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Abstract 

Two cast aluminium alloys fabricated by different casting processes (gravity die-casting and lost foam 
casting) and showing different degrees of porosity were characterized with X-ray Computed 
tomography. Information concerning the pore distribution inside the investigated materials is obtained 
in terms of pore size and the pore positions in 3D space. Subsequently, a spatial point pattern analysis 
is undertaken to investigate the pore distributions. Different methods, including a nearest neighbor 
analysis, Ripley's K-function and Clark-Evans tests developed for 3D applications, are used to analyse 
the observed patterns. The results show that the Homogeneous Poisson process, which provides the 
Complete Spatial Randomness (CSR) is suitable to approximate the spatial distribution of the pores 
present in the investigated alloys. Synthetic microstructures that mimic key macroscale features of the 
materials in terms of pore size and the 3D spatial distribution of the pores were generated. These 
microstructures can be used in the probabilistic modelling of fatigue behaviour. 
 
Keywords: Casting process, X-ray Computed Tomography, Porosity, Point pattern, spatial statistics, 
Ripley’s K-function, nearest neighbor function, Poisson process, Fatigue. 

1. Introduction, context and objectives 

In terms of fatigue failure, many authors have shown that surface porosity is the most important 
casting defect that affects fatigue life. (Ammar et al 2008) showed that porosity acts as the most likely 
site for crack initiation as 92% of all tested specimens fractured from surface or near-surface porosity 
site (Figure 1).  

 

Figure 1: A critical pore located at the surface of a specimen (El Khoukhi et al. 2019) 

Moreover, in the literature, many studies (Ammar et al. 2008 ; Le et al. 2016 ; El Khoukhi et al. 2019 ; 
Murakami 1991) have emphasized the importance of the distance between the critical defect and the 
free surface. Figure 2 highlights the importance of this parameter. This figure shows a specimen 
loaded in the High Cycle Fatigue regime, in which a very large defect can be seen in the very middle 
of the specimen (√Area=575 µm) and a smaller one is visible near the surface (√Area=367 µm). SEM 
observations clearly show that the smaller pore close to the surface is responsible for fatigue crack 
initiation and failure.  
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Figure 2: Fatigue failure surface for a specimen taken from cast aluminum alloy (AlSi7Mg03 - T7), 
has failed at Sa= 55 MPa and Nf=919402 cycles for a stress ratio R=0.1. (a) Macroscopic view, 

detailed view of (b) surface pore and (c) internal pore. It shows the importance of the position of a 
defect relative to the free surface, in terms of fatigue failure (El Khoukhi et al. 2019) 

Furthermore, experimental investigations have shown that the characteristics of the defect distribution 
have a major impact on the sensitivity of the fatigue behaviour to the size effect and the stress gradient 
effect as well as the scatter in the fatigue strength (El Khoukhi et al. 2019). 

(Zhu et al. 2007) have developed a probabilistic fatigue model to establish the relationship between the 
porosity population and the resulting fatigue strength of a cast aluminum alloy. The predictions show 
that, when the fatigue life is controlled by the porosity population, the mean and standard deviation of 
the fatigue strength decrease with increasing mean pore size, pore size standard deviation, and porosity 
density. In addition, the specimen size and shape are shown to influence the fatigue strength by 
affecting the number of pores and the probability of pores intersecting with the specimen surface 
within the stressed volume.  

The same authors, in (Yi et al. 2007) have extended this approach to examine how specific changes to 
the nature of the porosity population, such as mean pore size, pore size standard deviation, porosity 
density, and the volume of the specimen gauge section, affect the predicted fatigue behavior of the 
alloy. In their model, the authors have supposed that casting pores are randomly distributed in each 
specimen, and that the pore sizes follow a lognormal distribution. However, in real materials the 
population of defects can exhibit 3D pattering and may not follow the lognormal distribution in terms 
of their size.  

From these studies, it can be concluded that the variability in the fatigue strength is linked to the 
variability in microstructural heterogeneities (i.e. size, spatial distribution, shape, density…). 
Therefore, in the development of probabilistic models and for an accurate prediction of the resulting 
variability in the fatigue strength, the precise characterization of the defect population is needed in 
order to create numerical microstructures that ideally mimic key macroscale features of the material in 
terms of the size distribution and the 3D spatial distribution of defect.  

3D characterisation of defects is also important for Additive Manufacturing emerging technologies 
and other casting process such as high-pressure die-casting. This type of characterization can help 
understand the links between the process parameters and the porosity of the resulting parts (Chen et al. 
2014).  

In the  literature, many authors have investigated the characterisation of the size and the shape of 
defect populations (Guerchais et al. 2017; Ben Ahmed et al. 2019; Billaudeau, et al. 2004; Murakami 
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1991), but relatively little work has focused on characterizing the spatial distribution of defects, 
especially in 3D space (Wilson 2017). Typically, to take in account the spatial distribution of defects, 
the density, defined as the number of defects per unit volume, is used. This is a first order parameter 
which is not capable of describing the defect pattern in the material (i.e. clustering, randomness, etc.). 
Figure 3 and Figure 4 highlight the fact that two alloys with the same defect density but with different 
spatial arrangements: (a) clustering (b) random, can lead to different behaviour in terms of high cycle 
fatigue.  

 

Figure 3: Two samples with the same defect density but with different defect patterns (a) clustering, 

and (b) random. 

 

Figure 4: SEM fractography of 319-T7 specimens fatigued at the same maximum stress of 100 MPa 
but with different fatigue lives of (a) 413 495 and (b) 189 221 cycles (Jang et al. 2009) 

For these reasons, it is concluded that the 3D characterisation of the spatial defect distribution inside 
the material is particularly important in terms of fatigue response. The rapid development of X-ray 
Computed Tomography makes it possible to access to this information and more, such as the size and 
shape of individual defects.  

As discussed by (Ben Ahmed et al. 2019) the presence of micro-shrinkage porosity in cast materials is 

directly related to the solidification process and in particular the change in volume of the material 

which occurs as the material changes state and cools. This is a physical process that is highly 

dependent on the cooling rate, which in a complex real component is not constant in all zones of the 

part.  

On the other hand, different approaches have been proposed in the literature to predict the appearance 

of defects in the casting process (Stefanescu 2005). For example, a multiphase (solid, liquid, and 

porosity) model that predicts melt pressure, feeding flow, and porosity formation and growth during 

solidification has been developed by (Blair et al. 2005). This model can predict the location in a 

casting, the defect volume fraction, and the size (diameter) of individual pores. It could be interesting 

a) b)

Critical defect

Critical defect

Free surface
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to characterize their spatial arrangement. This information can be useful to enhance the parameters of 

the process to avoid the appearance of the clusters of pores in some locations in the parts.  

For those reasons, in the present work, we will present the application of certain techniques that can be 

used to characterize the 3D spatial distribution of defects contained in cast alloys. These techniques 

have been developed in the framework of the Point Process Theory (Diggle 1983) and are often used 

in other disciplines such as forestry (Perrin et al. 2006), plant ecology (Illian et al. 2007) as well as 

astronomy (Babu and Feigelson 1996). However, very few researchers have applied it to the 

characterization of the spatial distribution of material defects (Wilson 2017; Wilson et al. 2019). The 

ultimate goal of this work is to propose a high cycle fatigue model that takes into account the defect 

size and spatial distributions within a loaded volume. 

2. Scope of the present work 

The main objective of this paper is to characterize the spatial distribution of micro-shrinkage and gas 

porosity in two cast aluminium alloys using the Point Pattern Process theory. This characterization 

tells us whether the defects are aggregated (i.e. clustered) or dispersed in comparison to a Complete 

State of Randomness described by a Homogeneous Poisson process and over which spatial scales do 

patterns exist. With this information it will be possible to create numerical microstructures that ideally 

mimic the features of the material with respect to the size and spatial distribution of the defects present 

in the alloys. Note that in this work it is assumed that the defect size distribution and the 3D spatial 

distributions are not coupled. This hypothesis was verified by (Wilson 2017; Wilson et al. 2019) in an 

alloy of the same kind. 

The characterization of the defect size has been presented in a previous publication (El Khoukhi et al. 

2018), and it is generally accepted that the effect of the shape of a defect does not have a strong 

influence on its fatigue behaviour (Murakami 1991). Hence, the focus of this paper is the 

characterisation of the 3D spatial defect distribution. 

This step is mandatory for future modelling work to predict the fatigue resistance of components made 

from these alloys by coupling the defect size distribution, the spatial distribution as well as the loaded 

volume. This modelling work will help understand how the scatter in the fatigue strength is linked to 

the microstructural variability of the material, such as the variability in the defect size and the way the 

defects are arranged in 3D space (clustering, regularity…).   

As already mentioned, to characterize the 3D spatial defect distribution, the techniques developed in 

the framework of Point Process Theory are used. In the following sections, these techniques are 

presented, as well as their application to the investigated alloys. 

3. Stat of Art, theory and definitions 

According to (Diggle 1983), a Spatial Point Pattern is a set of locations, or events, within a specified 

region. The events are irregularly placed and are modelled as the result of an unknown underlying 

stochastic Process, referred to as a Spatial Point Process. We can think of the spatial distribution of 

pores as the result of one such process. Point processes are a well-studied domain in probability theory 

and the subject of powerful tools in statistics for modelling and analysing spatial data, which is of 

interest in such diverse disciplines as forestry, plant ecology, astronomy and many more. As discussed 

by (Diggle 1983), spatial point patterns can be divided into three main categories (Figure 5):  

• Random: or Complete Spatial Randomness (CSR) where point or events are distributed 
randomly. This state is provided by the Poisson Process. 
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• Clustering: if the points or events attract each other and appear in small groups called 
clusters. 

• Regularity: if the points or events repulse each other; no two points are close to each other. 

 
Figure 5: Spatial Pattern categories (a) Complete Spatial Randomness, (b) clustering (d) regular 

process. 

Point Pattern Analysis (PPA) is the study of the spatial arrangements of points in space (3 dimensions 

in our case). The simplest formulation is a set S = {x ∈ D} where D, which can be called the 'study 
volume', is a subset of R3, a 3-dimensional Euclidean space. 

When exploring the properties of an unknown spatial distribution of defects contained in a material, 
we can look at the density ρ, which can be estimated as the average number of pores per unit volume. 
A spatial distribution also can be characterized by its second-order properties, which describe how 
events or point are placed in relation to each other. 

(Bailey and Gatrell 1995) have classified these techniques as Exploratory Analyses of the first order 
properties and the second order properties of a process. 

The exploratory analyses of first order properties of a process aim to analyse how the density, of 
defects in a material for example, varies over an area or a volume. This category includes Quadrat 
Analyses and Kernel Estimation.  

On the other hand, exploratory analyses of second order properties of a process estimate the 
presence of spatial dependence among events (pores) based on the distances from one another in 
comparison to the Poisson process. In this category, different techniques can be used: 

- The Nearest-Neighbor distance distribution function (G-Function) 

- The Empty space function of the point process (F-Function) 

- The K-Ripley Function (Ripley 1977) 

Furthermore, statistical test can be conducted to obtain quantitative information on how the studied 
process differs from the Poisson process. The Clark-Evans (CE) test is usually used (Clark and Evans 
1954). This test aims to calculate the statistical significance level through comparison with the null 
hypothesis of complete spatial randomness (CSR) provided by the homogeneous Poisson process. In 
other words, it tends to measure the distance of the investigated process from the Poisson process. 

We used the exploratory analyses of second order properties of the patterns to determine how random 
the defect population is. Then the Clark-Evans test was used to measure how far it is from the Poisson 
process. 

In the following sections, the detailed definitions of the different techniques used to analyse the spatial 
distribution of defects contained in two casting aluminium alloys, will be presented. At the simplest 
level, the data being analysed consist only of the coordinate locations of the events (i.e. the pores). 
Each event or pore could also have attributes or variables associated with them like their size or shape.  

Since the analyses of second order properties of a process aims to compare it to the Poisson process, 
firstly we start by defining the Poisson process. 
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3.1. The Poisson Process 

A homogeneous Poisson process (or Poisson point process) is characterized by: 

i. the number of points in a subset V from R3 follows a Poisson distribution of parameter �|V|, 
where |V| is the volume of V: ������ = 
� = ��|�|��

�! ���|�|                                 (eq. 1) 

ii. � > 0 is the point process density, which corresponds to the average number of points per 
volume unit. 

iii. For m disjoints sets V1, … Vm, the random variables N(V)1, ..., N(V)m are independent. 
 

The Poisson point process is used to produce Complete Spatial Randomness (CSR): each point is 
stochastically independent, and there is absolutely no interaction between them (see Figure 5). 
Therefore, the Poisson process serves as a reference to evaluate if a point process is clustered (i.e. the 
points are attracted to each other (see Figure 5 (b)) or regular (i.e. the points repulse each other, see 
Figure 5 (c)). 

3.2. Techniques based on distances to the Nearest-Neighbor (NN-distances) 

This category includes the G, F and J functions that are commonly used to compare two sets of spatial 
patterns, or one pattern against the null hypothesis of complete spatial randomness (CSR). These 
functions are defined as follows. 
 

G Function: nearest neighbor distance distribution function  

The nearest neighbor distance distribution function of a point process S is the cumulative distribution 
function G of the distance from a typical random point of S to its nearest neighboring point (also of S). 
It is estimated by: 
 

                                            ���� = �� ∑ ���� ≤ ������                                                 (eq. 2) 

 

where di is the Euclidian distance between pore i and its nearest neighbor, and N is the number of 
pores. I(·) is the indicator function, which is one if the argument is true, else zero. 
 
The estimate of G is then compared to the true value of G for the Poisson Process in 3D, defined by: 

   ���� = 1 − � !" �#$"
                                                    (eq. 3) 

 
where ρ is the density (expected number of points per unit area).  
 
Deviations between the empirical and theoretical G curves may suggest spatial clustering or spatial 
regularity. 
 

F Function: empty space function of the point process 

The F function, also called the “spherical contact distribution” of a stationary point process, in contrast 
to the G function plots the cumulative frequency distribution for the distance of each grid point to its 
nearest pore when a regularly spaced grid of g points is superimposed upon the population. It is 
estimated by: 
 

              %��� = �& ∑ ��'� ≤ ��&���                                                   (eq. 4) 
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where zi is the distance of grid point i to the nearest pore. The F function is useful for detecting non-
homogeneities in the distribution of pores within the field. In addition, the estimate of F is a useful 
statistic summarizing the gap sizes in the pattern. Like for the G function, the estimate of F is 
compared to the true value of F for a Poisson process in 3D, which is: 

         %��� = 1 − � !" �#$"
                                                (eq. 5) 

Deviations between the empirical and theoretical F curves may suggest spatial clustering or spatial 

regularity.  

J-Function 

The J-function (Baddeley et Lieshout 1995) of a stationary point process is defined as: 

(��� = ��)�$���*�$�                                                    (eq. 6) 

This function is used to compare a given distribution to a Poisson process. If : 

- J(r) > 1: the point process tends to be regular 

- J(r) = 1: the process is a Poisson process 

- J(r) < 1: the point process tends to be clustered  

 

 
Figure 6: schematization des three cases of J-Function, (a) regularity, (b) Poisson process and (c) 

clustering (Baddeley et al. 2015). 

3.3. The K-Ripley Function  

While these three functions (G, F and J) provide qualitative information about the spatial distribution, 
the K-Ripley function (Ripley 1977) is often chosen to infer statistical properties. It is a more 
descriptive point pattern measure. Whereas the G-function and the F-function rely only on the nearest 
neighbor distances to describe a point process, the K-Function (also called “Ripley's K-function” or 
the “K-Ripley function” or the “reduced second moment function”) uses all distances between point 
pairs in the pattern [Figure 7]. The K-Function of point process S is determined by the second order 
moment properties of S. It is determined as follows: 

1. Construct a circle of radius d around each point (event) i  

2. Count the number of other events, labeled j, that fall inside this circle  

3. Repeat these first two steps for all points i, and  

4. Sum the results.  

These steps equate to:  
 +��� = |�|� ∑ ∑ ,-$./012���34����                                       (eq. 8) 
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where, N is the number of events (pores) in the studied region, |V| its volume and rij is the distance 
between pore i and pore j. I(.) is the indicator function. I(rij)=1 if the distance, rij, from i to j is less 
then d. Otherwise I(rij)=0. 

 
5. Increase d by a small fixed amount 

6. Repeat the calculation, giving values of K(d) for a set of distances, d 

 
Figure 7: Representation of the steps used to construct Ripley’s K function in 2D. 

 
 
The estimate of K is a useful statistic, summarizing aspects of inter-point “dependence” and 
“clustering”. It is usually compared to the theoretical value of K for a Poisson point process. In 3D, 
Ripley's K function for a Poisson process is exactly the volume of the sphere with radius d (since the 
K function is normalized by 1/ρ): 
 

          +567��� = 89 :�9                                                     (eq. 10) 

Like for the precedent estimators, deviations between the empirical and theoretical K curves may 
suggest spatial clustering or spatial regularity. 
 
Therefore, if: 

- K(d) > KPoisson(d): the point process is clustered 

- K(d) < KPoisson(d): the point process is regular 

 

The K-Function describes the characteristics of a point processes at many distance scales. The G and F 
nearest-neighbor distance functions do not have this property. 

All of these methods give qualitative information about the pattern; if it is clustered, regular or 
random. However, as most real patterns will almost never be perfectly random, even if the population 
is random, a way is needed to determine how far a process really is from the Poisson process. In order 
to evaluate the degree of clustering or randomness compared to the Poisson process with a certain 
level of confidence (ex. 1%, 5% or 10%) a statistical test should be used. The Clark-Evans test is one 
possibility. There are two versions of this test: (i) The one-tailed version used if the pattern is known 
to be clustered (or regular) and is compared to the Poisson process. (ii) The two-tailed version used 
when it is unknown if the process is clustered or regular.  
 

In general, after using either the 1st or the 2nd order techniques, we can tell if the pattern is clustered or 
regular. Therefore, in the following only the one-tailed version of the Clark-Evans test is used. 
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3.4. Clark-Evans test  

The "Clark and Evans" test (1954) calculates for each pore the distances from the nearest neighbor. 

The average value of these distances ;< can then be compared to the theoretical value = calculated for 

a null hypothesis (i.e. the Poisson process) in order to characterize the spatial structure: clustering, 
regularity, etc. The standardized sample mean under the CSR Hypothesis is defined by: 

>< = ?@�AB                                                              (eq. 11) 

It follows from the Central Limit Theorem that independent sums of identically distributed random 

variables are approximately normally distributed. Hence, the most common test of the CSR 

Hypothesis based on nearest neighbors involves a normal approximation to the sample mean of D, as 

defined by: 

 ;< = �< ∑ ;�<���                                                       (eq. 12) 

To construct this normal approximation, the mean and variance of the Poisson distribution in 3D are 
respectively given by: 

= = C�D� = E8�#9 F G" H�4 3⁄ �                                  (eq. 13) 

L = MN�O 9⁄ ��-N�8 9⁄ �2P
QE!RS" FP"                                                (eq. 14) 

where Γ is the gamma function. 
But from the Central Limit Theorem it then follows that for sufficiently large sample sizes (m>30), Dm 
must be approximately normally distributed under the CSR Hypothesis with the mean and variance of 
the Poisson Process, so: 

;< ~  � VE8�#9 F G" H�4 3⁄ �, N�O 9⁄ ��-N�8 9⁄ �2P
QE!RS" FP" X                           (eq. 15) 

 
Hence, if we now denote the standardized sample mean under the CSR Hypothesis by: 

>< = ?@�AB = E!RS" F G" ?@�N�8 9⁄ �
QN�O 9⁄ ��-N�8 9⁄ �2P                               (eq. 16) 

Then Zm follows the standard normal distribution, 

                                        >< ~ ��0,1�                                                          (eq. 17) 

                  
If the CSR Hypothesis is true, then Zm should be a sample from N(0,1).  
 

One-tailed version 

By definition, the level of significance of a test is the probability, α, that the null hypothesis is rejected 

when it is actually true. And the upper-tail points, zα, for the standard normal distribution is defined 

by:  
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                                                    ���> Z >[� = \    For     Z ~ N (0, 1)                                (eq. 18) 

It is important to highlight that there is no “best” choice for α. The typical values given by most 

statistical tests (Smith 2020) from the literature are listed in Table 1 below: 

 
Table 1: One-tailed significance  

Significance α Zα 

Strong 0.01 2.33 

Standard 0.05 1.65 

Weak 0.10 1.28 

Using the one-tailed significance presented in Table 1: 

� the non-randomness of a given pattern is considered “strongly” significant if the CSR Hypothesis 

can be rejected at the α = 0.01 level of significance. 

� the non-randomness of a given pattern is considered “weakly” significant if the CSR Hypothesis 

can be rejected at the α = 0.10 level of significance.  

The value α =0.05 is regarded as a standard (default) value indicating “significance”. We mention that 

in the case of clustering we use (-Zα) instead of (Zα) in Table 1 (see Figure 8). 

 
Figure 8: One-Tailed Test of Clustering. 

 

P-Values for Test 

Another approach is often adopted in evaluating test results. The idea is that, in the one-tailed test of 

clustering versus CSR discussed above, suppose that for the observed standardized mean value, Zm, 

one simply asks how likely it would be to obtain a value this low if the CSR Hypothesis were true? 

This question is answered by calculating the probability of a sample value as low as Zm for the 

standard normal distribution N(0,1). This probability, called the P-value of the test, is given by 

 ��> ≤ ><� = ɸ�><�                                              (eq. 19) 
 

where ɸ the probability density function for the normal distribution. 
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Taking in account the dependencies between nearest neighbor distances 

However, one major difficulty with the precedent techniques is that we have used the entire point 

pattern (m=N) and have thus ignored the obviously dependencies between NN-distances. (Cressie 

1993) calls this “intensive” sampling and shows with simulation analyses that this procedure tends to 

overestimate the significance of clustering (or regularity). The study of the dependencies between 

nearest neighbor distances is discussed in the following sections. 

4. Materials – the investigated cast aluminum alloys 

In this work, two cast aluminium alloys referred to as Alloy A (AlSi7Cu05Mg03) obtained using 

gravity die casting followed by a standard T7 heat treatment and Alloy B (AlSi7Mg03) obtained by 

lost foam casting followed by T7 heat treatment are used. These alloys have been largely studied and 

characterised in previous works by the present research group (El Khoukhi et al. 2019), (Le et al. 

2016) and (Koutiri et al. 2013). The different manufacturing processes result in different porosity 

populations (volume fraction, defect size, defect spatial distribution…[see Figure 9].) and it should be 

kept in mind that alloy A contains an additional 0.5 wt% copper, compared to alloys B. The presence 

of copper results in a higher micro-hardness of the alpha phase. 

Table 2, Table 3 and Table 4 summarize the mechanical and microstructural properties of these alloys. 

Table 2: typical composition of the alloy A [AlSi7Cu0.5Mg0.3] 

Element Si Cu Mg Zn Mn Ni Ti Pb Fe Sn 

% in 
weight 

6,5-7,5 0,4-0,6 0,28-0,4 <0,10 <0,10 <0,05 0,08-0,2 <0,05 <0,20 <0,05 

 

Table 3: typical composition of the alloy B [AlSi7Mg0.3] 

Element Si Cu Mg Zn Mn Ni Ti Pb Fe Sn 

% in 
weight 

6,5-7,5 <0,10 0,28-0,4 <0,10 <0,10 <0,05 0,08-0,2 <0,05 <0,20 <0,05 

   
Table 4: Properties of the investigated cast Al-Si alloys 

Grade Alloy A Alloy B 

Designation AlSi7Cu05Mg03 - T7 AlSi7Mg03 - T7 

Casting Process Gravity Die Lost Foam 

Young Modulus E (GPa) 77±6 68±5 

Yield stress L^_.a% (MPa) 260±2 240±5 

Ultimate tensile strength Lb (MPa) 304±4 251±6 

Void fraction (%) 0.03 0.28 

 
In a previous publication (El Khoukhi et al. 2019) presented the effect of microstructural 
heterogeneities (SDAS, pore size, oxides …) on the fatigue behavior of these materials in terms of 
fatigue failure mechanisms, the size effect and the stress gradient effect as well as the scatter in the 
fatigue strength. As the main objective of this paper is to analyse the 3D spatial distribution of pores 
that exists in these alloys, the following section shows the data concerning the micro-porosity obtained 
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from CT X-Ray tomography scans and the volume-rendering analyses done using the AVIZO 
software of samples extracted from the studied alloys. 
 
In these analyses, only defect sizes larger than 18 µm3 are taken into account. This decision was made 
due to experimental observations indicating that defects smaller than this value are harmless with 
regard to fatigue.   

Porosity  

In order to characterize the defect size and spatial distributions in these alloys, Computed-Tomography 
(CT) analyses were undertaken. The CT scans were done by the MATEIS laboratory at INSA Lyon 
with a resolution of 8 µm/voxel. The AVIZO software was then used in order to analyze the raw data. 
An inspection volume of 363 mm3 was used. Note that the CT scan resolution can influence the 
precision of the defect size measurements, in particularly for small defects.  

 

Figure 9: Micro-tomography scans of (a) Alloy A and (b) Alloy B 

Figure 9 illustrates the defect populations within two notched specimens. For more detail on the use of 

the notched specimen see (El Khoukhi et al. 2019). It can be clearly seen that Alloy B has 

considerably larger pores when compared to Alloy A. This is to be expected as Alloy B was obtained 

by the lost foam casting process. From these two scans, only the scan corresponding to BVN1-05 is 

used in the Point Process analyses.  

In addition, further measurements using the X-ray micro-tomography technique were conducted by 

(V. D. Le 2016) at the PLACAMAT (attached to the University of Bordeaux and CNRS), in France on 

a X GE V/TOME/SX micro-tomograph. A spatial resolution of 5 μm×5 μm×5 μm was used with a 160 

kV (max) X-ray source. This data was also reconstructed and analyzed using the Avizo® software. In 

these measurements, 9 samples from Alloy B were scanned. Adding the sample BVN1-05, a total of 

10 scanned samples for the alloy B are considered, which corresponds to a total scanned volume of  

2.2×103 mm3. For Alloy A, 4 samples were scanned corresponding to a total volume of 0.9×103 mm3. 

5. Statistical pattern analyses 

The following sections show the application of the Point Pattern Process techniques discussed above 
to the data obtained from the CT X-Ray tomography for the 3D pore distributions in the cast alloys.  
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5.1. Techniques based on the distance to the Nearest-Neighbor (NN-distances) 

Figure 10 shows the estimation of the G and F functions for both Alloy A and Alloy B. As previously 
discussed, the G function describes the nearest neighbor distance distribution of the pattern. And the F 
function measures the emptiness in the pattern. 
 
 

 
Figure 10: The G Function of the different curves (a) correspond to the 4 scanned samples for alloy A 

and (b) correspond to the 10 scanned samples for alloy. The F Function of the different curves in (c) 

correspond to the 4 scanned samples for alloy A and (b) correspond to the 10 scanned samples for 

alloy B. 

According to the G function presented in Figures 10 (a) and (c), all the empirical curves for both 
alloys lie above the theoretical curve for the Poisson process. This indicates that the NN-distances in 
the data are shorter than those expected from a Completely Random pattern. This is consistent with 
clustering.   

 

Figure 10 (b) and Figure 10 (d) show the results for the F-function for both alloys. It can be seen that 
the empirical curves lie under the theoretical curve for the Poisson process. This is an indication of the 
presence of clustering in both alloys. 
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Figure 11: The J-Function for the 4 the scanned samples of Alloy A (in red), and for the 10 

scanned samples of Alloy B (in blue) and the Poisson Process (in black). 

Figure 11 shows the J-Function versus the NN-distance r, estimated for the two alloys. The results 
from the J-function confirm the presence of clusters in the studied patterns. This is because the curves 
are lower than the value of 1 corresponding to the Poisson Process. From Figure 11, it can also be 
concluded that there is more clustering in Alloy A compared to Alloy B.  

In the next section, the results in terms of the K-Function are presented. This analysis gives greater 
detail as it does not only consider the Nearest Neighbor pores. The drawback of this technique is that it 
requires an edge effect correction. It is generally recommended that in order to minimize the edge 
effect, a maximum distance ‘d’ of approximately ¼ of the minimum distance should be used.   

5.2. The K-Ripley Function 

Figure 12 shows the estimation of the K-Ripley function for both alloys. The black curve is the K-
Ripley function for the Poisson process. A curve that is above the Poisson process curve indicates 
clustering and a curve that is under the Poisson process curve indicates regularity.  

 
Figure 12: Ripley’s K-function for Alloy A, Alloy B and the Poisson process 
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From Figure 12 it can be seen that the point patterns of both alloys show a combination of effects, 
clustering at small scales and regularity at large scales. This information was not detected by the 
techniques based only on the Nearest-Neighbor distance. 

In order to better highlight the difference between a point pattern process and the Poisson process, the 
estimated K-function is often displayed as the difference between the estimated K-Ripley function and 

the expected +567��� = 89 :�9. 

When the estimated K-function value is similar to the expected value from the Poisson process the 

difference E+��� − 89 :�9F is close to zero. This value is referred to as the “Residual K-Function”. 

When the Residual K-Function is positive or the values of the estimated K-function are higher than 
Poisson process, this indicates clustering. When the difference is negative it indicates regularity. 
Moreover, the intersection of the K-Ripley function with the theoretical curve of the Poisson process 
determines a critical distance. 

 
Figure 13: Residual K-Ripley functions of Alloy A, Alloy B and Poisson process. 

The resulting plot is shown in Figure 13. The horizontal line indicates the “theoretical” values of E+��� − 89 :�9F using the CSR hypothesis. Furthermore, the Residual K-Function (Figure 13) shows 

that the point patterns of both alloys have a combination of effects, clustering at small scales and 
regularity at large scales.  

Moreover, the intersections between the experimental curves and the Poisson process curve provides 

information concerning the critical inter-pore distance below which there is risk of clustering. For both 

alloys, the critical distance varies between 800 µm to 1600 µm. This critical distance could be 

important in terms of the size of Representative Volume Element for the fatigue behavior of the 

material, although information concerning the defect size distribution would also be required. 

Nevertheless, it would be beneficial to have quantitative evaluation that measures the degree of 

clustering in the studied point processes. The following section presents the results of the Clark-Evans 

test including a proposed methodology to adapt it to the 3D point pattern case. Note that only the One-

Tailed version is used as it is concluded that both alloys show clustered patterns. 

5.3. Clark-Evans test in 3D 

The key to this statistical test is to distinguish between the degree of clustering that could easily occur 
haphazardly and those that could not (i.e. due to the physics of the process). Figure 14 shows a 
Poisson pattern that contains some clusters. Two examples are circled in red. 
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Figure 14: An example of a CSR pattern with a certain degree of clustering (i.e. the red 

circles) that occurred fortuitously.  

Example for the case of intensive sampling (m=N) for a sample from Alloy A 

To obtain insight into the Zm variable, we first need an estimate of the Mean of the NN distance ;<, 

then an estimate of the density. By using equation (eq. 16) the value of Zm can be obtained. For 

instance, the batch A23 has a ;< = 101 μd and a density ρ=13 mm-3. Therefore: 

>< = −1.58 g −>_.� = −1.65                                         (eq. 20) 

Hence, from Table 1,  this value of >< indicates “weak to standard significance” of clustering. 

Moreover, the P-value in this case is given by:  
 

P-value (A) = ɸ�>< = −1.58� = 0.12 (~12%)                    (eq. 21) 

This means that the chance of obtaining a mean Nearest-Neighbor distance this low with the Poisson 
process hypothesis is 12% for Alloy A. 

The same steps have been done for the other batches; the results are summarized in Table 5 and the 
averages are show in Table 6. The results do not present a high dispersion for Zm.  

Table 5: Summary of the numerical results for intensive sampling (m=N). 

Batch ρ [mm-3] Zm P-Value 

B10 4 -1.19 0.20 
B19 8 -1.14 0.21 
B20 10 -1.51 0.13 
B30 7 -1.24 0.19 
B31 8 -1.47 0.14 
B32 6 -1.15 0.21 
B43 6 -1.39 0.15 
B48 6 -1.20 0.19 
B49 6 -1.27 0.18 

BVN1-05 4 -1.48 0.13 
A01 13 -1.53 0.12 
A23 13 -1.58 0.12 
A24 13 -1.53 0.12 
A30 12 -1.53 0.12 
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Table 6: Averages values for the alloys 

Alloy  ρ [mm-3] Zm P-Value 

Alloy A 13 -1.54 0.12 

Alloy B 7 -1.30 0.17 

 
However, As mentioned before, one major difficulty with this conclusion is that the entire point 

pattern (m = N) has been used and as discussed above the obvious dependencies between NN-

distances have been ignored. With this in mind, a procedure for taking random subsamples of pattern 

points which tend to minimize this dependence problem is presented below.  

 

For the case of non-intensive sampling m<N 

 

This procedure makes it possible to take random subsamples, and thereby reduces the effect of 

dependencies among NN-distances. The objective is to take many subsamples of the same size (for 

example with m=N/10) and to examine the range of Z-values obtained. If almost all samples indicate 

significant clustering, then this yields a much stronger result that is clearly independent of the 

particular sample chosen. In addition, one might for example want to use the P-value obtained for the 

sample mean of Z as a more representative estimate of actual significance. Figure 15 shows the 

sampling procedure. 

 
Figure 15: Principle of the sampling 

This sampling procedure (Figure 15) was applied to both alloys and to a Poisson process generated 
numerically. The steps of this procedure are as follows : 
 
1. Randomly choose m=N/10 nearest neighbor distances. 
2. Average these m distances. 
3. Calculate the expected mean distance given by the Poisson process. 
4. Calculate the corresponding Zm value (and calculate the P-value). 
5. Repeat steps 1 to 4 ‘X’ times. 
6. Taking into account the average value of Zm (and the average value of P-value) and considering 

the significance reference values given in Table 1, determine the degree of clustering.  

These steps have been implemented using Matlab. The results are presented below.  
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Figure 16: Sampling Distribution of Z-values for Alloy A (in red), Alloy B (in blue) and Poisson 

process (in yellow) 

Figure 16 shows the results of the non-intensive sampling technique of the NN-distances for Alloy A 

(in red) and Alloy B (in blue) and the NN-distances from a numerical Poisson process (in yellow) used 

as a reference. The results are summarized in Table 7. It can be concluded that there is no strong 

evidence suggesting that a clustered spatial pattern is observed in the studied alloys (see Table 8). This 

implies that the generation of the spatial defect positions in a synthetic microstructure can be done 

using the Poisson distribution.  

Table 7: Summary of the numerical results for intensive and Non-intensive sampling (m=N) 

Batch ρ [mm-3] Intensive sampling Zm Non-intensive sampling Zm P-Value 
B10 4 -1.19 -1.16 0.20 
B19 8 -1.14 -1.12 0.22 
B20 10 -1.51 -1.49 0.13 
B30 7 -1.24 -1.23 0.19 
B31 8 -1.47 -1.46 0.14 
B32 6 -1.15 -1.13 0.21 
B43 6 -1.39 -1.38 0.15 
B48 6 -1.20 -1.19 0.20 
B49 6 -1.27 -1.26 0.18 

BVN1-05 4 -1.48 -1.48 0.13 
A01 13 -1.53 -1.53 0.12 
A23 13 -1.58 -1.57 0.12 
A24 13 -1.53 -1.53 0.12 
A30 12 -1.53 -1.54 0.12 

 

Table 8: Summary of the intensive and non-intensive sampling  

Alloys 
Intensive sampling 

Average (Zm) 
Non-intensive sampling 

Average (Zm) 
P-Value 

Degree of 
clustering 

Alloy A -1.54 -1.54 0.12 Weak to standard 
Alloy B -1.30 -1.29 0.18 Weak to standard 

 

From this quantitative evaluation of the degree of clustering in the studied alloys using the Clark-
Evans test for both the intensive and non-intensive sampling cases, the following conclusions can be 
drawn. 
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i. The value of Zm for Alloy A is -1.54 with the non-intensive sampling procedure, which is the 

same for the intensive sampling procedure. 

ii. The value of Zm for Alloy B is -1.19 with the non-intensive sampling procedure, which is very 

close to -1.30 for the intensive sampling. 

iii. The scatter in the numerical distributions of Zm in Figure 16 is dependent on the size of the 

sample (i.e. the number of pores in the pattern). The higher the number of pores, the lower the 

scatter in the variable Zm. 

iv. The values obtained with or without intensive sampling are almost the same. Therefore, it can 

be concluded that the effect of dependencies between the NN-distances is negligible. 

v. From Figure 16, it confirms that the numerical methodology employed to generate pore 

locations using the Poisson process is quite good, as the average value of Zm (in yellow) is 

equal to zero. 

 

6. Generation of synthetic microstructures 

In the previous section, it has been shown that for both alloys their point processes can be modelled 
using the Poisson Process. At the simplest level, the data are analysed only in terms of the coordinate 
locations of the events (pores). However as previously mentioned, the population of defects can have 
associated attributes such as the size or the shape of each defect. For the sake of simplicity, the point 
process will be modelled in association with the defect size that has been determined from the CT X-
Ray tomography data. It is assumed that the size and the spatial distribution of the defects are 
independent of each other. 

For the generation of synthetic microstructures, the initial step is to generate the defect or pore 

positions, and then to associate with each position a size with respect to the defect size distribution 

extracted using the CT X-Ray tomography data. For the sake of simplicity, the defect shape has not 

been taken into account. In addition, experimental work (Murakami 1991) has shown that the shape of 

the defect has a slight effect in the high cycle fatigue failure process. Hence, in this work all defects 

are assumed to be spherical in shape. The size of defects is expressed as the √k��l of this spherical 

volume.  

6.1. Generation of the spatial positions of defects 

In the following section, numerical processes are generated that have almost the same density as the 
natural processes with the homogeneous Poisson process. Firstly, a verification of the ability of the 
script that was developed to generate numerical Poisson processes is presented in Figure 17. 

 
Figure 17:  An example of defect positions generated following the Poisson process. (a) The 3D defect 

positions and (b) the projection of the defect positions onto the XY plane. 
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Figure 18:  The G-function for the theoretical and the numerical Poisson process. 

Figure 17 and Figure 18 confirm that the numerical procedure correctly generates a defect population 
that follows the Poisson process, as the numerical G-Function and the theoretical one are almost 
superimposed.  

 
 

Figure 19: 3D defect positions for Alloy A. (a) The natural pattern obtained via a CT scan and 

(b) the numerical pattern generated using the Poisson process. 

Figure 19 (a) and Figure 28 (a) show respectively an example of the natural positions in 3D space and 
its projection for a real sample from the alloy A. Figure 19 (b) and Figure 28 (b) show respectively an 
example of the numerical positions in 3D space and its projection for a numerical sample for the alloy 
A with the same density of 13 mm-3. These figures give insight into the difference between the 
numerical and the natural patterns.  

The same steps were used to generate a numerical process for Alloy B. The results are shown in 
Figure 20 and Figure 27. The numerical process shown in Figure 20 (b) and Figure 27 (b) was also 
generated using the homogeneous Poisson process with the same density of 7 mm-3. Figure 20 (a) and 
Figure 27 (a) show an example of the natural pattern for Alloy B. These figures show that Alloy B has 
lower clustering than Alloy A. 
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Figure 20: 3D defect positions for Alloy B. (a) The natural pattern obtained via a CT scan and (b) the 

numerical pattern generated using the Poisson process. 

From these results, the presence of some clustering can be seen in the natural pattern, when compared 

to the numerical patterns corresponding to a homogenous Poisson process. Nevertheless, as previously 

estimated using the Clark-Evans test, the degree of cluttering is still less than the standard level. 

Therefore, the resulting process can be and will be used for future modelling work. 

6.2. Association of the defect size to the generated positions 

Figure 21 shows the defect size distributions for the two alloys in terms of the equivalent Murakami 

parameter (Murakami 1991), √k��lmn of the defect. The relationship between the pore volume 

obtained by tomography and the equivalent square root value of the projected area is given in (eq. 24). 

This relationship is obtained by assuming the pores have a spherical shape. The data are obtained from 

different scans, with a total volume of almost 2.16×103 mm3 for Alloy B and almost 0.86×103 mm3 for 

Alloy A. 

                                                 √k��lmn = :�/p �9�8 ��/9                                           (eq. 24) 

This approximation makes it possible to compare the pore sizes obtained by the CT scans and those 

measured on the fatigue failure surfaces. It can be seen that for this data the maximum defect size for 

Alloy A is 285 µm and for Alloy B it is 1492 µm. 

 
Figure 21: The cumulative probability functions of the defect size in the studied alloys in √k��lmn 

Statistical tests were used to choose the best fit of the defect size distributions. The results of the 

comparison between the different distributions shows that the Generalized Extreme Value distribution 

has the maximum value of Ln-Likelihood for both alloys (Table 9). This distribution is therefore 
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chosen to model the defect size distributions for both alloys. The distribution parameters identified for 

each material are summarized in Table 10. 

Table 9: The Goodness-Of-Fit of the defect size distribution for the studied alloys.  

Alloy Criteria 
Generalized extreme 

value 
Lognormal Gamma Weibull Gumbel 

A Ln-Likelihood -57218 -60145 -61363 -64348 -79376 

B Ln-Likelihood -64830 -69005 -71664 -72662 -92007 

 

Table 10: Parameters of the distribution chosen to model the defect size distributions. 
 Alloy A Alloy B 

ρ : density of pores (mm-3) 13 7 
Spatial distribution Poisson process Poisson process 
Distribution model  Generalized Extreme Value 

(k=0.35, σ=4.4, µ =22) 
Generalized Extreme Value 

(k=0.9, σ=9, µ =25) 
where µ is the location parameter, σ is the scale parameter, and k is the shape parameter of the 
generalized extreme value distribution. 

The maximum pore sizes expressed in terms of the √k��lmn parameter, obtained via the CT scans, are 

approximately 900 µm for Alloy A and 1500 µm for Alloy B. Almost the entire population of defects 

in Alloy A have a √k��lmnthat is lower than 100 µm whereas 20% of the defects in Alloy B have a √k��lmn greater than 100 µm. The defect size distributions were fitted using the generalized extreme 

value density probability function. The resulting theoretical distributions were then used to generate a 
defects size to be associated with each point in the modelled pattern.  

6.3. Examples of synthetic microstructures and comparison with the natural ones 

The synthetic microstructures are generated by coupling the defect size distribution and the position 

distributions. Figure 23 compares the generated 3D patterns and the natural ones. In terms of their 

spatial distributions, the natural processes are random with a certain degree of clustering as previously 

discussed. The synthetic ones are also random processes but with a lower degree of clustering. This 

small deviation in the 3D pattering between the natural and numerical processes for both alloys can be 

observed visually, nevertheless, this deviation has already been quantified using the Point Pattern 

Theory and it has been shown that it is negligible according to the Clark-Evans test. Furthermore, it 

can be noticed that the clustering is mainly due to the smaller defects. 
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Figure 22: An example of size and spatial distributions for Alloy A projected onto the XY plane (a) 
from a CT scan and (b) a numerically generated patterns using the Poisson process. Both have height 

of h=8 mm and a radius of r=3.5 mm. 
 

 
Figure 23: Spatial positions of defects projected onto the XY plane with associated defect size 

for Alloy B. (a) and (c) are examples of natural patterns, and (b) and (c) are examples of 

numerical patterns generated using the Poisson process. 

 

From Figure 23, for Alloy B, it can be seen that clustering occurs predominately for the smallest 

defects. Furthermore, in terms of fatigue behavior, it is generally accepted that only the largest pores 

are involved in the fatigue process of failure. Therefore, in addition to the low level of clustering given 

by the Clark-Evans test for this alloy, clustering is only observed for the smallest pores. These results 

justify the choice of the Poisson process to model the spatial distribution of the defects in these alloys. 

Figure 24 and Figure 25, visually demonstrate that if the smallest defects are not taken in account, less 

clustering would be observed in both alloys. In previously published work (El Khoukhi et al. 2019), 

the smallest critical defects measured on the fatigue failure surfaces were approximately 30 µm in size. 

Given this observation, in figures Figure 24 (b) and Figure 25 (b), only the defects with a size larger 

than 30 µm are considered. 
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Figure 24: Spatial positions of defects projected onto the XY plane with their associated defect 

size for Alloy A, with (a) all scanned defects (larger than 18 µm), (b) only the defects larger 

than 30 µm.  

 

Figure 25: Spatial positions of defects projected onto the XY plane with their associated defect 

size for Alloy B, with (a) all scanned defects (larger than 18 µm), (b) with only the defects 

larger than 30 µm.  

 

Figure 26 shows that the size distributions of the numerically generated defects are almost identical to 
the natural defect size distributions. Furthermore, on this figure, the GEV distributions giving the best 
Goodness-of-Fit are presented for both alloys. 
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Figure 26: The defects sizes distributions for the natural and numerical process for (a) Alloy A and (b) 

Alloy B 

To sum up, in Section 6.1 the objective was to deal with the arrangement of the defect positions in 3D 
space, independently of their size. In this section, for the experimental data (Figure 19 (a) and Figure 
20 (a)), the position of the defect refers to the center of gravity of each defect obtained from the CT 
scans of the real samples. On the other hand, for the Numerical data (Figure 19 (b) and Figure 20 (b)), 
the defect positions are generated using the Poisson process. For this, the defect density must be 
known, which corresponds to the number of defects per unit volume obtained from the experimental 
CT data for each alloy. 
 
Whereas, in Section 6.3, the objective is to discusses the generation of numerical microstructures that 
are as similar as possible to the experimental ones in terms of their defect spatial and size distributions.  
In this section, for the Experimental data (Figure 22 (a), Figure 23 (a) and (c)), the position of the 
defects and their sizes were extracted from the CT data. Here, the defect size is presented in terms of a 
sphere with an equivalent volume. Whereas, for the Numerical data (Figure 22 (b), Figure 23 (b) and 
(d))), the defect positions are generated using the Poisson process using the same defect density as that 
identified from the CT data. For each position, a defect size (with a spherical shape) has been 
attributed. This size was extracted randomly from the statistical distribution identified from the defect 
size data obtained by CT scans (Table 10).  

 

7. Conclusions and perspectives 

In this paper, it has been shown that Point Process Theory is an efficient way to characterize the 3D 
spatial distribution of defects in materials. The techniques developed in the framework of this theory 
have been applied to two cast aluminum alloys, referred to here as Alloy A and Alloy B. The statistical 
analyses have shown that the 3D patterns of the defects in the studied alloys do not present a high 
degree of clustering. Consequently, for the generation of the defect positions in synthetic 
microstructures the Homogeneous Poisson process can be used. We notice that in the case of presence 
of high level of clustering, the Neyman-Scott processes can be used. More information on those 
technics are provided in (Wilson 2017). 

In order to generate numerical microstructures for the cast aluminum alloys, the defect size 
distributions from the CT-X ray tomography scans were used. The synthetic microstructures are 
generated by coupling the defect size distributions and the 3D position distributions. The Clark-Evans 
test indicates that the numerical processes are in agreement with the natural processes for both alloys. 
The resulting synthetic microstructures are used in modelling work (El Khoukhi et al. 2021) to predict 

(a) (b)
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the average fatigue strength as well as the scatter for a given Highly Stressed Volume by providing 
information concerning the variability in the microstructural heterogeneities. 

We believe that this paper will be with a great help to researchers studying: 

• The structural integrity of load carrying component containing defects. 

• The variability of the defect characteristics and their distributions within components obtained 

by certain processes such as additive manufacturing and casting processes. 

• Defect based modeling of mechanical performance. 
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Annexes 

Definition of the Ln-Likelihood Function 

The ln-likelihood function is defined as: 

q�:Θ × t� → t 

�v; x�, xa, … , xz� → q��v; x�, xa, … , xz� = { ln ~��x�; v��
���  

Where: 

- X is a continuous random variable with a probability density function denoted by ~��x�; v�, for x ∈ t. Here, five pdfs were evaluated: Generalized extreme value, Lognormal, Gamma, Weibull, 

Gumbel.  

- v = �v� … v��� is a + × 1 vector of unknown parameters, we assume that v ∈ Θ ⊂ t� 

- Let us consider a sample �D�, … , D�� of i.i.d. random variables with the same arbitrary distribution 

as X. 

- The realization of �D�, … , D�� (the data set…) is denoted �x�, … , x��. 

- And Ln is the Natural logarithm. 
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Complementary figures 

Some complementary figures for the defects positions Figure 27 and Figure 28 and numerical samples 
in Figure 29 and Figure 30. 

 
Figure 27: The projection of the defect positions onto the XY plane for (a) the natural pattern obtained 

via a CT scan and (b) the numerically generated pattern using Poisson process. 

 
Figure 28: Projection of the defect positions onto the XY plane for Alloy A. (a) The natural pattern 

obtained via a CT scan, and (b) the numerically generated pattern using Poisson process. 

 
Figure 29: An example of size and 3D spatial distributions for Alloy A (a) from a CT scan and (b) a 

numerically generated pattern using Poisson process. Both have height of h= 8 mm and a radius of r= 
3.5 mm. 
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Figure 30: An example of size and 3D spatial positions of defects for Alloy B (a) from a CT scan and 

(b) numerically generated patterns using Poisson process. Both have height of h= 8 mm and a radius of 
r=3.5 mm. 

 

 




