations of finite energy share some of the characteristic properties of
BV -mappings. In particular, it is possible to define a countably-rectifiable jump set Ju
with weak traces u± on both sides. Probably the main open question to complete the
proof of the Γ−convergence is to show that the entropy production is concentrated on Ju,
see [GL20, Mar20, Mar21, LP21] for recent progress on this question.

Motivated by models for the formation of stripe patterns [EINP03, EV09, ZANV21],
two of the authors started to study in [MS21] some unoriented variants of the Aviles–Giga
functional, i.e. variants in which u and −u are identified. More precisely, working in the
SBV setting (i.e. BV functions whose differential has no Cantor part, see [AFP00]) they
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consider the energy

(1.4) E ′ε(u⊗ u) :=


ε

2

∫
Ω

|∇au|2 +
1

2ε

∫
Ω

(1− |u|2)2 if


u ∈ SBV (Ω,R2),

u+ + u− = 0 on Ju

and curla u = 0,

+∞ otherwise,

where ∇au = (∂1u, ∂2u) denotes the absolutely continuous part of the distributional gra-
dient ∇u, curla u = (∂1u2)a − (∂2u1)a, Ju is the jump set of u and u± the traces of u on
Ju. This preserves the original model as much as possible while allowing non-orientable
fields. One can check that this functional is unambiguously defined as a function of u⊗u,
since if ũ⊗ ũ = u⊗ u then ũ(x) = ±u(x) almost everywhere in Ω and |∇aũ| = |∇au|.

As shown in [MS21], the passage from the oriented to the unoriented setting has a
dramatic impact on the properties of configurations with moderate energy. First, the
optimal jump profiles are not always one-dimensional and are thus difficult to precisely
characterize (in particular they are different from the two-dimensional “cross-tie” patterns
found in its micromagnetics variants [ARS02]). Second and maybe more importantly, the
curl-free constraint may be lost in the limit ε ↓ 0. This shows in particular that following
the program described above will be very challenging in the unoriented case.

Nevertheless, the aim of this paper is to perform the first two steps and prove com-
pactness, which happens, maybe surprisingly, despite the possible loss of the curl-free
condition, as well as to investigate the structure of zero-states, thus providing a parallel
to the results of [DKMO01] and [JOP02].

Since we have no control on u but only on v = u⊗ u, an important preliminary step
is to express the energy E ′ε in terms of v. To this aim, we introduce of good notion of
curl for unoriented configurations (see Definition 1.4 and (1.8) below) and denote it by

ĉurlv. It turns out that a convenient requirement is that ĉurlv = (curlu)u for smooth
u with v = u ⊗ u. It is thus a vector-valued and nonlinear operator. We also need to
define the entropy production in terms of v. For Φ an even entropy, i.e. Φ(−z) = Φ(z)
for z ∈ S1 and v = u⊗ u, we define

µ̂Φ[v] := ∇ · [Φ(u)].

Our first main result is then the following.

Theorem 1.1. Let Ω ⊂ R2 be a domain of finite area and εk ↓ 0. If vk = uk ⊗ uk is
such that supk E

′
εk

(vk) < ∞, then there exists v = u ⊗ u with u ∈ L1(Ω,S1) such that
up to extraction, vk → v in L1. Moreover, for every even entropy Φ, the corresponding
entropy production µ̂Φ[v] is a signed measure with

|µ̂Φ[v]|(Ω) ≤ C lim inf
k→∞

E ′εk(vk)

for some constant C > 0 depending on Φ.

Let us point out that we actually prove a more general compactness result which allows
for a relaxation of the curl-free condition (see Theorem 5.4).

Theorem 1.1 shows in particular that configurations of vanishing energy are zero-states
in the sense that v = u ⊗ u for some u of unit length with µ̂Φ[v] = 0 for every even
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entropy. Our second main result proves that in the unoriented setting the structure of
zero-states is very similar to that described in [JOP02] in the classical oriented setting.
The only difference is that point singularities may be vortices but also 1/2-disclinations
(we can also interpret a vortex as two glued 1/2-disclinations so that, essentially, these
latter are the only type of singularities).

Theorem 1.2 (Structure of zero-states).

Let v = u⊗u be a zero-state. Then ĉurlv = 0 and there exists a locally finite set S ⊂ Ω
such that:

(i) v is locally Lipschitz continuous in Ω\S,
(ii) for x ∈ Ω\S, v = v(x) on the connected component of [x + Ru(x)] ∩ [Ω\S] which

contains x,
(iii) for every B := Br(x

0) such that 2B := B2r(x
0) ⊂ Ω and 2B ∩ S = {x0}, we can

choose u such that
(a) either u(x) = (x− x0)/|x− x0| in B\{x0} (see Figure 1),
(b) or there exists ξ ∈ S1 such that (see Figure 2),

◦ u(x) = (x− x0)/|x− x0| in
{
x ∈ B\{x0} : (x− x0) · ξ ≥ 0

}
,

◦ v is Lipschitz continuous in
{
x ∈ B\{x0} : (x− x0) · ξ ≤ 0

}
.

.x0

Br(x
0)

Figure 1. Case (iii)(a) a vortex.

.
x0

ξ Br(x
0)

Figure 2. Case (iii)(b) a 1/2-discli-
nation.

Structure of a zero-state near a singularity x0, as in Theorem 1.2. Line segments

represent the director field ±u. Dotted curves are orthogonal to this field.

Let us stress that an important point of Theorem 1.2 is that zero-states are curl-free.
As already alluded to, this is in general not true for arbitrary limit configurations (see
[MS21]). In particular, this shows that the creation of curl must come with a cost.

To sum up, our main accomplishments are the following:

(a) We introduce a good notion of curl for unoriented configurations, which we denote

ĉurl, and which extends the usual notion of curl in the sense that ĉurl(u ⊗ u) =

(curlu)u. This ĉurl operator is vector-valued and nonlinear.
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(b) We introduce a new family of entropies, which we call the trigonometric entropies and
which have remarkable arithmetic properties. These are at the core of the proofs of
both theorems. To the best of our knowledge, albeit being quite natural (in particular
they contain the Jin–Kohn entropies, see Remark 1.8), these entropies have never been
used so far. We thus anticipate that they could also prove useful for other related
problems. In order to use entropies in the unoriented setting, these have to be even in
the usual sense. This is not the case for the standard entropies of [JK00, DKMO01].
We are able to show that, despite this constraint which reduces the admissible family,
controlling just the entropy production for the family of (even) trigonometric entropies
is enough to recover compactness.

(c) We prove a parallel structure theorem to [JOP02], precisely that zero-states (in partic-
ular limits of vanishing energy configurations obtained by the compactness result) are
locally Lipschitz continuous away from a locally finite singular set. Moreover, every
singular point corresponds either to a vortex x/|x|, or to a disclination with degree
1/2, see Figures 1, 2. Because of the unoriented situation, the kinetic formulation
approach employed in [JOP02] is no longer available. Instead, the route we follow is
to prove W 1,p regularity of zero-states. This is inspired by ideas from [LP18]. Using
results from Ginzburg–Landau theory (see [BBH94, SS07, AP14]) this allows to iden-
tify the location of the vortices (or disclinations). At this point, thanks to the W 1,p

regularity we can follow the characteristics (here its level lines) in a classical sense to
conclude on the geometric structure.

We now give an outline of the proofs of Theorem 1.1 and Theorem 1.2 together with
more precise definitions of the objects under consideration.

1.1. Main definitions and outline of the proofs.

Complex representation. Inspired by [GMM20] where a related unoriented functional of
Ginzburg–Landau type (thus without constraints on the curl) was considered, we find
it actually convenient not to work with tensor products u ⊗ u but rather in complex
number representation. We will use a bold font for elements of R2 and a regular font
for the corresponding elements of C, in the sense that u = (u1, u2) is identified with
u = u1 + iu2 ∈ C.

We now observe that for u, ũ ∈ C we have

ũ2 = u2 ⇐⇒ ũ = ±u ⇐⇒ ũ⊗ ũ = u⊗ u.
We can thus, indeed identify unoriented vector fields v = u ⊗ u with complex-valued
functions v = u2. In the sequel, we heavily use the multiplicative structure of C. From

now on we also identify all the quantities depending on v and v (we write ĉurl v for ĉurlv

and so on). Notice that if v =

(
v11 v12

v12 v22

)
and v = v1 + iv2 we have the correspondence

(1.5) v1 = v11 − v22 v2 = 2v12 and |v| = Trv.

In order to define unambiguously a square-root σ on C we set

(1.6) σ(reiθ) =
√
reiθ/2 for − π < θ ≤ π and r ≥ 0.

So, σ is a right inverse on C for Π : z ∈ C 7→ z2 and a left inverse for Π on {reiθ : r ≥
0, −π/2 < θ ≤ π/2}. In particular, we have σ(v)2 = v.
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Remark 1.3. In the study of nematic liquid crystals and in other fields, directors {±u}
with u ∈ S1 are usually represented as Qu = u⊗ u− (1/2) Id. Taking local averages, the
theory is extended to Q−tensors: mappings taking values into the space of 2×2 symmetric
traceless matrices. Here, in the energy (1.4), the vector fields u are not supposed to have
unit length and a representation by Q-tensors is not straightforward (the trace of u⊗u is
not prescribed). Moreover, it is not clear how to properly define a curl operator for general
Q−tensors (we could extend formula (1.8) below but many other choices are possible).

Unoriented curl and energies. We may now define our unoriented curl operator, which
has the particularity of being nonlinear and vector-valued. It is defined so that if v = u2

with u smooth, then ĉurl v = (curlu)u.

Definition 1.4. For v ∈ W 1,1
loc (Ω,C), ĉurl v denotes the measurable vector field Ω → R2

which vanishes on the set {x ∈ Ω : v(x) = 0} and is defined by ĉurl v := (ρ1, ρ2) elsewhere
with

ρ1 :=
1

4

(
v1

|v| + 1

)
(∂1v2 − ∂2v1)− 1

4

v2

|v|(∂1v1 + ∂2v2),

ρ2 :=
1

4

v2

|v|(∂1v2 − ∂2v1) +
1

4

(
v1

|v| − 1

)
(∂1v1 + ∂2v2).

This can be rewritten in compact form as

(1.7) ĉurl v =
1

4


v1

|v| + 1 − v2

|v|
v2

|v|
v1

|v| − 1


(∇⊥ · v
∇ · v

)
,

where ∇⊥ := (−∂2, ∂1). Notice that ĉurl v ∈ L1
loc(Ω,R2) defines a distribution.

Remark 1.5. Using for instance (1.5) it is not hard to see that

(1.8) ĉurlv =
1

2Tr (v)
v
(
2(∇ · v)⊥ +∇⊥(Tr (v))

)
where u⊥ := (−u2, u1) and

∇ · v = (∇ · v1,∇ · v2)

is the column-wise divergence of v.

Remark 1.6. We cannot use only one component of ĉurl(u2) = (ρ1, ρ2) to retrieve curlu
or even the condition curlu = 0. Indeed, if u takes only real values then v = u2 satisfies
v1− |v| = v2 = 0, hence ρ2 = 0 whereas u is curl-free only if ∂2u = 0. Symmetrically, if u
takes values in iR then v1 + |v| = v2 = 0 and ρ1 = 0 while curlu vanishes only if ∂1u = 0.

We can now use the ĉurl operator to encode the curl-free constraint and replace the
functional E ′ε defined in (1.4) by

(1.9) E ′′ε (v) :=


ε

2

∫
Ω

|∇v|2
4|v| +

1

2ε

∫
Ω

(1− |v|)2 if v ∈ W 1,1(Ω,C) and ĉurl v = 0,

+∞ otherwise.

By convention |∇v|2/(4|v|) = 0 wherever v = 0 (recall that ∇v = 0 a.e. on {v = 0}). We
will show in Proposition 2.2 that the functionals E ′ε and E ′′ε are indeed equivalent.
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Drawing analogy with both the Aviles–Giga functional and micromagnetics models
[DKM+01, DKMO02, DKMO05, RS01, ARS02], we will actually consider a larger class
of energies where the curl-free constraint is relaxed. We will consider two possible relax-
ations. The first one is meant to allow dislocations at small scales while penalizing their
energy, the other contains an analogue of the stray-field energy in micromagnetics.

We assume here that g and W are measurable functions from C to [0,+∞], that λ0
ε, λ

1
ε ∈

[0,+∞] and that there exists a constant κ > 0 such that

(1.10)


g ≥ κ in some neighborhood of S1,

W (v) ≥ κmin ((1− |v|)2, |1− |v||) for v ∈ C,
max(λ0

ε, λ
1
ε) ≥ κ for ε > 0.

We then define

Êε(v) := ε

∫
Ω

g (v) |∇v|2 +
1

ε

∫
Ω

W (v) + λ0
ε

∫
Ω

| ĉurl v|+ λ1
ε

ε

∥∥∥ĉurl v
∥∥∥2

H−1(Ω)
.(1.11)

Notice that E ′′ε corresponds to the choice g(v) = 1/(8|v|), W (v) = (1 − |v|)2/2 and
max(λ0

ε, λ
1
ε) = +∞.

Unoriented and trigonometric entropies. We define entropies as mappings Φ ∈ C∞(S1,C2)
such that the real and imaginary part of Φ are usual entropies i.e. they satisfy (1.2). We
fix an arbitrary function χ0 ∈ C∞c ([0,+∞), [0, 1]) with χ0(1) = 1 and suppχ0 ⊂ (1/2, 2).
With a slight abuse of notation we identify any entropy Φ with its extension to C by

Φ(z) = χ0(|z|)Φ
(
z

|z|

)
.

For any v ∈ L1(Ω,C), and any even entropy Φ, we define the entropy production

(1.12) µ̂Φ[v] := ∇ · [Φ(σ(v))] .

In order to motivate the definition of the trigonometric entropies, let us recall from
[DKMO01] that setting T := R/(2πZ), we can associate to any λ ∈ C∞(T,C) the entropy
Υ[λ] := Φ ∈ C∞(S1,C2) defined by

(1.13) Φ(eiθ) := λ(θ)

(− sin θ

cos θ

)
− λ′(θ)

(
cos θ

sin θ

)
.

Moreover, if λ is π−antiperiodic then Φ is even.

Definition 1.7. For n ∈ Z, we set Φn := Υ[2ien], where en is the trigonometric monomial
θ ∈ R 7→ einθ ∈ C. We call these functions trigonometric entropies. More explicitly, for
n ∈ Z and z ∈ C,

Φn(z) = (n− 1)zn+1

(
1

−i

)
+ (n+ 1)zn−1

(
1

i

)
.

Notice that if n is odd then Φn is even. The main properties of these entropies that we
will use are the very favorable algebraic expressions of

Φn(z) ∧ Φ−n(z′) and [Φn(z)− Φn(z′)] ∧
[
Φ−n(z)− Φ−n(z′)

]
,

from Lemma 4.4.

Remark 1.8. Defining the Jin–Kohn entropies on S1 by Σ1(z) := (z2(1− (2/3)z2
2), z1(1−

(2/3)z2
1)) and Σ2(z) := (2/3)(z3

1 ,−z3
2) (see [JK00]) we can easily check that Φ±2 = 6Σ2 ±

6iΣ1.
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Sketch of proof of Theorem 1.1. The proof of Theorem 1.1 (for Êε) follows closely the
strategy of the proof of its oriented counterpart in [DKMO01]. The first step (see Propo-
sition 5.1) is to prove that the energy controls the entropy production in the sense that
for every even entropy Φ, there exists a constant C ≥ 0 depending on Φ such that for
every ζ ∈ C1

c (Ω,C),

(1.14)

∣∣∣∣∫
Ω

µ̂Φ[v]ζ

∣∣∣∣ ≤ C
(
Êε(v)‖ζ‖∞ + ε1/2Ê1/2

ε (v)‖∇ζ‖2

)
.

Thanks to [Mur78, Mur81, Tar79] this yields that for sequences (vk) of bounded energy,
(µ̂Φ[vk]) is compact in H−1

loc (Ω). Using the div-curl lemma of Murat and Tartar, see
[Mur78, Tar79], we conclude that for every pair of even entropies Φa, Φb we have as weak
limits in L2,

(1.15) lim
k↑∞

[
Φa(σ(vk)) ∧ Φb(σ(vk))

]
=

[
lim
k↑∞

Φa(σ(vk))

]
∧
[

lim
k↑∞

Φb(σ(vk))

]
.

If we now consider the Young measure νx⊗L2 generated by (vk) (L2 denotes the Lebesgue
measure) this translates into∫

S1
Φa(σ(z)) ∧ Φb(σ(z))dνx(z) =

[∫
S1

Φa(σ(z))dνx(z)

]
∧
[∫

S1
Φb(σ(z))dνx(z)

]
.

The question is then to understand if the class of entropies we have at our disposal is rich
enough to conclude that νx must be a Dirac mass (which then classically implies strong
convergence of (vk), see [Mül99] for example). It is at this point that our proof departs
from the one of [DKMO01]. Indeed, to reach the conclusion in the oriented case [DKMO01]
used (after an approximation argument) the following entropies for ξ ∈ S1,

(1.16) Φξ(z) :=

{
ξ when ξ · z⊥ > 0,

0 when ξ · z⊥ ≤ 0.

Alternatively, in [ADLM99] the Jin–Kohn entropies of [JK00] are used for a similar con-
clusion. None of these entropies are even and therefore available in the unoriented setting.
We use instead the trigonometric entropies Φn for odd n to prove that the first Fourier
coefficient of νx is of modulus equal to 1. Since νx is a probability density on S1, this
implies that it is a Dirac mass (see Lemma 4.5).

Remark 1.9.

(1) Notice that we can also obtain an alternative proof to the compactness results of
[DKMO01, ADLM99] in the oriented case by using instead the trigonometric entropies
Φn with n even.

(2) On the contrary, if we replace v = u2 by v = uq for some q ≥ 3 in the model i.e. we
identify the elements of {e2ikπ/qu : 0 ≤ k ≤ q − 1}, then the space of entropies with
the respective symmetry reduces to the space of constant mappings S1 → C2. In this
case it turns out that the compactness result analogous to Theorem 5.4 does not hold
and the corresponding Γ−limit is trivial (see [MS21]).

Sketch of proof of Theorem 1.2. Our proof of Theorem 1.2 is totally different from the
proof in [JOP02] for the oriented case. Indeed, that proof is almost entirely based on the
use of the entropies Φξ defined in (1.16) in order to follow in a weak sense the characteris-
tics of the eikonal equation (which are lines). In the unoriented case, we build instead on
a method of Lorent and Peng [LP18, Theorem 4] (see also [LLP20, Lemma 7]) which in
turn is inspired by the earlier work [Š93] of Šverák on differential inclusions. We apply it
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in Proposition 6.1 with the trigonometric entropies to show that if v is a zero-state then

v ∈ W
1,3/2
loc (Ω) (actually W 1,p

loc for every p < 2, see Remark 6.2) and for every open set
ω ⊂⊂ Ω and |h| � 1,

(1.17)

∫
ω

|v(x+ h)− v(x)|2dx ≤ C|h|2 ln(1/|h|).

From v ∈ W 1,3/2
loc (Ω) and the vanishing of any non-trivial even trigonometric entropy we

recover the condition ĉurl v = 0. Before commenting on the implications of (1.17), let us
give a sketch of the proof. For the sake of simplicity we focus on the first non-trivial even
trigonometric entropy Φ3 and derive the weaker Besov estimate:

(1.18)

∫
Ω

|Dhv|4ζ2 ≤ C|h| 43 ,

that is v ∈ B
1/3
4,∞,loc(Ω). This is the exact analog of [LP18, Theorem 4] replacing the

Jin–Kohn entropies by the trigonometric entropies Φ±3.
Letting Dhf(x) := f(x+h)−f(x), the main point is that as a consequence of Lemma 4.4,

(1.19) |Dhv|4 ≤
C

2i

(
Dh[Φ

3(σ(v))] ∧Dh[Φ
−3(σ(v))]

)
.

We then use once again the div-curl structure of the right-hand side (recall (1.15)). Indeed,
we notice that Φ3(σ(v)) is divergence free (since µ̂Φ3 [v] = 0) to find a Lipschitz function
F with Φ3(σ(v)) = ∇⊥F . For every smooth test function ζ we then have∫

Ω

|Dhv|4ζ2 ≤ C

∣∣∣∣∫
Ω

[
∇⊥DhF

]
∧
[
Dh[Φ

−3(σ(v))]
]
ζ2

∣∣∣∣
= C

∣∣∣∣∫
Ω

[∇DhF ] ·
[
Dh[Φ

−3(σ(v))]
]
ζ2

∣∣∣∣
≤ C

∫
Ω

|DhF |
∣∣Dh[Φ

−3(σ(v))]
∣∣ |ζ||∇ζ|,

where we used integration by parts and ∇· [Dh[Φ
−3(σ(v))]] = 0. Since both F and Φ−3 ◦σ

are Lipschitz continuous, we find by Hölder inequality,∫
Ω

|Dhv|4ζ2 ≤ C|h|
(∫

Ω

|Dhv|4ζ2

) 1
4

.

After simplification this yields (1.18).

In order to improve from the Besov regularity to the stronger W 1,p estimate and
to (1.17), we need to implement a refined version of this argument involving all the
even trigonometric entropies.

Defining the Ginzburg–Landau energy in the open set ω (see [BBH94, SS07]) as

GLη(u;ω) :=
1

2

∫
ω

|∇u|2 +
1

4η2

∫
ω

(1− |u|2)2

we deduce in Lemma 6.4 from (1.17) that for every mollification vη of v we have

(1.20) GLη(vη;ω) ≤ C ln(1/η).

From the theory of Ginzburg–Landau vortices and in particular [AP14] we find that v has
degree zero outside a locally finite set S. In particular, we can use the theory of lifting
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for Sobolev maps [BMP05, Dem90] to find locally outside of S a curl-free square-root of
v with Sobolev regularity. At this point we can follow the characteristics in a classical
sense to conclude on the geometrical structure.

Remark 1.10. As for Theorem 1.1, our proof of Theorem 1.2 can be used to give a new
proof in the classical (oriented) Aviles–Giga setting.

Remark 1.11. Let us point out that in order to conclude that the number of singular-
ities is locally finite, it is crucial to obtain a sharp estimate in (1.17). Indeed, even a
logarithmically failing estimate would lead to a potentially infinite number of vortices. In

particular, if (vk) is such that vk → v and Êεk(vk) → 0, (1.20) should be compared with
the much weaker bound

GLεk(ω; vk) = o(1/εk).

This work is the first where the connection between Ginzburg-Landau vortices and zero-
states of the Aviles-Giga energy is made a priori rather than a posteriori.

1.2. Organization of the paper. In Section 2 we show the equivalence between con-
sidering the variable u and v = u2 both for the curl-free constraint and for the energy.
In Section 3, we collect all the properties of entropies and entropy productions that we
need. In Section 4, we study the family of trigonometric entropies and establish some of
their properties. Compactness issues are dealt with in Section 5, in particular the general
compactness result, Theorem 5.2, is established. The structure of zero-states is obtained
in Section 6. We indicate throughout the article how our methods apply to the classical
Aviles–Giga functional.

1.3. Conventions and notation. We identify the target spaces R2 with C and recall
the following conventions.

(i) S1 := {z ∈ C : |z| = 1}.
(ii) For u = u1 + iu2 ∈ C with u1, u2 ∈ R, we write u = (u1, u2) ∈ R2. This applies to

functions. u : Ω → C corresponds to u : Ω → R2 with u(x) = (u1(x), u2(x)) and
u(x) = u1(x) + iu2(x).
However, we do not use bold fonts for the elements of the domain Ω ⊂ R2: we write
x = (x1, x2) ∈ Ω.

(iii) We recall that σ is defined by σ(reiθ) =
√
reiθ/2 for −π < θ ≤ π and r ≥ 0.

Throughout the paper, Ω is an open domain of R2 and ω ⊂⊂ Ω means that ω is an open
set with ω ⊂ Ω compact.

For z ∈ C2, z⊥ := (−z2, z1). We also denote ∇⊥ = (−∂2, ∂1).

For za =
(
za1
za2

)
, zb =

(zb1
zb2

)
∈ C2, we denote by za ∧ zb the wedge product defined by

za ∧ zb = det(za, zb) = (za)⊥ · zb = za1z
b
2 − za2zb1.

For φ : ω ⊂ R2 → C2, ∇ · φ := ∂1φ1 + ∂2φ2.

For u : ω ⊂ R2 → C, curlu := curlu = ∇∧ u = ∂1u2 − ∂2u1 = −∇ · u⊥ = ∇⊥ · u.

|z| denotes the modulus of the complex number z, and |x| the Euclidean norm of x ∈ R2.

For complex vectors w ∈ C2, we write ‖w‖`2(C2) for the Euclidean norm
√
|w1|2 + |w2|2.

The associated bilinear dot products are denoted by “ · ”.

For u ∈ BVloc(Ω) (see [AFP00]), we denote by Dau the absolutely continuous part of its
differential and by Dcu its Cantor part. Similarly, ∇au and curla u denote the absolutely
continuous part of ∇u and curlu. The jump set of u is denoted by Ju and νu is a unit
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normal vector to Ju. The traces of u at some point x ∈ Ju are defined with the convention
u± := limt↓0 u(x± tνu(x)).

We denote by SBV 2(Ω), the subspace of elements u ∈ SBV (Ω) such that ∇au ∈ L2(Ω).
Notice that unlike [AFP00] we do not impose the condition H1(Ju) < +∞.

2. Equivalence of the models

We first show that ĉurl(u2) allows to recover curla u:

Lemma 2.1. Let u ∈ SBV 2
loc(Ω,C), such that (u+)2 = (u−)2 H1-almost everywhere on

Ju, then u2 ∈ W 1,1
loc (Ω,C) and

ĉurl(u2) = (curla u)u in L1
loc(Ω).

In particular (with the convention u/|u|2 = 0 wherever u vanishes), there holds

curla u = ĉurl(u2) · u|u|2 in L1
loc(Ω).

Proof. Let u ∈ SBV 2
loc(Ω,C) such that (u+)2 = (u−)2 on its jump set Ju. By the

chain rule for BV -functions (see [AFP00, Theorem 3.96]), for every f ∈ C1(C) with
‖Df(z)‖∞ ≤ C(1 + |z|) for some C ≥ 0, f ◦ u ∈ SBVloc(Ω) and

D[f ◦ u] = Df(u)Dau+ [f(u+)− f(u−)]⊗ νuH1 Ju.

Setting v := u2 and applying this formula with f(z) = z2, we get

Dv = 2uDau+ [(u+)2 − (u−)2]⊗ νuH1 Ju = 2uDau.

In particular, v ∈ W 1,1
loc (Ω). We first consider the domain, Ω′ := {x ∈ Ω : u(x) 6= 0}. With

the abuse of notation (∂1u, ∂2u) := ∇au, we have,

(2.1) curla u = ∂1u2 − ∂2u1.

Now, we express the components of v in terms of the components of u and use the chain
rule to compute their partial derivatives. Almost everywhere in Ω′, there hold,

v1 = u2
1 − u2

2, v2 = 2u1u2, |v| = u2
1 + u2

2,

which yield,

∂1v2 − ∂2v1 = 2 [u1∂1u2 + u2∂1u1 − u1∂2u1 + u2∂2u2] ,

∂1v1 + ∂2v2 = 2 [u1∂1u1 − u2∂1u2 + u1∂2u2 + u2∂2u1] .

Using these identities in the formula of Definition 1.4 and simplifying, we get, almost

everywhere in Ω′ and with (ρ1, ρ2) := ĉurl v,

|v|ρ1 = u2
1 [u1∂1u2 + u2∂1u1 − u1∂2u1 + u2∂2u2]

− u1u2 [u1∂1u1 − u2∂1u2 + u1∂2u2 + u2∂2u1]

= |v|u1(∂1u2 − ∂2u1)
(2.1)
= |v|u1 curla u,

|v|ρ2 = u1u2 [u1∂1u2 + u2∂1u1 − u1∂2u1 + u2∂2u2]

− u2
2 [u1∂1u1 − u2∂1u2 + u1∂2u2 + u2∂2u1]

= |v|u2(∂1u2 − ∂2u1)
(2.1)
= |v|u2 curla u.

We obtain the desired identity ĉurl v = (curla u)u almost everywhere in Ω′.
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In the remaining region Ω′′ := {x ∈ Ω : u(x) = 0}, we have ĉurl v = 0 by definition
and Dau = 0, hence

(2.2) curla u = 0 almost everywhere in Ω′′

(see below). Therefore, the identity ĉurl v = (curla u)u holds true almost everywhere
in Ω and since both sides of the identity define locally integrable functions, the identity
holds in L1

loc(Ω). This ends the proof of the lemma.
Justification of (2.2): Let T ∈ C1(C) such that T (z) = z for |z| ≤ 1, T (z) = z/|z| for
|z| ≥ 2. For δ > 0, let us set uδ := δT (δ−1u). On one hand, we have uδ → 0 in L1

loc(Ω) as
δ ↓ 0 so Duδ → 0 in the sense of distributions. On the other hand, by the chain rule,

(2.3) Duδ = DT (δ−1u)Dau+ δ
[
T (δ−1u+)− T (δ−1u−)

]
⊗ νuH1 Ju.

As δ ↓ 0, the second term in the right-hand side goes to 0 in D′(Ω) and the first term
converges to 1Ω′′Dau in L1

loc(Ω) by the dominated convergence theorem. Identifying with
the limit Duδ → 0 in D′(Ω), we get Dau = 0 in Ω′′. �

We now justify the equivalence of the energies E ′ε and E ′′ε (recall definitions (1.4) and
(1.9)). The problem is mostly to find a “good” square root for v, see [DI03, Mer06, IL17]
for related results.

Proposition 2.2. Let ε > 0 and le Ω be an open set with finite measure.

(i) Let u ∈ SBV (Ω,C) be such that E ′ε(u ⊗ u) < ∞ and let v := u2. Then, v ∈
W 1,1(Ω,C), ĉurl v = 0 and

(2.4) E ′′ε (v) = E ′ε(u⊗ u).

(ii) Conversely, if v ∈ W 1,1(Ω,C) is such that E ′′ε (v) < ∞, then there exists u ∈
SBV 2(Ω,C) with v = u2, curla u = 0 and u+ + u− = 0 H1-almost everywhere
on Ju. In particular, (2.4) holds.

Proof.
(i). Let v := u2 with u as in (i). The condition E ′ε(u⊗u) <∞ implies u ∈ SBV 2(Ω) and
from the assumption on Ω also u ∈ L2(Ω). As a consequence v ∈ L1(Ω). By Lemma 2.1
(replacing SBV 2

loc by SBV 2 in the hypothesis), we have v ∈ W 1,1(Ω,C) with ∇v = 2u∇au

and ĉurl v = 0. Moreover, using the convention |∇v|2/|v| = 0 wherever v = 0, we have,∫
Ω

|∇v|2
4|v| =

∫
Ω

|∇au|2.

Eventually, (1− |v|)2 = (1− |u|2)2 from which (2.4) follows.

(ii). Let v be as in (ii).
Step 1. Selection of a BV square root u of v. We would like to define a square root of
v of the form uϕ := eiϕ/2σ(e−iϕv) for some ϕ ∈ R. We follow a strategy similar to the
one of [DI03]. To deal with the discontinuity of σ through (−∞, 0) and the fact that

z 7→ |σ(z)| =
√
|z| is not smooth at 0, we need to smooth out σ. First, we introduce

χ ∈ C∞(R+) such that χ(s) = s for 0 ≤ s ≤ 1, 0 ≤ χ′ ≤ 1 and χ(s) = 1 for s ≥ 2. Next,
we consider for 0 < δ < π a 2π-periodic odd function fδ ∈ C∞(R, (−π/2, π/2)) such that

fδ(θ) = θ/2 for θ ∈ [0, π − δ],
1/2 ≥ f ′δ(θ) ≥ 0 for θ ∈ [π − δ, π − δ/2],

0 ≥ f ′δ(θ) ≥ −2π/δ for θ ∈ [π − δ/2, π].
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For z = reiθ ∈ C and 0 < δ < π, we define σδ(z) :=
√
rfδ(θ) and for 0 < δ < π, λ ≥ 1,

σδ,λ(z) := χ(λ|z|)σδ(z).

Eventually, we set
uδ,λϕ := eiϕ/2σδ,λ(e−iϕv).

By construction, uδ,λϕ ∈ W 1,1(Ω,C) and (uδ,λϕ )2 → v pointwise, uniformly in ϕ as δ ↓ 0 and
λ ↑ ∞. We also easily see that∫ 2π

0

|∇uδ,λϕ | dϕ ≤ C
|∇v|√
|v|

almost everywhere in Ω,

for some universal constant C > 0. Integrating on Ω and using Fubini, we have∫ 2π

0

(∫
Ω

|∇uδ,λϕ |
)
dϕ ≤ C

∫
Ω

|∇v|√
|v|
≤ |Ω|1/2

(∫
Ω

|∇v|2
|v|

)1/2

<∞.

Let (δn) ↓ 0 and (λn) ↑ ∞, we deduce that there exists a sequence (ϕn) ⊂ [0, 2π), such
that (uδn,λnϕn ) is bounded in W 1,1(Ω,C). Therefore, there exists u ∈ BV (Ω,C) such that

up to extraction, uδn,λnϕn → u almost everywhere and weakly star in BV (Ω,C). Passing to

the limit in the relation (uδn,λnϕn )2 → v as n ↑ ∞, we get u2 = v, with u ∈ BV (Ω,C).

Step 2. Properties of u. From the chain rule for BV functions, we have

∇v = 2u∇au+ 2u∇cu+
[
(u+)2 − (u−)2

]
νuH1 Ju.

By identification, we obtain ∇v = 2u∇au, ∇cu = 0 and (u+)2 = (u−)2 H1-almost every-
where on Ju. Using |u|2 = |v|, we have∫

Ω

|∇au|2 =

∫
Ω

|∇v|2
4|v| <∞,

hence u ∈ SBV 2(Ω,C). Eventually, by Lemma 2.1, we obtain curla u = 0 and from the
above identity, we get (2.4). �

3. Entropies and entropy production

We recall that we have fixed an arbitrary function χ0 ∈ C∞c ([0,+∞), [0, 1]) with χ0(1) =
1 and suppχ0 ⊂ (1/2, 2) and that for us an entropy is a function Φ ∈ C∞(C,C2) such
that for z 6= 0,

Φ(z) = χ0(z)Φ

(
z

|z|

)
and such that for every u ∈ C∞(Ω,S1) with curlu = 0, we have ∇ · [Φ(u)] = 0. Let us
also recall that as an alternative, we could equivalently define entropies by the condition
(see e.g. [IM12, Proposition 3])

d

dθ
[Φ(eiθ)] ∈ C

(
cos θ

sin θ

)
for every θ ∈ R.

Notice that this condition differs from the one of [DKMO01] since we consider the con-
straint curlu = 0 instead of ∇ ·m = 0 (they are equivalent up to a rotation of angle
π/2). We now set up some definitions that will be used throughout the paper.

Definition 3.1.

(i) We denote by ENT the space of entropies and by ENTev the subspace of even en-
tropies, namely the elements Φ ∈ ENT such that Φ(−z) = Φ(z) for every z ∈ S1.
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(ii) We denote by C∞a (T,C) the subspace formed by the π-antiperiodic functions (i.e.
such that λ(· + π) = −λ) in the space C∞(T,C) of smooth 2π-periodic complex-
valued functions.

(iii) We denote by Â(Ω) the set of measurable functions v : Ω → S1 such that (recall
definition (1.12)) µ̂Φ[v] is a Radon measure for every Φ ∈ ENTev.

(iv) We call zero-states the functions v ∈ Â(Ω) such that µ̂Φ[v] = 0 for every Φ ∈ ENTev.

The subset of zero-states is denoted by Â0(Ω).

Recall from (1.13) the definition of Υ[λ] which associate to each λ ∈ C∞(T,C) an
entropy. The following lemma is adapted from [DKMO01, Lemma 3] (see also [IM12,
Proposition 4]).

Lemma 3.2.

(i) The functions Υ[λ] are entropies. Moreover, the mapping Υ : C∞(T,C) → ENT is
one-to-one and onto.

(ii) Υ maps C∞a (T,C) onto ENTev.

Proof. The first point is the counterpart of [IM12, Proposition 4] with the changes u ↔
m := u⊥, curlu↔ ∇ ·m.

For the second point, if λ ∈ C∞a (T,C), we easily check from the formula that Υ[λ] is
even, hence from the first point, Υ[λ] ∈ ENTev.
Conversely, if Φ ∈ ENTev, by (i), there exists λ ∈ C∞(T,C) such that Φ = Υ[λ]. Writing
Φ(ei(θ+π)) = Φ(−eiθ) = Φ(eiθ) and taking the dot product with (− sin θ, cos θ), we obtain
−λ(θ + π) = λ(θ) so λ ∈ C∞a (T,C), that is Φ ∈ Υ[C∞a (T,C)]. �

We now recall the decomposition of DΦ established in [DKMO01] and reformulate it in
our setting of curl-free and C2-valued entropies. The resulting formula (3.1) will provide
a control of the entropy productions µ̂Φ[v] in H−1(Ω) and in the space of Radon measures
at the limit as stated in Proposition 5.1 and in (5.5).

Lemma 3.3. Let Φ ∈ ENT and for z ∈ C let (DΦ)i,j (z) :=

(
∂Φi

∂zj
(z)

)
i,j

∈ M2,2(C)

denote the matrix representation of the differential of Φ at z ∈ C ∼ R2.

(i) There exist Ψ ∈ C∞c (C,C2) and α ∈ C∞c (C,C) both supported in B2\B1/2 such that

DΦ(z) + 2Ψ(z)⊗ z = α(z)J for every z ∈ C and with J :=

(
0 1
−1 0

)
.

In particular, for u ∈ W 1,2(Ω,C), we have (recall definition (1.2)),

µΦ[u] = Ψ(u) · ∇(1− |u|2) + α(u) curlu.

(ii) If moreover Φ ∈ ENTev, there exist Ψ̂, α̂ ∈ C∞c (C,C2) such that

(a) supp Ψ̂, supp α̂ ⊂ B√2\B1/
√

2,

(b) for every z ∈ C, α̂(z) is collinear to σ(z) ,
(c) for every v ∈ W 1,1(Ω,C),

(3.1) µ̂Φ[v] = Ψ̂(v) · ∇(1− |v|) + α̂(v) · ĉurl v.

Proof. The first point is just a transposition of [DKMO01, Lemmas 1 and 2] with the
changes u↔ u⊥ =: m and curlu↔ ∇ ·m. The statement about the supports of α and
Ψ is obvious from the explicit definitions of Ψ and then α given there. We now assume
Φ ∈ ENTev and establish (ii).
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Step 1. Symmetrization. Differentiating the identity Φ(−z) = Φ(z) and using the first
part of the lemma, we obtain

−DΦ(−z) = −2Ψ(−z)⊗ z− α(−z)J = −2Ψ(z)⊗ z + α(z)J,

In view of these identities, we can substitute the mean value 1
2

(Ψ(z) + Ψ(−z)) for Ψ(z)

and the quantity 1
2

(α(z)− α(−z)) for α(z). The new functions still comply to the con-
clusions of point (i) and we now have

(3.2)

{
Ψ(−z) = Ψ(z),
α(−z) = −α(z),

for z ∈ C.

From now on, we assume that Ψ and α satisfy (3.2) and the properties stated in (i).

Step 2. Smoothing. Let v ∈ W 1,1(Ω,C). Let (vk) ⊂ C∞(Ω,C) be a sequence of approxi-
mations of v such that, as k ↑ ∞, (∇vk, vk) → (∇v, v) in L1(Ω) and pointwise at every
Lebesgue point of the mapping

x ∈ Ω 7→ (∇v(x), v(x)) ∈ C3.

By definitions (1.7) & (1.12) of ĉurl v and µ̂Φ, the assumptions on the sequence (vk) yield,

(3.3)

{
ĉurl vk → ĉurl v,

µ̂Φ[vk]→ µ̂Φ[v],
at every Lebesgue point of (∇v, v).

Let us fix x, Lebesgue point of (∇v, v) with v(x) 6= 0, let us fix k large enough so that
vk(x) 6= 0 and let ξ := vk(x)/|vk(x)|. By continuity, there exists 0 < r < dist(x,R2\Ω)
(depending on k) such that vk · ξ > 0 in Br(x). The function vk/ξ is smooth and takes
values in {z ∈ C : <z > 0} in Br(x) so uk := σ(ξ)σ(vk/ξ) is smooth in Br(x) and
(uk)

2 = vk. Using Step 1, we write in Br(x),

µ̂Φ[vk] = µΦ[uk] = Ψ(uk) · ∇(1− |uk|2) + α(uk) curluk.

Using Lemma 2.1 and the identities, u2
k = vk, |vk| = |uk|2, we get

µ̂Φ[vk] = Ψ(uk) · ∇(1− |vk|) +
α(uk)

|vk|
uk · ĉurl vk.(3.4)

Now, taking into account the symmetries (3.2), we define for z ∈ C,

Ψ̂(z) := Ψ(σ(z)) = Ψ(−σ(z)), α̂(z) :=
α(σ(z))

|z| σ(z) =
α(−σ(z))

|z| (−σ(z)).

These mappings are smooth, supported inB√2\B1/
√

2 and by construction, α̂(z) is collinear

to σ(z). Moreover, by (3.4), the identity (3.1) holds true in Br(x) with vk in place of v.

Step 3. Sending k to +∞ and concluding.
Writing (3.1) with v = vk at point x, sending k to +∞ and recalling,

(∇vk(x), vk(x))
k↑∞−→ (∇v(x), v(x)),

and (3.3), we obtain (3.1) at point x. This holds at every Lebesgue point x of (∇v, v)
such that v(x) 6= 0. At Lebesgue points with v(x) = 0, both sides of the identity vanish

(because χ0, Ψ̂, α̂ = 0 in the neighborhood of 0) so (3.1) holds almost everywhere in
Ω. Eventually, since both sides define locally integrable functions, the identity holds in
L1

loc(Ω). �
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We conclude this section by proving that if v ∈ W 1,1(Ω,S1) and if µ̂Φ[v] = 0 for at least

one even entropy Φ which satisfies a mild non-degeneracy condition, then ĉurl v = 0.
For instance, this holds for Φ = Υ[λ] with λ : T → C analytic, non-constant and π-
antiperiodic, in particular for the trigonometric entropies Φn with n odd, n 6= ±1. The

converse property is also true, if ĉurl v = 0 and v ∈ W 1,1
loc (Ω,S1) then v ∈ Â0(Ω).

Lemma 3.4. Let v ∈ W 1,1
loc (Ω,S1) and λ0 ∈ C∞a (T,C) be such that the set of zeros of

λ0 + λ′′0 is at most countable.
Then the three following properties are equivalent,

(i) µ̂Υ[λ0][v] = 0 in L1
loc(Ω), (ii) ĉurl v = 0 in L1

loc(Ω), (iii) v ∈ Â0(Ω).

Proof. Let v ∈ W 1,1
loc (Ω,S1) and λ0 ∈ C∞a (T,C) as in the statement of the lemma. The

implication (iii) ⇒ (i) is obvious, we prove below the implications (i) ⇒ (ii) and then
(ii) ⇒ (iii). In both cases, we use a BVloc lifting of v.

Step 1. Choice a good lifting of v and expressions of µ̂Φ[v] and ĉurl v.
Looking at the proof of Proposition 2.2 (or directly using [DI03, Mer06]), we see that
there exists θ ∈ BVloc(Ω) such that v = e2iθ. By the chain rule for BV -functions, we have
with obvious notation,

Dv = 2ivDaθ + 2ivDcθ + [e2iθ+ − e2iθ− ]νθH1 Jθ.

Identifying, we have Dcθ = 0, θ+ − θ− ∈ πZ H1-almost everywhere on Jθ and, denoting
(∂1θ, ∂2θ) := ∇aθ,

(3.5) ∂jv = 2(− sin(2θ) + i cos(2θ))∂jθ, for j = 1, 2.

Let Φ ∈ ENTev, and λ ∈ C∞a (T,C) be such that Φ = Υ[λ]. Using the chain rule and
denoting R[θ] := cos(θ)∂1θ + sin(θ)∂2θ, we compute,

(3.6) µ̂Φ[v] = ∇ ·
[
Υ[λ](eiθ)

]
= − [(λ′′ + λ)(θ)] R[θ].

Similarly, using again the notation (ρ1, ρ2) := ĉurl v and (3.5), there holds,

2ρ1 = (cos(2θ) + 1) (cos(2θ)∂1θ + sin(2θ)∂2θ)

− sin(2θ)(− sin(2θ)∂1θ + cos(2θ)∂2θ)

= [(cos(2θ) + 1) cos(2θ) + sin(2θ) sin(2θ)] ∂1θ

+ [(cos(2θ) + 1) sin(2θ)− sin(2θ) cos(2θ)] ∂2θ

= (cos(2θ) + 1) ∂1θ + sin(2θ)∂2θ

= 2 cos(θ)R[θ],

and,

2ρ2 = sin(2θ) cos(2θ)∂1θ + sin(2θ)∂2θ

+ (cos(2θ)− 1) (− sin(2θ)∂1θ + cos(2θ)∂2θ)

= [sin(2θ) cos(2θ)− (cos(2θ)− 1) sin(2θ)] ∂1θ

+
[
sin2(2θ) + (cos(2θ)− 1) cos(2θ)

]
∂2θ

= sin(2θ)∂1θ + (1− cos(2θ)) ∂2θ

= 2 sin(θ)R[θ].
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Hence, we have the identity

(3.7) ĉurl v = R[θ]

(
cos θ

sin θ

)
.

Step 2. (i)⇒(ii). Let us assume that µΥ[λ0][v] = 0. Let

Z0 := {ϕ ∈ (−π, π] : (λ′′0 + λ0)(ϕ) = 0} .
Using (3.6) with Φ = Υ[λ0] we obtain that R[θ] = 0 almost everywhere in Ω\θ−1 (Z0) and

by (3.7), ĉurl v = 0 almost everywhere in Ω\θ−1 (Z0).
The complement of θ−1 (Z0) is the union of the sets v−1(e2iϕ) for ϕ ∈ Z0. By assumption,

this family of sets is at most countable and on each one ∇v vanishes almost everywhere
by a standard property of Sobolev functions (see the justification of (2.2) where the case

of SBV functions is treated). We conclude that ∇v = 0 in θ−1 (Z0), hence ĉurl v = 0
almost everywhere in Ω which is (ii).

Step 3. (ii)⇒(iii). We assume that ĉurl v = 0 so that (3.7) implies R[θ] = 0. From (3.6),
we deduce that µ̂Φ[v] = 0 for every Φ ∈ ENTev, as required. We have established
(iii)⇒ (i)⇒ (ii)⇒ (iii), hence the lemma. �

Remark 3.5. Notice that combining (3.6) and (3.7) we see that as opposed to the oriented
setting where the curl is the entropy production associated to the identity (see Properties

4.3), there is no Φ = Υ[λ] ∈ ENTev such that ĉurl v = (<(µ̂Φ[v]),=(µ̂Φ[v])). Indeed, λ
should solve −(λ′′ + λ) = eiθ which does not have periodic solution.

4. The trigonometric entropies

In this section we collect the main properties of the trigonometric entropies from Def-
inition 1.7. We recall that with Υ defined in (1.13), for every n ∈ Z, we have set
Φn = Υ[2ien] ∈ ENT, where en is the trigonometric monomial θ ∈ R 7→ einθ ∈ C.
We start with some immediate consequences of the definition and of Lemma 3.2.

Properties 4.1.

(i) For n ∈ Z, we have Φ−n = Φn.
(ii) By point (i) of Lemma 3.2 and density of the trigonometric polynomials in C∞(T,C),

span{Φn}n∈Z is dense in ENT.
(iii) We have en ∈ C∞a (T,C) if and only if n is odd. In fact, span{e2m+1}m∈Z is dense in

C∞a (T,C). From Lemma 3.2 (ii), we see that span{Φ2m+1}m∈Z is dense in ENTev.

We derive an expression for the Φn’s that first easily leads to the Properties 4.3 below
and then is used to establish the “wedge products” formulas of Lemma 4.4.

Lemma 4.2.

(i) For n ∈ Z and z ∈ S1, we have

(4.1) Φn(z) = (n− 1)zn+1

(
1

−i

)
+ (n+ 1)zn−1

(
1

i

)
.

(ii) For m ∈ Z and w ∈ S1, we have

(4.2) Φ2m+1(σ(w)) = 2

[
mwm+1

(
1

−i

)
+ (m+ 1)wm

(
1

i

)]
.
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Proof. Let us establish the first point. We write z = eiθ. Using d
dθ
einθ = ineinθ and then

the formulas 2i sin θ = eiθ − e−iθ, 2 cos θ = eiθ + e−iθ, we get

Φn(z) = einθ
[
2i

(− sin θ

cos θ

)
+ 2n

(
cos θ

sin θ

)]
= einθ

[(−eiθ + e−iθ

ieiθ + ie−iθ

)
+ n

(
eiθ + e−iθ

−ieiθ + ie−iθ

)]
= einθ

(
(n− 1)eiθ + (n+ 1)e−iθ

−i(n− 1)eiθ + i(n+ 1)e−iθ

)
= einθ

[
(n− 1)eiθ

(
1

−i

)
+ (n+ 1)e−iθ

(
1

i

)]
.

Substituting back z = eiθ, zn = einθ, we obtain (4.1).
Identity (4.2) is obtained by substituting n = 2m+ 1 and z = σ(w) in the first one and

then using z2 = w. �

Let us stress some immediate consequences of formulas (4.1)&(4.2).

Properties 4.3.

(i) For n = 0, we have Φ0(z) = 2iz⊥, so µΦ0 [u] = 2i curlu for u ∈ W 1,1(Ω,S1).
(ii) For n = ±1, we have

Φ±1(z) = ±2

(
1

±i

)
,

and the pair Φ−1, Φ1 spans the space of constant vector fields C→ C2.
(iii) For n = 2 and z ∈ S1, we have Φ±2(z) = 6 Σ2(z)± i 6 Σ1(z) where for z ∈ S1,

Σ1(z) := (z2(1− (2/3)z2
2), z1(1− (2/3)z2

1)), Σ2(z) := (2/3)(z3
1 ,−z3

2)

define the Jin–Kohn entropies.
(iv) For n ∈ Z and θ ∈ R,

(4.3)
∥∥Φn(eiθ)

∥∥
`2(C2)

= 2
√
n2 + 1 and

∥∥∥∥ ddθ [Φn(eiθ)
]∥∥∥∥

`2(C2)

= 2|n2 − 1|.

Lemma 4.4. Let n ∈ Z and z, w ∈ S1. There holds,

Φn(z) ∧ Φ−n(w) = 2i
(
(n+ 1)2 (zw)n−1 − (n− 1)2 (zw)n+1) ,(4.4)

Φn(z) ∧ Φ−n(z) = 2i
(
(n+ 1)2 − (n− 1)2

)
= 8in,(4.5)

and

(4.6) (Φn(z)− Φn(w)) ∧
(
Φ−n(z)− Φ−n(w)

)
= 2i

[
(n+ 1)2

∣∣wn−1 − zn−1
∣∣2 − (n− 1)2

∣∣wn+1 − zn+1
∣∣2] .

Proof. The first equality is a direct application of (4.1) and of the identities,

(4.7)

(
1

i

)
∧
(

1

i

)
=

(
1

−i

)
∧
(

1

−i

)
= 0,

(
1

−i

)
∧
(

1

i

)
= −

(
1

i

)
∧
(

1

−i

)
= 2i.

We get the second identity by taking w = z in (4.4). For the last one we use the bilinearity
of the wedge product and the two firsts to obtain that the left-hand side of (4.6) is equal
to:

2i(n+ 1)2
[
2− (zw)n−1 − (zw)n−1

]
− 2i(n− 1)2

[
2− (zw)n+1 − (zw)n+1

]
= 2i(n+ 1)2

∣∣zn−1 − wn−1
∣∣2 − 2i(n− 1)2

∣∣zn+1 − wn+1
∣∣2 .

We used z, w ∈ S1 for the last equality. This proves (4.6) and the lemma. �
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The next result is the key for passing from weak convergence to strong convergence at
the end of the proof of the compactness result.

Lemma 4.5. Let ν be a Borel probability measure on S1. If one of the following assump-
tions holds true then ν is a Dirac mass.

(i) For every trigonometric entropy Φn with n = 2m even,∫
S1

[
Φn ∧ Φ−n

]
dν =

[∫
S1

Φn dν

]
∧
[∫

S1
Φ−n dν

]
.

(ii) For every trigonometric entropy Φn with n = 2m+ 1 odd,

(4.8)

∫
S1

[
Φn ◦ σ ∧ Φ−n ◦ σ

]
dν =

[∫
S1

Φn ◦ σ dν
]
∧
[∫

S1
Φ−n ◦ σ dν

]
.

Proof. Case of assumption (ii). Let m be a positive integer and set n := 2m + 1. In-
tegrating identity (4.5) of Lemma 4.4 with respect to ν we obtain for the left-hand side
of (4.8),

(4.9)
1

8i

∫
S1

[
Φn ◦ σ ∧ Φ−n ◦ σ

]
dν =

1

4

[
(n+ 1)2 − (n− 1)2

]
= (m+ 1)2 −m2.

Next, using (4.2) and integrating with respect to ν, we get,

1

2

∫
S1

Φn ◦ σ dν = m

[∫
S1
wm+1 dν(w)

](
1

−i

)
+ (m+ 1)

[∫
S1
wm dν(w)

](
1

i

)
.

Denoting by

ck := ck(ν) =

∫ 2π

0

e−ikθ dν(eiθ) =

∫
S1
w−k dν(w),

the kth Fourier coefficient of the probability measure ν, the last identity writes as,

1

2

∫
S1

Φn ◦ σ dν = mc−(m+1)

(
1

−i

)
+ (m+ 1)c−m

(
1

i

)
,

Using Φ−n = Φn and the identities (4.7), we get, for the right-hand side of (4.8),

(4.10)
1

8i

[∫
Φn ◦ σ dν

]
∧
[∫

Φ−n ◦ σ dν
]

= m2|cm+1|2 − (m+ 1)2|cm|2,

where we used c−k = ck for k ∈ Z (because ν is real valued).
By assumption the left-hand side of (4.9) and (4.10) are equal. We deduce the relations

m2(1− |cm+1|2) = (m+ 1)2(1− |cm|2) for m ≥ 1.

This leads by induction to 1 − |cm|2 = m2(1 − |c1|2) for m ≥ 1. Since ν is a (finite)
measure, the sequence (ck) is bounded and we must have |c1| = |c1(ν)| = 1. We conclude
that the probability measure ν is a Dirac mass (we can for instance compute the variance

Var(ν) =
∫
|w|2 dν(w)−

∣∣∫ w dν(w)
∣∣2 = 1− |c1(ν)|2 = 0).

Case of assumption (i). Performing the same computations with n = 2m in place of
n = 2m+ 1 and Φ2m in place of Φ2m+1 ◦ σ leads to the identities,

1− |c2m−1(ν)|2 = (2m− 1)2(1− |c1(ν)|2) for m ≥ 1.

We conclude again that |c1(ν)| = 1 and then that ν is a Dirac mass. �
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5. Compactness

In this section we prove Theorem 1.1. As explained in the introduction, we first use
Lemma 3.3 to prove that the energy controls the entropy production (see (1.14)). We will
actually prove a slightly stronger statement which gives a more explicit control in terms

of 1− |v|, ∇v and ĉurl v of the entropy production.
Fix χ ∈ C∞c ((0,+∞), [0, 1]) with χ(1) = 1 and χ ≥ 1/2 on [1/

√
2,
√

2]. For λ0, λ1 ≥ 0
with max(λ0, λ1) ≥ 1 we define
(5.1)

Q(v) := ‖χ(|v|) (1− |v|)∇v‖1 + λ0‖ ĉurl v‖1 + λ
1/2
1 ‖χ(|v|)∇v‖2 ‖ ĉurl v‖H−1(Ω),

R(v) := ‖χ(|v|) (1− |v|)‖2 + λ
1/2
1 ‖ ĉurl v‖H−1(Ω).

Proposition 5.1. Let Ω ⊂ R2 be an open set. Then, for every Φ ∈ ENTev there exists
C = C(Φ, χ) > 0 such that for every v ∈ W 1,1(Ω,C) and every ζ ∈ C1

c (Ω,C),∣∣∣∣∫
Ω

µ̂Φ[v] ζ

∣∣∣∣ ≤ C (Q(v)‖ζ‖∞ +R(v)‖∇ζ‖2) .(5.2)

Proof. It is enough to prove the claim for either (λ0, λ1) = (1, 0) or (λ0, λ1) = (0, 1). Let

Ψ̂, α̂ denote the functions given by Lemma 3.3 (ii) with the entropy Φ. Applying (3.1) to
v ∈ W 1,1(Ω,C), we write

∇ · [Φ(σ(v))] = ∇ ·
[
Φ(σ(v))− (1− |v|)Ψ̂(v)

]
+∇ ·

[
(1− |v|)Ψ̂(v)

]
= −(1− |v|)DΨ̂(v)Dv + α̂(v) · ĉurl v +∇ ·

[
(1− |v|)Ψ̂(v)

]
=: f1 + f2 + f3.

Let ζ ∈ C1
c (Ω,C). We estimate successively the terms

∣∣∫ fjζ ∣∣ for j = 1, 2, 3. For f2, we
consider two different bounds.
(1) Since DΨ̂ is bounded and supported in B√2\B1/

√
2,∣∣∣∣∫

Ω

f1ζ

∣∣∣∣ ≤ C ‖χ(|v|)(1− |v|)∇v‖1 ‖ζ‖∞.

(2) Next, since α̂ is bounded, we have on the one hand the bound∣∣∣∣∫
Ω

f2ζ

∣∣∣∣ ≤ C‖ ĉurl v‖1‖ζ‖∞.

On the other hand, by definition of the ‖ · ‖H−1 norm, we also have∣∣∣∣∫
Ω

f2ζ

∣∣∣∣ ≤ ‖ ĉurl v‖H−1(Ω)

(∫
Ω

|∇[α̂(v)ζ]|2
)1/2

≤ ‖ ĉurl v‖H−1(Ω)

[(∫
Ω

|Dα̂(v)Dv|2
)1/2

‖ζ‖∞ + ‖α̂(v)‖∞‖∇ζ‖2

]
.

As for Ψ̂, the function α̂ is bounded and supported in B√2\B1/
√

2 and thus∣∣∣∣∫
Ω

f2ζ

∣∣∣∣ ≤ C‖ ĉurl v‖H−1(Ω)

[
‖χ(|v|)∇v‖2 ‖ζ‖∞ + ‖∇ζ‖2

]
.

(3) In the last term, we integrate by parts and use the Cauchy-Schwarz inequality to get∣∣∣∣∫
Ω

f3ζ

∣∣∣∣ =

∣∣∣∣∫
Ω

(1− |v|)Ψ̂(v) · ∇ζ
∣∣∣∣ ≤ C ‖χ(|v|)(1− |v|)‖2 ‖∇ζ‖2.



UNORIENTED AVILES–GIGA FUNCTIONALS 21

Summing the estimates for j = 1, 2, 3, we conclude the proof of (5.2). �

We may now prove the main compactness result.

Proposition 5.2. Let Ω ⊂ R2 be an open set of finite area and (vk) ⊂ L1(Ω,C).
Assume that:

(i) (|vk|) converges to 1 in L1(Ω),
(ii) for every Φ ∈ ENTev and every k ≥ 1, there exists C ≥ 0 and ηk ↓ 0 such that we

can write∣∣∣∣∫
Ω

µ̂Φ[vk]ζ

∣∣∣∣ ≤ C‖ζ‖∞ + ηk‖∇ζ‖2, for every ζ ∈ C1
c (Ω,C).

Then, up to extraction vk → v in L1(Ω), for some v ∈ L1(Ω,S1).

Proof. Step 1. Convergence of (vk) as a sequence of Young measures.
Up to extraction, there exists a positive Radon measure γ over Ω × C such that for

every ϕ ∈ Cc(Ω× C,R),

(5.3)

∫
Ω

ϕ(x, vk(x)) dx
k↑∞−→

∫
Ω×C

ϕdγ.

Moreover, γ disintegrates as γ = νx ⊗ L2 where for almost every x ∈ Ω, νx is a positive
Radon measure on C. By assumption (i) and the fundamental theorem on Young mea-
sures, see e.g. [Mül99, Theorem 3.1, (iii)&(iv)], νx is a probability measure supported in
S1. Moreover, in order to prove the strong L1 convergence of (vk), it is enough to establish

(5.4) νx is a Dirac mass for almost every x ∈ Ω.

This follows from assumption (i) again, [Mül99, Corollary 3.2] and Vitali convergence
Theorem. Let us now establish (5.4).

Step 2. H−1
loc compactness of the sequences of entropy productions. We observe that from

assumption (ii) of the theorem and a simple variant of a lemma by Murat [Mur81] (see
also [Tar79, Lemma 28] and [DKMO01, Lemma 6]) applied to the (uniformly bounded)
sequence of mappings Φ(σ(vk)), for any Φ ∈ ENTev, the sequence (µ̂Φ[vk]) is relatively
compact in H−1

loc (Ω).

Step 3. End of the proof.
Let n = 2m + 1 and Φn be the corresponding trigonometric entropy. By Step 2, the

sequences with terms µ̂Φ±n [vk] = ∇ · [Φ±n(σ(vk))] are relatively compact in H−1
loc (Ω) and

we can apply the div-curl lemma of Murat and Tartar [Mur78, Tar79] to the pair of
sequences,

(Φn(σ(vk))) ,
([

Φ−n(σ(vk))
]⊥)

,

to get

lim
k↑∞

Φn(σ(vk)) ∧ Φ−n(σ(vk)) =

[
lim
k↑∞

Φn(σ(vk))

]
∧
[

lim
k↑∞

Φ−n(σ(vk))

]
,

where the above limits are weak limits in L2
loc(Ω). Rewriting this identity with the limit

Young measure, we obtain, for almost every x ∈ Ω,∫
S1

[
Φn ◦ σ ∧ Φ−n ◦ σ

]
dνx =

[∫
S1

Φn ◦ σ dνx
]
∧
[∫

S1
Φ−n ◦ σ dνx

]
.

This identity holds true almost everywhere for any fixed n. Since we consider a countable
number of entropies, it holds true for any odd n on a set of full measure. For every x in
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this set, we can apply Lemma 4.8 (ii) to the probability νx and deduce that it is a Dirac
mass, that is (5.4). This concludes the proof. �

As a direct consequence of Proposition 5.1 and Proposition 5.2 we have the following
compactness result.

Corollary 5.3. Let Ω ⊂ R2 be an open set of finite area and let (vk) ⊂ W 1,1(Ω,C).
Assume that:

(a) (|vk|) converges to 1 in L1(Ω),
(b) (R(vk)) converges to 0 and (Q(vk)) is bounded.

Then, up to extraction,

(i) vk → v in L1(Ω), for some v ∈ L1(Ω,S1).
(ii) The distributions µ̂Φ[v] are Radon measure and there exists C = C(Φ) ≥ 0 such that

(5.5) |µ̂Φ[v]|(Ω) ≤ C lim inf
k↑∞

Q(vk).

Recalling the definition (1.11) of Êε we finally obtain the anticipated generalization of
Theorem 1.1.

Theorem 5.4. Assume that hypothesis (1.10) holds. Let then Ω be an open set of finite

measure and εk ↓ 0. If (vk) satisfies supk Êεk(vk) < +∞ then there exists v ∈ L1(Ω,S1) ∩
Â(Ω) such that up to extraction, vk → v in L1. Moreover, for every Φ ∈ ENTev, there
exists C = C(Φ, κ) ≥ 0 such that

|µ̂Φ[v]|(Ω) ≤ C lim inf
k↑∞

Êεk(vk).

Proof. We first notice that by definition of Êε, and

(5.6)

∫
Ω

W (v) + λ1
ε‖ ĉurl v‖2

H−1(Ω) ≤ εÊε(v).

Using (1.10) for W , this yields in particular∫
Ω

min((1− |v|)2, |1− |v||) ≤ εÊε(v)/κ.

Since Ω is assumed to have finite area, we get first that if Êεk(vk) is bounded then (|vk|)
converges to 1 in L1(Ω). Moreover, recalling the definition (5.1) of R(v), (5.6) also gives

(5.7) R(v) ≤
(
εÊε(v)/κ

)1/2

.

Next, using Young’s inequality we find∫
Ω

g1/2(v)W 1/2(v)|∇v|+ λ0
ε

∫
Ω

| ĉurl v|+
(
λ1
ε‖ ĉurl v‖2

H−1(Ω)

)1/2
(∫

Ω

g(v)|∇v|2
)1/2

≤ CÊε(v).

Using again (1.10) and recalling the definition (5.1) of Q we get

(5.8) Q(v) ≤ CÊε(v).

From (5.7) and (5.8) we conclude that if Êεk(vk) is bounded then Q(vk) is also bounded
and R(vk) goes to zero. We may therefore apply Corollary 5.3 to conclude. �
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Remark 5.5. Let us point out that inserting (5.7)&(5.8) in (5.2) from Proposition 5.1
we obtain (1.14), i.e.∣∣∣∣∫

Ω

µ̂Φ[v]ζ

∣∣∣∣ ≤ C(κ)
(
Êε(v)‖ζ‖∞ + ε1/2Ê1/2

ε (v)‖∇ζ‖2

)
.

6. Structure of zero-states

In this section we prove Theorem 1.2. We first establish a regularity result for zero-
states. We recall the notation

Dhf(x) = f(x+ h)− f(x).

Proposition 6.1. Let Ω be an open set and v ∈ Â0(Ω) (see Definition 3.1). Then,

(i) v ∈ W 1,3/2
loc (Ω).

(ii) ĉurl v = 0 in Ω.
(iii) For every open set ω ⊂⊂ Ω, there exists C = C(ω,Ω) ≥ 0 such that for every h ∈ R2

with |h| ≤ min
(
1/2, dist(ω,R2\Ω)/2

)
,

(6.1)

∫
ω

|Dhv|2 ≤ C|h|2 ln(1/|h|).

Remark 6.2.

(1) Let us stress once more that with point (ii), we recover a property which is not true

for general configurations of Â(Ω).
(2) Substituting 2(2−p)k to 2k/2 in the proof of Step 3 below, we can establish that v ∈

W 1,p
loc (Ω) for 1 < p < 2. However, the constant degenerates as p ↑ 2 leading to a weaker

version of (6.1) with |h|2[ln(1/|h|)]2 in place of |h|2 ln(1/|h|) (see Remark 1.11).

Proof of Proposition 6.1.
Since the result is local, it is enough to prove it for ω a ball (we will only use the fact

that ω is simply connected). Set r := min (1/2, dist(ω,R2\Ω)/2) and ω′ := ω +Br ⊂⊂ Ω
(which is also simply connected). We fix in the proof a cut-off function ζ ∈ C1

c (Ω,R+)
supported in ω.
We first introduce some notation.

(a) For every x ∈ ω, we denote by δh(x) the unique element of (−1, 1] such that v(x+h) =
eiπδh(x)v(x).

(b) For k ≥ 0, we define,

ωk :=

{
x ∈ ω :

1

2
< 2k|δh(x)| ≤ 1

}
.

(c) For positive odd integers n and x ∈ ω we define (recall Definition 1.7 of the trigono-
metric entropies Φn),

qn(x) :=
1

2i

1

(n− 1)2(n+ 1)2
[Dh [Φn(σ(v))] (x)] ∧

[
Dh

[
Φ−n(σ(v))

]
(x)
]
.

(d) For k ≥ 0 and x ∈ ω, we set,

Qk(x) :=
2k+1−1∑
m=2k

q2m+1(x),
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(e) Eventually, for k ≥ 0, we define the quantities,

Qk :=

∫
Ω

Qkζ
2.

(In this formula, the quantity Qk(x) is arbitrary for x ∈ Ω\ω (say Qk(x) = 0). This
makes no difference since supp ζ ⊂ ω.)

(f) In this proof we use the notation A . B to indicate that there is a universal constant
C ≥ 0 such that A ≤ CB.

We split the proof into four steps. In the first two steps, we obtain bounds on the
quantities Qk from below and then from above. In Step 3, we multiply these bounds by
2k/2 and sum over k ≥ 0. Using Hölder and sending |h| to 0 leads to v ∈ W 1,3/2(ω).

This establishes point (i) of the lemma. By Lemma 3.4 we then get ĉurl v = 0, which
is (ii). In the last step, we sum the bounds of Steps 1 and 2 over k ∈ {0, . . . , k0} where
k0 := dlog2(1/|h|)e. Using v ∈ W 1,1

loc (Ω), we obtain (6.1).

Step 1. Lower bound. We notice that since Φ±(2m+1) ∈ ENTev, we have

Φ±(2m+1)(σ(ξe2iϕ)) = Φ±(2m+1)(σ(ξ)eiϕ) for any ξ ∈ S1, ϕ ∈ R.

In particular, for x ∈ ω and m ≥ 1,

Φ±(2m+1) (σ(v(x+ h))) = Φ±(2m+1)
(
ei(π/2)δh(x)σ(v(x))

)
.

With this in mind, we apply (4.6) of Lemma 4.4 with n = 2m+1, m ≥ 1 and z = σ(v(x)),
w = σ(v(x+ h)) = ei(π/2)δh(x)σ(v(x)). We get, in ω,

q2m+1 =

∣∣eiπmδh − 1
∣∣2

4m2
−
∣∣eiπ(m+1)δh − 1

∣∣2
4(m+ 1)2

=
sin2 (m(π/2)δh)

m2
− sin2 ((m+ 1)(π/2)δh)

(m+ 1)2
.

Summing these identities for m ranging over {2k, . . . , 2k+1 − 1}, we get for k ≥ 0,

Qk =
sin2

(
(π/2)2kδh

)
22k

− sin2
(
(π/2)2k+1δh

)
22(k+1)

=
sin4

(
(π/2)2kδh

)
22k

.

For x ∈ ωk, we have 1 ≥ 2k|δh(x)| > 1/2, hence

Qk ≥
1

22k

∣∣2kδh∣∣4 = 22k|δh|4 & |δh|2.

Multiplying by ζ2 and integrating over Ω, we obtain,

(6.2) Qk &
∫
ωk

|δh|2ζ2 .

Step 2. Upper bound. Let m ≥ 1, since by assumption ∇ · [Φ2m+1(σ(v))] = 0 in the
simply connected domain ω′ ⊂⊂ Ω, there exists Fm ∈ Lip(ω′,C) such that ∇⊥Fm =
Φ2m+1(σ(v)). Using an integration by parts and ∇ · [Φ−(2m+1)(σ(v))] = 0, we compute for
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m ≥ 1, ∫
Ω

q2m+1ζ
2 =

1

4m2(m+ 1)2

∫
Ω

[
Dh∇⊥Fm

]
∧
[
DhΦ

−2m−1(σ(v))
]
ζ2

= − 1

4m2(m+ 1)2

∫
Ω

[∇DhF
m] ·

[
DhΦ

−2m−1(σ(v))
]
ζ2

=
1

2m2(m+ 1)2

∫
Ω

DhF
m
[
DhΦ

−2m−1(σ(v))
]
· [ζ ∇ζ].(6.3)

(To make the argument rigorous, we first regularize Φ−2m−1(σ(v)), perform the integration
by parts and pass to the limit.)
Let us recall the identities (4.3). We have, for θ ∈ R,∥∥Φ±(2m+1)(eiθ)

∥∥
`2(C2)

= 2
√

(2m+ 1)2 + 1 ≤ 4(m+ 1),∥∥∥∥ ddθ [Φ±(2m+1)(eiθ)
]∥∥∥∥

`2(C2)

= 8m(m+ 1),

In particular, for x ∈ ω′,
‖∇Fm(x)‖`2(C2) =

∥∥Φ2m+1(σ(v(x)))
∥∥
`2(C2)

. m.

We use these bounds in the form,

‖DhF
m(x)‖`2(C2) . m|h|,

∥∥DhΦ
−2m−1(σ(v))

∥∥
`2(C2)

. mmin (1,m|δh|) .
Using these inequalities to estimate the right-hand side of (6.3) we get,∫

Ω

q2m+1ζ
2 .

|h|
m2

∫
Ω

min (1,m|δh|) ζ|∇ζ| .

Summing over m ∈ {2k, . . . , 2k+1 − 1}, we obtain,

(6.4) Qk =

∫
Ω

2k+1−1∑
m=2k

q2m+1ζ
2 .
|h|
2k

∫
Ω

min
(
1, 2k|δh|

)
ζ|∇ζ| .

Step 3. Proof of (i) and (ii).
Multiplying (6.2) and (6.4) by 2k/2 and summing over k ≥ 0, we obtain∑

k≥0

∫
ωk

2k/2|δh|2ζ2 .
∑
k≥0

2k/2Qk . |h|
∫

Ω

[∑
k≥0

1

2k/2
min

(
1, 2k|δh|

)]
ζ|∇ζ| .

We use again 1/(2|δh|) < 2k in ωk to estimate the left-hand side from below. We get,

(6.5)

∫
Ω

|δh|3/2ζ2 . |h|
∫

Ω

[∑
k≥0

1

2k/2
min

(
1, 2k|δh|

)]
ζ|∇ζ| .

We now estimate the right-hand side. Let us fix x ∈ ω with δh(x) 6= 0 and let us define
K ≥ 0 as the integer such that x ∈ ωK . We have∑

k≥0

1

2k/2
min

(
1, 2k|δh|

)
. π

K∑
k=0

2k/2|δh|+
∑
k>K

2−k/2 . |δh|2K/2 + 2−K/2 . |δh|1/2

where in the last inequality we used that 2−(K+1) ≤ |δh| ≤ 2−K in ωK .
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Plugging this estimate in (6.5) and dividing by |h|3/2, we obtain∫
Ω

( |δh|
|h|

)3/2

ζ2 .
∫

Ω

( |δh|
|h|

)1/2

ζ|∇ζ| .

Applying Hölder inequality with parameters p = 3, q = 3/2 to the functions f =

(|δh|/|h|)1/2 ζ2/3 and g = ζ1/3|∇ζ| and simplifying, we get(∫
Ω

( |δh|
|h|

)3/2

ζ2

)2/3

.

(∫
Ω

ζ1/2|∇ζ|3/2
)2/3

.

Using that |Dhv| ≤ π|δh|, and a standard characterization of Sobolev spaces, we deduce

that v ∈ W 3/2
loc (Ω,S1) with the estimate(∫

Ω

|∇v|3/2ζ2

)2/3

.

(∫
Ω

ζ1/2|∇ζ|3/2
)2/3

.

Point (i) of the Lemma is established. As already explained at the beginning of this proof,
since v is a zero-state point (ii) then follows from Lemma 3.4.

Step 4. Proof of (iii).
Let k0 := dlog2(1/|h|)e, that is k0 is the integer defined by 1/2 < 2k0 |h| ≤ 1. Since
|h| ≤ 1/2, we have k0 ≥ 1. Summing (6.2) and (6.4) over k ∈ {0, . . . , k0 − 1}, we get

(6.6)

k0−1∑
k=0

∫
ωk

|δh|2ζ2 .
k0−1∑
k=0

Qk . |h|
∫

Ω

[
k0−1∑
k=0

1

2k
min

(
1, 2k|δh|

)]
ζ|∇ζ| .

We proceed as in Step 3 to estimate the right-hand side. Let us fix x ∈ ω with δh(x) 6= 0
and let K ≥ 0 the integer such that x ∈ ωK . We estimate the sum inside the brackets as
follows

k0−1∑
k=0

1

2k
min

(
1, 2k|δh|

)
.

min(k0,K)−1∑
k=0

|δh|+
k0∑

k=min(k0,K)

1

2k

. k0|δh|+ 2−K . (k0 + 1)|δh| . |δh| ln(1/|h|),
In the last two inequalities we used 2−K ≤ 2|δh(x)| for x ∈ ωK and 1 ≤ k0 ≤ log2(1/|h|).
Putting this inequality in (6.6), we obtain

k0−1∑
k=0

∫
ωk

|δh|2ζ2 . |h| ln(1/|h|)
∫

Ω

|δh| ζ|∇ζ| .

Using |δh| ≤ 2|Dhv| and recalling that by Step 3, v ∈ W 1,3/2
loc (Ω) ⊂ W 1,1

loc (Ω), we deduce,

(6.7)

k0−1∑
k=0

∫
ωk

|δh|2ζ2 ≤ C|h|2 ln(1/|h|) ,

where C > 0 only depends on ζ.
Eventually, for k ≥ k0 and x ∈ ωk we have |δh(x)| ≤ 2−k0 ≤ 2|h|, so that∑

k≥k0

∫
ωk

|δh|2ζ2 . |h|2
∫

Ω

ζ2.



UNORIENTED AVILES–GIGA FUNCTIONALS 27

Together with (6.7) (and |h| ≤ 1/2) this leads to∫
Ω

|δh|2ζ2 ≤ C|h|2 ln(1/|h|) .

Since |Dhv| ≤ π|δh|, we conclude the proof of (6.1). �

Before going further into the proof, let us state the analogue of Proposition 6.1 for
classical zero-states.

Proposition 6.3. Let Ω be an open set and u ∈ L1
loc(Ω,S1) be a classical zero-state, that

is µΦn [u] = 0 for n ∈ Z. Then, u ∈ W
1,3/2
loc (Ω) and for every open set ω ⊂⊂ Ω, there

exists C = C(ω,Ω) ≥ 0 such that for every h ∈ R2 with |h| ≤ min
(
1/2, dist(ω,R2\Ω)/2

)
,

(6.8)

∫
ω

|Dhu|2 ≤ C|h|2 ln(1/|h|).

Proof. Let us first notice that v := u2 ∈ Â0(Ω) so that Proposition 6.1 provides v ∈
W

1,3/2
loc (Ω) and a control on |Dhv| of the form (6.1). In order to conclude, we only have

to establish that for any simply connected open set ω ⊂⊂ Ω and any h ∈ R2 such that
|h| ≤ min (1/2, dist(ω,R2\Ω)/2) there holds

(6.9) L2(Ah ∩ ω) ≤ C(ω)|h|2 where Ah :=
{
x ∈ Ω : |Dhu(x)| >

√
2
}
.

Indeed, assuming (6.9), we have for every p > 0, ζ ∈ C1
c (Ω,R+) and h ∈ R2 with

|h| ≤ min
(
1/2, dist(supp ζ,R2\Ω)/2

)
,∫

Ω

|Dhu|pζ2 =

∫
Ah

|Dhu|pζ2 +

∫
Ω\Ah

|Dhu|pζ2 ≤ C(ζ)|h|2 + 2−p/2
∫

Ω

|Dhv|pζ2.

Here we used (6.9) and
√

2|Dhu| ≤ |Dhv| in Ω\Ah. Choosing p = 3/2 and using v ∈
W

1,3/2
loc (Ω), we deduce∫

Ω

|Dhu|3/2ζ2 ≤ C(ζ)|h|3/2 for h ∈ R2 with |h| small enough,

and we conclude that u ∈ W 1,3/2
loc (Ω). Similarly, choosing p = 2, (6.1) yields (6.8).

Let ω ⊂⊂ Ω be an open ball, let ζ ∈ C1
c (ω,R+) and let h ∈ R2 with

|h| ≤ dist(ω,R2\Ω)/2.

To establish (6.9), we proceed as in the proof of Proposition 6.1 but using the pair of
Jin-Kohn entropies Φ±2 (the first computations below correspond to the beginning of the
proof of [LLP20, Lemma 7] rewritten with our notation). Let us set

q2(x) :=
1

18 i

[
Dh

[
Φ2(u)

]
(x)
]
∧
[
Dh

[
Φ−2(u)

]
(x)
]
.

On the one hand, from (4.6) and elementary calculus1, we have

(6.10)

∫
Ω

q2ζ
2 =

∫
Ω

(
|Dhu|2 −

|Dh[u
3]|2

9

)
ζ2 ≥ 8

9

∫
Ω

|Dhu|4 ζ2 ≥ 32

9

∫
Ah

ζ2 .

1We use sin2(θ)− sin2(3θ)/9 = (8/9)(2 + cos(2θ)) sin4(θ) ≥ (8/9) sin4(θ).
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On the other hand using µΦ±2 [u] = 0 we get, as in the proofs of Proposition 6.1 or of (1.18),∫
Ω

q2ζ
2 ≤ C |h|

∫
Ω

|Dhu|ζ = C |h|
∫
Ah∪[Ω\Ah]

|Dhu|ζ ≤ C ′

(
|h|
(∫

Ah

ζ2

)1/2

+ |h|2
)
,

with C,C ′ ≥ 0 depending on ζ. In the last estimate, we used the Cauchy-Schwarz
inequality and

√
2|Dhu| ≤ |Dhv| in Ω\Ah with v ∈ W 1,1

loc (Ω). With (6.10), we obtain∫
Ah
ζ2 ≤ C(ζ)|h|2 and then (6.9) thanks to a covering argument. �

We now return to the proof of Theorem 1.2 and show that (6.1) translates into a
local control of the Ginzburg–Landau energy of any mollification of v. To this aim, we fix
ρ ∈ C∞c (R2,R+) with

∫
ρ = 1 and for η ∈ (0, 1/2], we set ρη := η−2ρ(η−1·) and vη := v∗ρη.

Lemma 6.4. Let Ω be an open set and let v ∈ L1
loc(Ω,S1) such that the conclusion (iii) of

Proposition 6.1 holds true. Then, for every open set ω ⊂⊂ Ω, there exists C = C(ω,Ω) ≥
0 such that for η ∈ (0, 1/2] with η ≤ dist(ω,R2\Ω)/4,

(6.11) GLη(vη;ω) :=
1

2

∫
ω

|∇vη|2 +
1

4η2

∫
ω

(1− |vη|2)2 ≤ C ln(1/η).

Proof. For the reader’s convenience we recall some classical computations (see for instance
[DLI15, LP18]). We first compute for x ∈ ω

∇vη(x) =

∫
Bη

v(x− y)∇ρη(y) dy =

∫
Bη

[v(x− y)− vη(x)]∇ρη(y) dy

=

∫
Bη×Bη

[v(x− y)− v(x− z)]∇ρη(y) ρη(z) dy dz,

where we used
∫
∇ρη = 0. We deduce the estimate,

|∇vη(x)| ≤ C

η3

∫
Bη

∫
Bη

|v(x− y)− v(x− z)|ρη(z) dz dy.

Squaring, integrating on ω, using Jensen inequality and Fubini, we obtain∫
ω

|∇vη|2 ≤
C

η4

∫
Bη

∫
ω+Bη

|v(y)− v(y − h)|2 dy dh.

Using (6.1) from Proposition 6.1 (iii), we get

(6.12)

∫
ω

|∇vη|2 ≤ C ln(1/η).

Next, since v takes values in S1, we have for x ∈ ω,

0 ≤ 1− |vη(x)|2 =

∫
Bη×Bη

(1− v(x− y)v(x− z)) ρη(y)ρη(z) dy dz

=
1

2

∫
Bη×Bη

|v(x− y)− v(x− z)|2 ρη(y)ρη(z) dy dz,

where we used the trigonometric formulas 1− cos θ = 2 sin2(θ/2) = (1/2)|1− eiθ|2. Inte-
grating over ω, using Jensen inequality, Fubini and (6.1) as above, we get∫

ω

(1− |vη|2)2 ≤ Cη2 ln(1/η).

Together with (6.12) this leads to (6.11). �
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We may now prove Theorem 1.2, which we restate in terms of v. We set u∗(x) :=
(x1 + ix2)/|x|.

Theorem 6.5. For each v ∈ Â0(Ω), there holds ĉurl v = 0 and there exists a locally finite
set S ⊂ Ω such that:

(i) v is locally Lipschitz continuous in Ω\S,
(ii) for x ∈ Ω\S, v = v(x) on the connected component of [x+Rσ(v(x))]∩ [Ω\S] which

contains x.
(iii) for every B = Br(x

0) such that 2B := B2r(x
0) ⊂ Ω and 2B ∩ S = {x0},

(a) either v(x) = (u∗)2(x− x0) in B\{x0},
(b) or there exists ξ ∈ S1 such that

◦ v(x) = (u∗)2(x− x0) in
{
x ∈ B\{x0} : (x− x0) · ξ ≥ 0

}
,

◦ v is Lipschitz continuous in
{
x ∈ B\{x0} : (x− x0) · ξ ≤ 0

}
.

Remark 6.6. We can deduce the structure of zero-states in the classical setting by proceed-
ing as in the proof below using Proposition 6.3, Lemma 6.4 and (more) simple geometric
arguments. This provides an alternative proof of the main results of [JOP02].

Proof of Theorem 6.5 (Theorem 1.2). The fact that ĉurl v = 0 is established in (ii) of
Proposition 6.1 so we only need to prove (i)–(iii).
Step 1. Identification of the singular set. By (6.11) of Lemma 6.4 and [AP14, Theorem
4.1], the Jacobians curl(vη ∧∇vη) locally weakly converge as η ↓ 0 (for the flat norm) to a
measure µ = 2π

∑
i ziδxi with zi ∈ Z. Moreover, for every ω ⊂⊂ Ω, there exists C,C ′ ≥ 0

depending on ω and Ω such that

|µ|(ω) ≤ C lim sup
η↓0

GLη(vη;ω)

ln(1/η)

(6.11)

≤ C ′.

Therefore the sum is locally finite. From (i) of Proposition 6.1, v ∈ W
1,3/2
loc (Ω), hence

∇vη converges strongly in L
3/2
loc (Ω) to ∇v and vη converges strongly in L6

loc(Ω) to v so
that vη ∧ ∇vη converges to v ∧ ∇v in L1

loc(Ω). Hence, µ = curl(v ∧ ∇v) and we can set
S := suppµ.

Step 2. Local Lipschitz regularity of v in Ω\S. Let B = Br(x) be an open ball such that
2B ⊂⊂ Ω\S. Since v ∈ W 1,3/2(2B) and µ = curl(v∧∇v) = 0 on 2B, by [Dem90, BMP05],
we can find ϕ ∈ W 1,1(2B) such that v = eiϕ. We now set θ := ϕ/2 and u := eiθ so that

u2 = v with u ∈ W 1,3/2(2B, S1). From point (ii) of Proposition 6.1, we have ĉurl v = 0 in
2B so that Lemma 2.1 implies curlu = 0. By the chain rule, this translates into

(6.13) u · ∇θ = 0 almost everywhere in 2B.

For λ ∈ R we define the level sets

E−λ := {x ∈ 2B : θ(x) < λ} and E+
λ := {x ∈ 2B : θ(x) > λ}.

By (6.13) and since θ ∈ W 1,1(2B), for almost every λ these sets have finite perimeter in
2B and the tangent on ∂E±λ is collinear to eiλ. Therefore E±λ is the intersection with 2B
of a locally finite number of stripes parallel to eiλ. Observing that for λ− ≤ λ+ the sets
E−λ− and E+

λ+
do not intersect in 2B and taking into account the orientation of the stripes,

we claim that for almost every λ−, λ+ with λ− < λ+ ≤ λ− + π/2

(6.14) dist(E−λ− ∩B,E
+
λ+
∩B) ≥ 2r sin

(
λ+ − λ−

2

)
.
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Indeed, let xλ− ∈ E−λ− ∩B and xλ+ ∈ E+
λ+
∩B, where λ− < λ+ ≤ λ− + π/2. Since E−λ− is

made of stripes parallel to eiλ− , the line segment Lλ− := [xλ− + Reiλ− ] ∩ 2B is contained
in E−λ− . Similarly, Lλ+ := [xλ+ + Reiλ+ ] ∩ 2B ⊂ E+

λ+
. Since λ+ 6≡ λ− (mod π), the lines

spanned by Lλ− and Lλ+ intersect, and since Lλ− ∩ Lλ+ ⊂ E−λ− ∩ E
+
λ+

= ∅ they do not

intersect in 2B. Minimizing dist(Lλ−∩B,Lλ+∩B) under these constraints, the minimizer
is given by

Lλ− =
(
x+ eiα

[
−2r + Re−

iβ
2

])
∩ 2B

Lλ+ =
(
x+ eiα

[
−2r + Re

iβ
2

])
∩ 2B

with λ± = α± β
2

(see Figure 3, where we assume α = 0). Is is then easy to see that

(6.15) |xλ− − xλ+| ≥ dist(Lλ− ∩B,Lλ+ ∩B) ≥ 2r sin

(
λ+ − λ−

2

)
,

hence the claim (6.14) by the arbitrariness of xλ− ∈ E−λ− ∩ B and xλ+ ∈ E+
λ+
∩ B.

From (6.14) we deduce that θ admits a Lipschitz continuous representative in B with

B

2B

.
x

β/2

≥ r

d/2

Lλ+

Lλ−

Figure 3. d = dist(Lλ−∩B,Lλ+∩B) as in (6.15)
.

‖∇θ‖L∞(B) ≤ 1/r. Therefore v = e2iθ admits a Lipschitz continuous representative in B
with Lipschitz constant at most 2/r. Eventually, returning to (6.13), we see that for every
x ∈ B there holds

v = v(x) on [x+ Reiθ(x)] ∩B.
Equivalently,

v = v(x) on [x+ Rσ(v(x))] ∩B.
We have established points (i) and (ii) of the theorem.

Step 3. Structure of v near the singularities. Let x0 ∈ S and r > 0 such that 2B =
B2r(x

0) ⊂⊂ Ω with 2B ∩ S = {x0}. By translation and scaling we may assume that
B = B1 and we set B′ := B\{0}. We start by noting that since µ = curl(v ∧ ∇v) 6= 0 in
2B, v must be discontinuous in 2B.

Step 3.a. Preliminaries. For x ∈ 2B′ we denote by L(x) the connected component of
[x+Rσ(v(x))] in 2B′ which contains x. L(x) is an open segment in R2 with L(x) ⊂ 2B′.
There are two cases:
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(a) either 2B′\L(x) splits into two connected components. In this case the two endpoints
of L(x) lie on ∂(2B), see Figure 4,

(b) or L(x) is a radius of the form (0, 2x/|x|), see Figure 5.

For shortness, we denote ξ(x) := ±σ(v(x)) where the sign is not important in case (a) but
is chosen such that ξ(x) = x/|x| in case (b). With this notation, L(x) is the connected
component of [x+ Rξ(x)] in 2B′ which contains x.

±ξ(x).x

.
0 L(x)

Figure 4. Case (a).

ξ(x).x

.0
L(x)

Figure 5. Case (b).

From Step 2, v is constant on L(x) with value (ξ)2(x). This has the following conse-
quences:

1. If x, y ∈ 2B′ are such that L(x) and L(y) intersect then v(x) = v(y) and L(x) = L(y).
2. If L(x) is of type (b), then v = (u∗)2 on L(x).

We use these properties repeatedly in the sequel with no further references.

Step 3.b. Construction of two radii of type (b). Let us establish the following.

(6.16) There exist x1, x2 ∈ B′ with L(xj) of type (b) for j = 1, 2 and ξ(x2) 6= ±ξ(x1).

Since v is continuous in B′ and not continuous in B, there exist ε > 0 and two sequences
(x1

k), (x2
k) converging to 0 such that |v(x1

k)−v(x2
k)| ≥ ε for every k ≥ 1. Up to extraction,

there exist z1, z2 ∈ S1 with |z1 − z2| ≥ ε such that v(xjk) → zj for j ∈ {1, 2}. For the

sequence of sets (L(xjk)), we have

L(xjk)→ Lj in Hausdorff distance, for j ∈ {1, 2},
where Lj is one of the segments (0,±2σ(zj)) or the union of these two segments. By
continuity of v in 2B′, we have obtained two radii L1 = (0, 2ξ1), L2 = (0, 2ξ2) with
ξ1, ξ2 ∈ S1 such that v = (ξj)2 = zj on Lj and with moreover |(ξ2)2 − (ξ1)2| ≥ ε. In
particular L2 6= ±L1. Choosing x1 ∈ L1 and x2 ∈ L2, the sets L1 = L(x1), L2 = L(x2)
are of type (b) with x1, x2 not collinear. This proves claim (6.16).

Step 3.c Behavior of v in convex sectors.
Let L1 = L(x1), L2 = L(x2) be two radii with x1, x2 as in (6.16). Let us denote by P

the open convex sector in 2B′ delimited by L1 and L2. We claim that

(6.17) v = (u∗)2 in P.

Let us notice that since L2 6= ±L1, the inner angle of P at 0 is strictly smaller than π.
Let x ∈ P and let us consider the sequence (xk) = (2−kx) and the sequence of segments
(L(xk)). Since the inner angle of P is smaller than π, for k large enough xk belongs to the
convex hull of L1∪L2, but L(xk) cannot intersect L1 nor L2, thus it is necessarily of type
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(b) (see Figure 7). Recalling that x ∈ L(xk), we deduce v(x) = (u∗)2(x) on L(x) = L(xk).
This proves (6.17).

x1 x2

x

xk

. .
.
.

L1
L2

.
0

α

Figure 6

.
0

L1

L2

P

2B′ \ P

α

Figure 7

We now assume that P is the open sector of 2B′ with maximal inner angle such
that (6.17) holds true. We denote by α ∈ (0, 2π] this angle and if α < 2π (so that
P 6= 2B′), L1 and L2 still denote its delimiting radii.

Step 3.d. The case α > π. If π < α < 2π, then the complement of P in 2B′ is a convex
sector with inner angle strictly smaller than π and delimited by the two radii L1, L2 (see
Figure 7). Since by continuity v = (u∗)2 on L1 and L2, we deduce from Step 3.c that
v = (u∗)2 in 2B′\P . Hence v = (u∗)2 in 2B′ which contradicts the maximality of P . In
conclusion, α = 2π and v = (u∗)2 in 2B′. This corresponds to the case (a) of the point (iii)
of the theorem.

Step 3.e. The case α < π. Let us assume α < π and let us consider two sequences
(xjk)k≥1 ⊂ 2B′\P for j ∈ {1, 2} such that |x1

k| = |x2
k| = 1 for every k and xjk → xj ∈ Lj as

k ↑ ∞.
Let us assume by contradiction that L(xjk) is of type (b) (see Figure 8) for j = 1 or

j = 2. In this case, at least for k large enough we can apply Step 3.c. to the convex sector
Qk generated by xjk and Lj, we have v = (u∗)2 in P ∪ Qk and since P and Qk have a

common side this contradicts the maximality of P . Therefore, for j = 1 and j = 2, L(xjk)
is of type (a) for k large enough (see Figure 9).

Next, by continuity of v in 2B′, the segment L(xjk) tends to be parallel to Lj as k ↑ ∞
and since α < π we see that L(x1

k)∩L(x2
k) 6= ∅ for k large enough and thus L(x1

k) = L(x2
k).

Passing to the limit we get L1 = L2 which gives a contradiction.

Step 3.f. The case α = π. In this last case, there exists ξ ∈ S1 such that P = {x ∈ B′ :
ξ · x > 0}. Let us establish that this corresponds to the case (b) of the point (iii) of the
theorem. By (6.17), we already know that v = (u∗)2 in P and we only have to prove that
v is Lipschitz continuous in {x ∈ B′ : x · ξ ≤ 0}.

Let us set Q := {x ∈ B : x · ξ < 0}. Let x1, x2 ∈ Q such that v(x1) 6= v(x2) and
|v(x1) − v(x2)| <

√
2. Then there exist θ1, θ2 ∈ R such that v(x1) = eiθ1 , v(x2) = eiθ2

and |θ1 − θ2| < π/2. Since v(x1) 6= v(x2), necessarily L(x1) ∩ L(x2) = ∅, and since
v(x1) 6= ±v(x2) the lines spanned by L(x1) and L(x2) intersect outside 2B. Hence, the
constraints on L(x1) and L(x2) are the same as those on Lλ− and Lλ+ in Step 2, with
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. .

.x
1

x2

x1k

.
0

P

Qk

L1 L2

L(x1k)

α

Figure 8. L(x1
k) (or L(x2

k)) is of type
(b). This contradicts the maximality
of P .

x1 x2

x1k

x2k. .
.

.

.

L1
L2

L(x2k) L(x1k)

.
0

P

α

Figure 9. Both radii L(x1
k) and

L(x2
k) are of type (a). This contradicts

L(x1
k) ∩ L(x2

k) = ∅.

θ1, θ2 in place of λ−, λ+. Recalling that dist(L(x1) ∩ B,L(x2) ∩ B) is minimized in the
situation of Figure 3, we find

|x1 − x2| ≥ dist(L(x1) ∩B,L(x2) ∩B) ≥ 2 sin(|θ1 − θ2|).
This implies that v is indeed Lipschitz continuous on Q. Eventually, by continuity of v in
B′ we have that v is Lipschitz continuous in {x ∈ B′ : x · ξ ≤ 0}. �
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dimensional modelling of soft ferromagnetic films. R. Soc. Lond. Proc. Ser. A Math. Phys.
Eng. Sci., 457(2016):2983–2991, 2001.

[DKMO01] Antonio DeSimone, Robert V. Kohn, Stefan Müller, and Felix Otto. A compactness result in
the gradient theory of phase transitions. Proc. Roy. Soc. Edinburgh Sect. A, 131(4):833–844,
2001.

[DKMO02] Antonio Desimone, Robert V. Kohn, Stefan Müller, and Felix Otto. A reduced theory for
thin-film micromagnetics. Comm. Pure Appl. Math., 55(11):1408–1460, 2002.

[DKMO05] Antonio DeSimone, Robert V. Kohn, Stefan Müller, and Felix Otto. Recent analytical de-
velopments in micromagnetics. In The Science of Hysteresis, Vol. 2, pages 269–381. Elsevier
Academic Press, 2005.

[DLI15] Camillo De Lellis and Radu Ignat. A regularizing property of the 2D-eikonal equation. Comm.
Partial Differential Equations, 40(8):1543–1557, 2015.

[DLO03] Camillo De Lellis and Felix Otto. Structure of entropy solutions to the eikonal equation. J.
Eur. Math. Soc. (JEMS), 5(2):107–145, 2003.

[EINP03] Nicolas Ercolani, Robert A. Indik, Alan C. Newell, and Thierry Passot. Global description of
patterns far from onset: a case study. Physica D: Nonlinear Phenomena, 184(1-4):127–140,
2003.

[EV09] Nicolas Ercolani and Shankar C. Venkataramani. A variational theory for point defects in
patterns. J. Nonlinear Sci., 19(3):267–300, 2009.

[GL20] Francesco Ghiraldin and Xavier Lamy. Optimal Besov differentiability for entropy solutions
of the eikonal equation. Comm. Pure Appl. Math., 73(2):317–349, 2020.

[GMM20] Michael Goldman, Benoit Merlet, and Vincent Millot. A Ginzburg-Landau model with topo-
logically induced free discontinuities. Ann. Inst. Fourier (Grenoble), 70(6):2583–2675, 2020.

[Ign12] Radu Ignat. Two-dimensional unit-length vector fields of vanishing divergence. J. Funct.
Anal., 262(8):3465–3494, 2012.

[IL17] Radu Ignat and Xavier Lamy. Lifting of RPd−1-valued maps in BV . Applications to uniaxial
Q-tensors. ArXiv e-prints, June 2017.
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[Mur78] François Murat. Compacité par compensation. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4),
5(3):489–507, 1978.
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