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Predicting the pattern formation in a system maintained far from equilibrium is a complex task. For a given
dynamics governed by the evolution of a conservative order parameter, recent investigations have demonstrated
that the knowledge of the long time expression of the order parameter is sufficient to predict the existence of
disrupted coarsening, i.e., the pinning of the inhomogeneities wavelength to a well defined value. However,
there exists some dynamics for which the asymptotic form of the order parameter remains unknown. The
Cahn-Hilliard-like equation used to describe the stability of solids under irradiation belongs to this class of
equations. In this paper, we present an alternative to predict the patterning induced by this equation. Based on a
simple ansatz, we calculated the form factor and proved that a disrupted coarsening takes place in such dynamics.
This disrupted coarsening results from the bifurcation of the implicit equation linking the characteristic length
of the dynamics (k∞

m )−1 to a control parameter describing the irradiation. This analysis is supported by direct
simulations. From this paper, it clearly appears that the bifurcation of k∞

m is a criterion for disrupted coarsening.

DOI: 10.1103/PhysRevE.88.032116 PACS number(s): 64.60.De, 05.70.Fh, 05.70.Ln

I. INTRODUCTION

When a system initially at equilibrium is subject to
an external perturbation, small spatial inhomogeneities in
the order parameter can lead to nanometric domains. This
patterning results from the balance between a short range order
interaction and a long range order perturbation. For example,
magnetic systems, dipolar fluids [1], block copolymers [2–4],
and chemical reactions exhibit striped lamellar domains [5].
This phenomenon, ubiquitous in physics and chemistry, has
been extensively studied. The modeling of this patterning
is mainly based on the Cahn-Hilliard equation [6–8]. For
unperturbated systems, the patterning associated with this
equation is now clearly understood [9–11].

For systems submitted to long range interactions, the
external force may disrupt the Ostwald ripening and then
forbids the formation of large domains as pointed out by
some authors in one dimension [12] (d = 1). In these cases,
the characteristic size of such domains no more evolves with
time and remains pinned to a well defined value leading to the
appearance of a disrupted coarsening. The dynamics associ-
ated with this disrupted coarsening is not clearly understood.
Based on the knowledge of the stationary states, Politi and
Mishbah [12] give a useful criterion to discuss this interrupted
coarsening. A central problem in nonequilibrium pattern
formation associated with the Cahn-Hilliard-like dynamics is
to identify criteria predicting the appearance of this disrupted
coarsening when stationary states remain unknown.

In this paper, we address this problem studying the
behavior of alloys under irradiation. Under irradiation, random
displacements of atoms over a few angstroms regardless
of their chemical identity lead to a solid solution in well
defined areas called displacement cascades [13]. This random
displacement of atoms acts as an external force able to counter-
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balance the attractive interactions between atoms. A balance
between this long range interaction over a few nanometers
and the thermodynamic short range interaction due to the
minimization of the free energy between nearest neighbors
leads to a complex dynamics modeled within the Cahn-Hilliard
equation framework [14]. This competition leads to the appear-
ance of a specific modulation of the concentration wave and
disrupted coarsening. Unfortunately, no analytical expression
for the stationary states of Cahn-Hilliard-like equations exists
for this system. In this paper, calculations, valid whatever the
space dimension d is, are supported by numerical simulations
performed only in two dimensions (d = 2).

II. FORMULATION OF THE PROBLEM

A. Modeling of the atomic jumps

To describe the irradiation effects in a solid, the probability
density function pR(x) associated with the ejection of atoms
at a given distance x has been introduced [14]. The term pR(x)
results from an average of atomic collisions between atoms set
in motion by impinging atoms over the displacement cascade.
From a coarse graining procedure [15,16], the effect of highly
nonuniform collision events reduces to a probability to eject
atoms at a distance x from its initial position. Obviously,
pR(x) is radial and then symmetric. From Monte Carlo and
molecular dynamic simulations performed on numerous solids
with different incident particles [16,17], it appears that pR(x)
exhibits a cut-off radius roughly equal to 2 nm. This value does
not strongly depend on the nature and the energy of the incident
particle nor the target atoms [17]. In a first approximation,
pR(x) can thus be represented by a simple exponential decay
associated with the cut-off R. By analogy with the kinetic
theory of gases, R can then be understood as the mean free
path of ejected atoms. On the other hand, the strength of the
atomic mixing is defined by γ , the ratio between the number
of atoms ejected and the number of atoms in the volume of the
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cascade per time unit [15]. The term γ is related to the flux
of incident particle ψ and can be easily calculated from the
slowing down of particles in matter [15,16].

The effect of this atomic mixing due to irradiation induces
a long range perturbation in the displacement cascade. This
perturbation can be written as [15–19]

γ [η(x,t) − (pR ∗ η)(x,t)], (1)

where ∗ denotes the convolution product and η(x,t) is
the conservative scalar order parameter [20]. For a binary
mixture AB, η reduces to the difference between the atomic
concentrations cA − cB . It is thus possible to describe the
behavior of solids under irradiation adding this term in the
usual Cahn-Hilliard equation [14]. Assuming the mobility
of defects does not depend on η(x,t) [21], the nonlinearities
associated with this dynamics are only due to the nonlinearity
of F , the standard Cahn-Hilliard free energy functional. Even
if the mobility M does not depend on the conservative order
parameter η(x,t), its evolution as a function of the atomic
mixing is far from being understood. This last point precludes a
direct comparison between the time evolution of the calculated
and measured patterning. Despite this point, it remains possible
to predict the asymptotic behavior of the coarsening induced
by irradiation.

B. The modified Cahn-Hilliard equation

For a free energy density f with a double well structure
below the critical temperature [20,22], f (η) reduces to
αη2 + βη4. The phenomenological coefficient α = a(T − Tc)
is negative below the critical temperature and positive above;
the coefficients a and β are always positive. Moreover, the
energetic cost of interfaces is taken into account by the
term μ|∇η|2. In this expression, μ is always positive. Sub-

stituting dimensionless variables x′ = x
√

−α
μ

, R′ = R
√

−α
μ

,

t ′ = t(Mα2

μ
), φ = η(−β

α
), and W ′ = γ ( μ

Mα2 ), the modified
Cahn-Hilliard type equation can be written in a dimensionless
form [23]:

∂φ

∂t
= ∇2(−φ + φ3 − ∇2φ) − W (φ − pR ∗ φ). (2)

In this equation, the primes were dropped for simplicity.
Only two independent parameters, W and R, parametrize this
equation. R is associated with the second moment of pR(x)
and W is related to the strength of the irradiation γ .

When W = 0 or R → 0, this equation reduces to the usual
Cahn-Hilliard equation [23]. When R → ∞, this equation has
been proposed to describe phase separation in both symmetric
diblock copolymers and chemically reactive binary mixtures
[24].

To handle the dynamics of patterning, thermal fluctua-
tions as well as fluctuations induced by irradiation must be
introduced in Eq. (2) [25]. As clearly pointed out by some
authors [10,23], the noise induced by fluctuations has no effect
on the long time patterning. In the following, we only discuss
the dynamics of the nonstochastic modified Cahn-Hilliard
equation given by Eq (2).

III. CALCULATION OF THE FORM FACTOR

The symmetry of pR(x) insures the existence of a Lya-
pounov functional and the uniqueness of φ(x,t). However, no
expression for the stationary solution of Eq. (2) exists [26].

A. A mean field approximation

To overcome this difficulty, we assume that the pair
correlation function 〈φ(x,t)φ(y,t)〉 is invariant by translation
(〈.〉 denotes the ensemble average over the initial configu-
rations). From this assumption, 〈φ(x,t)2〉 = 〈φ(0,t)2〉 = S(t).
Moreover, we assume that φ(x,t)3 ≈ 〈φ(x,t)2〉φ(x,t). Our
ansatz leads to a “linearization” of Eq. (2) as first applied
by previous authors on the study of the diblock copolymer
segregation [2,23]. It is straightforward to determine the
equation followed by the form factor S(k,t), the Fourier
transform of 〈φ(x,t)φ(y,t)〉:

∂S(k,t)

∂t
=

(
−2k2[k2 − 1 + S(t)] − 2WR2k2

1 + R2k2

)
S(k,t),

(3)

where k is the reduced wave factor of modulus k. As pR(x) is an
exponential function, its Fourier transform reduces to 1

1+R2k2 .

The term 2WR2k2

1+R2k2 is thus the Fourier transform of Eq (1). The
total integrated scattering intensity S(t) must be determined
self-consistently:

S(t) =
∫

S(k,t)
dk

(2π )d
, (4)

where d is the spatial dimension of the system (d = 2 in this
paper).

From our ansatz, the function S(k,t) is thus formally given
by

S(k,t) = S(k,0) exp[−2t g(k,t,R,W )], (5)

where S(k,0) is the initial form factor and

g(k,t,R,W ) = k2

t

∫ t

0
(S(u) − 1)du + k4 + WR2k2

1 + R2k2
.

It clearly appears that g(k,t,R,W ) only depends on the
modulus of k, k. This implies that S(k,t) exhibits a spherical
symmetry. On the other hand, g(k,t,R,W ) exhibits a minimum
for k = km(t). The wave vector modulus km(t) is obviously
associated with the maximum of the function S(k,t). The
existence of a maximum for S(k,t), assessed by numerical
simulations, is not surprising for a Cahn-Hilliard-like equation.
The linear part of Eq. (2) acts as a filter to select a characteristic
wave vector [23]. However, the nonlinear term of Eq. (2) can
no more be neglected below the critical temperature. This
point implies that km(t) for large times is different from the
one derived for small times associated with the linear part
of Eq. (2).

Expanding g(k,t,R,W ) to the fourth order in the neigh-
borhood of km(t) and applying the steepest descent method to
calculate S(t) for large t values, it is easy to show that

km(t)dS(k,t) ∝ exp

[
− 2t k4

m(t)b4(km(t))
((

k

km(t)

)2

− 1
)2]
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FIG. 1. Comparison between S(k,t) derived from our ansatz (full
line) and extracted from numerical simulations of Eq. (2) (black
squares and open circles). Computations were performed in two
dimensions (d = 2) using a finite difference scheme in the Fourier
space with a 512 × 512 grid size for large times [the reduced
times were equal to 2000 (black squares) and 5000 (open circles);
for each time, simulations were averaged over 100 random initial
configurations].

exhibits a scaling behavior as a function of the reduced variable
k

km(t) , where b4(km(t)) is the fourth order coefficient of the
expansion of g(k,t,R,W ) as a function of the variable k.

Figure 1 displays the comparison between S(k,t) calculated
and extracted from numerical calculations. The fair agreement
between these two calculations assesses the validity of our
ansatz. Moreover, this figure highlights the scaling law
followed by S(k,t).

B. Patterning of stationary states

Applying the steepest descent method [27], it is possible to
derive the asymptotic behavior of km(t). As S(k,t) exhibits a
maximum for large times, the asymptotic value k∞

m of km(t) for
large times allows defining the characteristic length L = 1/k∞

m

of the atoms modulations due to irradiation in the real space,
i.e., the microstructure induced by irradiation in the material.
The knowledge of k∞

m thus allows characterizing the patterning
of stationary states. The simple application of the steepest
descent method allows one to calculate S(t):

S(t) = B km(t)−1+d exp[−2t g(km(t),t,R,W )],

g(km(t),t,R,W ) = 2k4
m(t)

[
−1 + WR4

[1 + R2km(t)2]2

]
, (6)

where B = 
( d
2 )

S(km(t),0)2
3
2 −d

π
1− d

2
is a normalization factor and 
 is

the gamma function. On the other hand, S(t) is linked to R,
W , t , and km(t) via the first derivative of g(k,t,R,W ):

S(t) = 1 + d

dt

(∫ t

0
(S(u) − 1)du

)

= 1 − d

dt

(
−2tkm(t)2 − WR2t

[1 + R2km(t)2]2

)
. (7)

FIG. 2. Variation of (k∞
m )2 extracted from numerical simulations

(black squares: W = 0.1, open triangles: W = 0.4) for large times
(t > 100 000) as a function of R−2. The evolution of (k∞

m )2 exhibits a
linear variation as expected (full lines), for WR4 > 1. For WR4 < 1,
(k∞

m )2 is null. The inset displays the evolution of k∞
m with WR4.

Satisfying Eqs. (6) and (7) leads to an implicit equation
for km(t). Moreover, if a nonnull stationary state exists,
from Eq. (6), the two conditions limt→∞ g(km(t),t,R,W ) = 0
and limt→∞ S(t) > 0 must be verified. Using Eq. (7), these
conditions imply W < (R2+1

2R2 )2. Two distinct cases can then be
distinguished:

(a) for WR4 < 1, Eq. (6) is only satisfied for km(t) ≈ t−
1
3 ,

as expected for the usual Cahn-Hilliard equation out of
irradiation;

(b) for WR4 > 1, two different values of km(t) are solu-
tions of the implicit equation. When time goes to infinity, either
km(t) tends to zero or to a nonnull value

k∞
m =

√√
WR4 − 1

R2
. (8)

It can be noticed that for R → ∞, our expression of k∞
m

is equal to the one derived for the patterning of diblock
copolymers’ formation [24]. Figure 2 displays the evolution
of (k∞

m )2 derived from numerical simulations as a function of
R−2 for different values of W .

IV. DISRUPTED COARSENING

A. Stability analysis

The different kinks observed on Figure 2 assess that two
distinct regimes take place as a function of WR4 which can
be understood as a control parameter. For WR4 > 1, it must
be noticed that a long time [t � (WR4 − 1)−1] is needed to
reach the stationary state described by the wave vector k∞

m

when WR4 tends to one.
A simple linear stability analysis of Eq. (5) around k∞

m

for WR4 > 1 and WR4 < 1 clearly shows that only k∞
m = 0

leads to a stable solution of S(k,t) for WR4 < 1 (full line
in the inset on Fig. 2). For WR4 < 1, the atomic mixing
induced by irradiation is not sufficient to counterbalance
the ordering of the solid below the critical temperature. An
Ostwald ripening takes place and the characteristic length of
the problem reduces to km(t)−1 ∝ t

1
3 for d = 2, as expected for
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a classical Cahn-Hilliard equation. For WR4 = 1, a bifurcation
occurs as clearly shown in the inset on Fig. 2. For WR4 > 1,
the solution associated with k∞

m = 0 becomes unstable (dotted
line) and only the form factor S(k,t) associated with k∞

m

obtained from Eq. (8) is stable (full line). This nonnull value
of k∞

m for WR4 > 1 implies that the coarsening is disrupted. A
new patterning resulting from the balance between the atomic
mixing and the ordering energy takes place. This patterning

is defined by a constant characteristic length (
√

WR4−1
R2 )−

1
2 . As

R tends to infinity, k∞
m = W

1
4 , as calculated for a diblock

copolymer’s separation [24].
This analysis clearly demonstrates that the bifurcation of

km(t) implies disruption of the ripening. This bifurcation
appears as an alternative criterion to predict a disrupted
coarsening in dynamics for which no asymptotic expression
for the order parameter exists.

B. Derivation of a phase diagram

From the knowledge of the asymptotic behavior of km(t),
it is possible to draw a “phase diagram” versus the two
parameters R and W as shown on Fig. 3. The phase diagram
derived from the analysis of km(t) is qualitatively similar to the
one obtained from a classical minimization of the Lyapounov
energy [14]. This point then assesses our ansatz. Above the
line W = (R2+1

2R2 )2, the atomic mixing induced by irradiation
cannot be counterbalanced by the ordering energy and a solid
solution is created. The form factor S(k,t) then reduces to a
Dirac distribution. We thus obtain a solid solution and φ(x,t)
obviously does not depend on x. A second line can be drawn
on the phase diagram defining the bifurcation of k∞

m (dotted
line WR4 = 1). Below this line, the atomic mixing cannot
counterbalance the chemical ordering and S(k,t) tends to zero
according to an inverse power law as expected from the usual
Cahn-Hilliard equation. A phase separation is thus observed.
Between these two lines, the coarsening is disrupted. The form
factor is peaked to a nonnull value of km(t) = k∞

m inducing

FIG. 3. Schematic phase diagram describing different patterns
for large times (t > 1000). Above the full line, S(k,t) (black squares:
W = 0.4, R = 3, inset 1) is a Dirac function. Below the full line,
S(k,t) exhibits a Gaussian-like shape with a nonnull maximum (black
triangles: W = 0.4, R = 1.6, inset 2). Below the dashed line, S(k,t)
tends to zero (open circles: W = 0.4, R = 1, inset 3).

TABLE I. Values of the mobility, WR4, and the wave vector
k∞

m in CuCo irrradiated by 1 MeV Kr ions with an incident flux of
1010 cm−2s−1 at different temperatures.

T (K) M(cm2s−1eV−1) WR4 k∞
m (nm−1)

1000 7.1410−11 250 2
500 7.810−14 2.34105 11

patterning at the nanometric scale. Figure 3 summarizes these
different cases. From this analysis, it clearly appears that the
wave vector associated with the disruptive patterning k∞

m is
proportional to (ψ)

1
4 M(T )−

1
4 . The value of the wave vector

is only a function of the flux of incident particles ψ and the
temperature of irradiation via the mobility. This dependence of
k∞
m with the flux and the temperature can be clearly understood.

This is the effect of the competition between the ejection of
atoms (the ψ term) and the healing of these ejected atoms via
a diffusion process.

C. Application

From this analysis, it is possible to estimate typical values
of k∞

m at different temperatures in immiscible binary alloys
submitted to irradiation. From the Bragg-Williams model, a,
β, and the critical temperature Tc can be easily computed for
the CuCo alloy [20]. These values are equal to 1.710−4eV K−1,
1.33 eV and 1928 K, respectively. On the other hand, μ is
equal to 0.443 eV A2, derived from the Krivoglaz-Clapp-Moss
formalism [28]. From Monte Carlo simulations of the chemical
diffusion of species in this alloy, the mobility M(T ) out of
irradiation can also be determined [29]. Submitted to a 1 MeV
krypton irradiation and a flux ψ of 1010 cm−2s−1, displacement
cascades are created in this alloy over a characteristic length of
tens of nanometers and γ reduces to 500 s−1 [16]. Moreover,
the value of the cut-off radius R is equal to 2 nm. Assuming
the mobility M(T ) does not evolve under irradiation, it is
possible to estimate the value of the wave vector associated
with the patterning for large times at different temperatures.
Table I summarizes the evolution of the mobility (assumed to
be the mobility in the nonirradiated alloy), WR4, and k∞

m at
two distinct temperatures. For these two temperatures, WR4 is
always greater than 1 and a disrupted patterning would occur.
For both temperatures, patternings of a few nanometers appear
for such fluxes. From the values of k∞

m derived from this paper,
it appears that only small angle scattering experiments are
able to detect the patterning induced by irradiation in CuCo.
In fact, from the value of k∞

m at 1000 K, it is possible to
determine the Bragg angle associated with the patterning in
an x-ray diffraction experiment. For CuKα radiation (λ =
0.154 nm) and k∞

m of 2 nm−1, the Bragg angle associated with
the diffraction is 2θB = k∞

m λ

2π
≈ 3◦.

V. CONCLUSIONS

In this paper, we present an alternative to predict the
disruption of the coarsening for a complex Cahn-Hilliard-like
dynamics, for which no analytical solution of the stationary
order parameter exists. We clearly demonstrate by a direct
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comparison with numerical simulations that a simple ansatz
allows one to overcome this problem. Applying this ansatz, we
show that the patterning induced by Eq. (2) is characterized
by a well defined wave vector km(t). Despite the irradiation,
S(k,t) also exhibits a scaling behavior as it is the case out
of irradiation as displayed on Fig. 1. Thanks to this ansatz, it
clearly appears that km(t) satisfies an implicit equation as a
function of the parameters W and R. This equation exhibits
a bifurcation as a function of the control parameter WR4.
Above the critical value WR4 = 1, the asymptotic expression
of km(t) for large times is nonnull. This nonnull value of k∞

m

implies a disrupted coarsening of the patterning in agreement
with numerical simulations. The main interest of this paper in
comparison with previous works [23,24] is that the disrupted

patterning clearly depends on the bifurcation of km(t) in the two
dimensional control parameters space as pointed on Eq. (3).
This result confirms and generalizes previous investigations
on the disrupted patterning in one dimension.

A puzzling question is whether for more complex dynamics
with a translation symmetry coarsening with or without frozen
periodicity are the only possible scenarios. This question
appears to be a perspective for this work. Another perspective
will be to consider if there is any simple link between simple
symmetries and frozen coarsening. The last perspective is
to extend our analysis to nonlocal equations as they arise,
for example, in solidification or viscous fingering or to more
complex dynamics as the Kuramoto-Shivashinki [30] one in
which the mobility becomes a function of the order parameter.
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