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Abstract: Concrete mixing can lead to mechanical degradation of aggregates, particularly when
dealing with recycled concrete aggregates. In this work, the attrition of such materials during mixing
is studied by means of experiments and simulations. The effect of the presence of fines, water
addition, flow configuration of the mixer (co- or counter-current) and impeller frequency is discussed.
Experiments were performed in a laboratory Eirich mixer. Discrete element numerical simulations
(DEM) were performed on the same geometry by mimicking the behaviour of the material and,
in particular, the cohesion induced by water and the cement paste using either Hertz–Mindlin or
Hertz–Mindlin with Johnson–Kendall–Roberts (JKR) contact laws. The combination of the collision
energy spectra extracted from the DEM simulations and an attrition model allowed the prediction
of the mass loss due to attrition in 1-min experiments. Semi-quantitative agreement was observed
between experiments and simulations, with a mean relative error of 26.4%. These showed that higher
mass losses resulted from operation at the highest impeller speeds, co-current operation, and also
with the wet aggregate. Mixing of the agglomerate in the concrete mix resulted in a significant
reduction in attrition when compared to mixing aggregates alone. With further validation, the
proposed simulation approach can become a valuable tool in the optimization of mixing by allowing
the effects of material, machine and process variables to be studied on the mass loss due to attrition.

Keywords: attrition; concrete mixing; discrete element method; recycled concrete aggregates

1. Introduction

Granular materials, such as aggregates, can be subject to changes in particle size
distribution during the operations of transport, handling and mixing [1,2]. Such mechanical
degradation can occur through body or surface breakage mechanisms [3]. Surface breakage,
that is, surface wear, abrasion or attrition, can be a major concern for process control and
downstream applications. For example, in concrete mixing, attrition may reduce the
average particle size and increase the proportion of fines, and also reduce the angularity
of particles. This has the effect of changing the formulation within the mixer, resulting
in a more problematic control of the mixing process, reduced workability and the need
for adding more water to obtain the required consistency. The reduction in the angularity
of particles as a result of attrition, may, in turn, also have deleterious implications to the
mechanical properties of the final concrete [4].

The societal path towards a circular economy in construction has in recent years
pushed the problem of recycling into concrete. Recycled concrete aggregates (RCA) are a
multicomponent mixture of mortar and natural aggregates. Their incorporation into new
concrete has focused new light on the problem of mechanical degradation and attrition
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during mixing, which is more critical for this type of aggregate in comparison to the natural
material. From this perspective, [5] studied the degradation of RCA experimentally for a
concrete formulation in a pan mixer and identified responses that were particular to this
type of aggregate. It was observed that the evolution of mass loss due to surface breakage
with time was not linear and that the rate of attrition decreased with time. This can
be explained by the fact that particle wear is sensitive to particle shape so that when
attrition proceeds, particles become rounder, and their attrition rate decreases. It can also
be explained by the fact that wear removes the mortar preferentially on the surface of the
particles, making the resulting coarse particles less amenable to additional surface breakage.
The second important point observed by Moreno-Juez et al. [5] is that there seems to be
a discontinuity of behaviour after water addition, with the wet mixing phase appearing
more aggressive than the dry one. There is, therefore, a need to update the techniques for
characterizing attrition during the mixing of aggregates, and numerical techniques are a
natural choice.

Important advances in the understanding of degradation and size reduction have
been made possible with the wide application of the Discrete Element Method (DEM) [6,7].
The method allows describing the interactions amongst particles and between them and
the machine [8–10], being amenable to be used in association with proper descriptions of
breakage in predicting comminution and degradation during handling [6,11].

In order to model size reduction with DEM, two main approaches exist. The first is to
use a suitable discretization of particles, where the grains are bonded together by breakable
cohesive links [12–15], which may be broken progressively as a result of interactions be-
tween particles and between particles and the machine. This approach requires simulation
of a large number of grains, which will increase with the fineness of the fragments that one
wishes to simulate. With respect to attrition, such an approach becomes prohibitive due to
a large number of grains and to the fine nature of the attrition products.

Another approach consists of simulating particles that are not allowed to break and
thus do not evolve during the process. In this approach, the micromechanical information
which can be extracted from DEM simulations is then used, often in association with experi-
mental characterization, to estimate the outcome of the process. For instance, Han et al. [16]
used the distribution of impact energies between particles obtained in simulations using
DEM, combined with the experimental characterization of the effect of impact velocity
on the intensity of breakage (determined with single particle impact tests), to estimate
the extent of attrition of salt in a pneumatic conveying process. In a similar way, Ahma-
dian et al. [17] studied granule breakage in a rotary drum mixer by coupling DEM and
single-particle impact tests. Attrition data obtained from controlled bulk shear experiments
have been used by Hare et al. [18,19] in association with average stresses acting on particles
obtained from numerical simulations to study attrition in agitated beds of pharmaceutical
powders. Recently, collision energy spectra, along with an attrition model, have been used
to predict the attrition of iron ore pellets during tumbling in a drum and sieve shaking,
with good agreement between experiments and simulations [20].

Considering these studies, it seems that this second approach has a great, but yet
unrealized, potential to assist in understanding the attrition of aggregates during mixing.
After proper validation, this approach would be useful to predict RCA degradation during
concrete mixing and thus avoid poor formulations and the consequent losses of physical
and mechanical properties of new concrete while guaranteeing a good mixing response.

The present work combines experiments and DEM simulations to investigate attrition
of recycled concrete aggregates during mixing in a laboratory-scale Eirich mixer operating
under several different conditions.

2. Materials and Methods
2.1. Mixer Type

The tests were conducted in a 5-L laboratory intensive pan mixer (Eirich Gmbh,
Hardheim, Germany, shown in Figure 1). Such a mixer is characterised by one impeller,
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one scraper, and an inclined rotating vessel that typically runs between 45 and 90 rpm,
whereas the impeller can turn at frequencies that vary from 50 to 700 rpm. The mixer can
be operated in two different configurations depending on the sense of rotation of the vessel
and agitator: a co-current (CO) configuration in which both the vessel and agitator rotate
in the same direction (clockwise) and a counter-current (CC) configuration in which the
vessel rotates clockwise and the impeller rotates counter-clockwise.
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Figure 1. Laboratory mixer used in this study (a 5l intensive pan mixer, manufactured by Eirich
Gmbh), illustrating the different modes of operation: co-current (a) and counter-current (b).

In this study, the mixer was operated in co-current and in counter-current configura-
tions at three impeller speeds (150, 300 and 500 rpm). The vessel rotation frequency was
maintained constant at 45 rpm in all cases.

2.2. Materials

This study focused on the attrition of coarse aggregates in a granular paste. For this
reason, a reference concrete mixture was designed, composed of 10–14 mm aggregate,
natural 0–2.5 mm silico-calcareous sand from Lafarge Granulats (Cheviré, France), cement
CEMI 52.5 from Lafarge Ciments (St. Pierre La Cour, France), and water. A detailed
discussion of the experiments and a particular focus on the effect of the nature of the
aggregates on the attrition phenomenon is given elsewhere [5]. The present work focused
on the comparison between experiments and numerical simulations so that only results
for one type of aggregate, recycled concrete aggregate (RCA), coming from the Gonesse
Recycling Centre in France, are presented. These aggregates were composed of 99%
recycled concrete and 1% of inert materials. Recycled concrete is a heterogeneous material
mainly composed of natural aggregates (crushed rock) and residual from the mortar paste.

The properties of both the RCA and sand employed are presented in Table 1. The water
absorption (specific amount of water absorbed in 24 h by the grains) is an indirect measure
of the mortar content. The RCA used in this study was characterized by a mortar content
between 5 and 10%.
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Table 1. Physical properties of sand and coarse aggregates.

Aggregate Type Origin Size (mm) Density (kg/m3) Water Absorption (%)

Recycled concrete
aggregate (RCA) Gonesse (France) 10–14 2290 5.1

Silico-calcareous
sand Cheviré (France) 0–2.5 2640 0.3

In order to better understand the effect of the cement paste on the attrition of aggre-
gates, three formulations were prepared (Table 2):

• Coarse aggregates, dry (AD): only the 10–14 mm RCA;
• Coarse aggregates, wet (AW): a mixture of the 10–14 mm RCA and water, initially

mixed by hand, with the water amount chosen to slightly cover the aggregates when
poured into the mixer;

• Concrete, wet (CW): reference concrete formulation.

Table 2. Formulations employed in this study.

Formulation RCA, 10/14 mm (g) Sand (g) Cement (g) Water (g)

Coarse aggregates,
dry (AD) 4000 - - -

Coarse aggregates,
wet (AW) 4000 - - 1500

Concrete, wet (CW) 4000 4000 1400 950

2.3. Experimental Procedure and Mass Loss Estimation

The experimental procedure was as follows:

• The coarse aggregates were divided into equal samples with a sample splitter follow-
ing the EN 932-2 standard [21]. This method for reducing laboratory samples allows
obtaining statistically equal samples in terms of properties and characteristics;

• The materials, either AD or AW, were added to the mixer.
• For the CW formulation, the cement paste was first prepared in the mixer by mixing

all the components (sand, cement and water) for 60 s at 500 rpm. Then the coarse
aggregates were added to the mixer and gently incorporated into the paste by hand.

• The materials were mixed for 60 s at the selected frequency of rotation;
• The contents of the mixer were carefully retrieved;
• In order to isolate the coarse aggregates remaining after mixing, the materials were

sieved under water on a 2.5 mm sieve; the recovered coarse aggregate (i.e., +2.5 mm)
was dried in an oven (Memmert GmbH, Schwabach, Germany) at 70 ◦C for at least
72 h;

• The coarse aggregates were weighed after drying.

In order to characterize the attrition of coarse aggregates during mixing of the concrete
formulation, the relative amount of aggregates falling below a reference particle size
(2.5 mm) was chosen as a relevant parameter:

∆M =
Minitial − Mend

Minitial
(1)

where Minitial is the (initial) mass of aggregates larger than 2.5 mm in the feed sample
(determined by oven drying a reference sample) and Mend is the corresponding mass at the
end of the test. The threshold value of 2.5 mm was chosen because it was the upper limit
of the sand fraction used. A full particle size distribution analysis with a photographic
method was performed on several samples [5] in order to validate this choice: such analyses
confirmed that mixing induced an attrition of coarse aggregates with a strong separation
between the characteristic sizes of fragments and supported the choice of the size threshold
for quantifying attrition, which is characteristic of surface breakage [20]. The initial water
content of materials was measured and taken into account for the calculation of mass loss.
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2.4. Single Particle Impact Experiments

Several lots containing approximately 200 g of 10–14 mm RCA each (around 70 parti-
cles) were initially prepared. Each lot was weighed as a whole, and then particles were
dropped individually against a thick steel plate. Drop heights equal to 1.02, 2.05 and
3.07 m were used in the experiments, and only one impact per particle was performed.
Given that no particles lost significant debris at each individual impact event, which would
characterize volume breakage [20], the lot was weighed again after the impact in order to
determine the average percentual mass loss per impact. This information was the basis for
the calibration of the attrition model presented in Section 3.2.

3. Numerical method
3.1. Simulation Setup

Numerical simulations using the Discrete Element Method were conducted using
EDEM® 2.7 from Altair EDEM (Edinburgh, UK).

Data initially used to simulate the behaviour of particles in the Eirich mixer were
derived from a rock that is used for production of aggregates, which was also used in
simulations of a vertical shaft impact crusher [22]. These included the static and rolling
friction coefficients, the coefficient of restitution, the physical properties, etc. The data
were considered sufficiently reliable so that they could be used to perform simulations that
mimic the reality in regard to the movement of the particles and the energy transfer in the
mixer. It is known that aggregate particles, either recycled or natural, are not spherical. In
the simulations, they were modelled as two partially superimposed (clumped) spheres,
resulting in particles with an aspect ratio of approximately 0.7 (Figure 2). Simulated
particles presented sizes ranging from 10 to 14 mm (Table 1), mimicking the measured size
distribution with an average size of 12.2 mm, and 54% passing 12 mm. Each simulation
involved a total of about 2200 aggregate particles.
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Simulations were performed using two contact models: no-slip Hertz–Mindlin [23]
and Hertz–Mindlin with JKR Cohesion (Johnson–Kendall–Roberts) [24] from the library
of models available in EDEM 2.7. The first one was used to represent simulations of
non-cohesive systems, namely mixing of the dry aggregate (AD). The second model was
originally proposed to allow for the simulation of Van der Waals forces [25], which influence
the flow behaviour of fine and dry powders. However, it also allows representing the
cohesive nature of both fine particles and wet materials, being capable of describing the
influence of moisture content on the mass flow of larger-scale materials, such as iron ore or
wet grains [26,27]. This model was used to simulate the mixing of the wet formulations,
that is, AW and CW (Table 2).

As mentioned, some of the data from previous studies [22] only served as initial
estimates for the calibration of contact parameters. Bench-scale tests were performed to
determine the aggregate angle of repose and the value of the angle used as a reference for
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the simulations. The simulations were used to ensure that the behaviour of the simulated
particles was as close as possible to that of the real particles. From the reference values
of static and dynamic friction, the simulation was set up to predict the same value as the
angle formed in the laboratory angle of the repose test. As described, mixing tests using
the Eirich mixer included not only the recycled concrete aggregate particles but also sand,
cement and water. Unfortunately, simulation of the entire charge using DEM would not be
practical, so that it was decided to include only the coarse aggregate particles (Figure 3).
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A fine tuning of the contact parameters was carried out by trial-and-error by com-
paring the pattern of the charge motion in the mixer, observed in videos of similar mixers
operating under comparable conditions. A summary of the material and contact parameters
selected is presented in Tables 3 and 4.

Table 3. Summary of material parameters.

Material Poisson’s Ratio—ν
Young’s Modulus—Y

(MPa) Density (g/cm3)

Steel 0.30 182 7.7
Particles 0.30 60 2.5

Table 4. Summary of contact parameters used in the simulations.

Property
Contact Type

Particle–Particle Particle–Wall

Coefficient of static friction 0.35 0.28
Coefficient of rolling friction 0.35 0.25

Coefficient of restitution 0.40 0.35

JKR model cohesion
parameter (J/m2) 10 0

Simulations were then conducted to simulate the operation of the mixer under a
variety of conditions, namely mode of operation (co-current or counter-current), impeller
speed (150, 300 and 500 rpm), using both cohesive and non-cohesive contact models. A time
step of 6.5 × 10−7 s was chosen in the simulations, which is equivalent to 1% of the Rayleigh
time. Values of time step as short as this are required in such a system given not only the
high speed achieved by particles but also the collision energy logging required to generate
the energy spectra and ensure that more than 97% of contacts achieve a maximum overlap
of 0.3% of sphere radius. This is in accordance with the work by Marigo and Stitt [28].
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In order to collect enough information for computing the collision energy spectra, 120 s of
the operation of the mixer was simulated. Data belonging to the initial transient period
required to attain a steady state (determined by analysis of the collision spectra on selected
time intervals) were not considered in the computation of the energy spectra. In addition
to the overall collision spectra, the history of collisions of individual aggregate particles
was logged. Particles remained unbroken in the simulations.

In order to generate the collision energy spectra, after the mixer reached a steady
state, the collision data were extracted, that is, the frequency and magnitude of energy
dissipated in each collision involving two elements, namely particle–particle, particle–walls
or particle–impeller. Then, each collision was placed into one of 1000 bins ranging from
10−16 to 101 J following a logarithmic scale. Both normal and shear components were
recorded, and their sum was used, given recent evidence of their joint contribution to
surface breakage [20]. Each value of total collision energy loss was then split between
the elements involved in the collision on the basis of Hertz elastic theory [29], assuming
a perfectly elastic impact. As such, for a collision between a particle p and another body
q (particle or wall), the fraction of collision energy available for damaging particle p (ep) is
computed by:

ep =
Yq/

(
1 − υ2

q

)
Yp/

(
1 − υ2

p

)
+ Yq/

(
1 − υ2

q

) (2)

where ν and Y are defined in Table 3.
The total energy loss per particle is then converted into specific energy by dividing it

by the average mass of each particle involved in that event, giving:

E =
Elossep

m
(3)

where Eloss is the total energy loss in the collision, collected from DEM, and m is the mass
of particle p.

3.2. Attrition Model

Considering that, for the mixing conditions and materials investigated in the exper-
iments, no evidence existed of massive or volume breakage of coarse aggregates, only
surface breakage or attrition, modelling was only focused on this latter mechanism. In a
recent work, Cavalcanti et al. [20] proposed a modification of the model by Ghadiri and
Zhang [30] through which the average percentage mass loss in each collision of iron ore
pellets may be calculated by:

ξ = 100kdE (4)

where E is the mass-specific energy loss of particle p that incorporates both the normal
and the shear energy loss contributions and d is the representative size of the particles.
The material-dependent parameter k in Equation (4) represents the amenability of ma-
terial to surface breakage, which should be estimated from single-particle impact ex-
periments [20]. In this form, the model becomes directly usable with data provided by
DEM simulations.

The prediction of attrition for the aggregates in the mixer was possible by applying
Equation (4) successively to each collision and particle, giving:

Mend =
n

∑
i=1

mi

ni

∏
j=1

(
1 − kdiEi,j

)
(5)

where mi is the initial mass of each simulated particle, n is the total number of particles
simulated, ni is the total number of collisions each particle suffered during the course of
the simulations and Eij the specific energy loss for particle i at collision j. The percentage
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mass loss in the simulations was then obtained from Equation (1), recognizing that the
initial mass of the particles was given by Minitial = ∑ mi .

The attrition model given by Equation (4) has been successfully validated for iron ore
pellets, which present a nearly spherical shape [17]. It did not take into account the higher
initial mass loss due to irregularity in shape, which has been known to occur in the case of
RCA [5].

Given the fact that the ultimate application that is desired for the method is to predict
the degradation of recycled aggregate during concrete mixing, it is evident that the presence
of the interstitial paste makes collision phenomena more challenging both to model and
measure. In order to account for the cushioning effect due to the presence of interstitial
paste, as well as for the fact that deviations might exist between the parameter estimated
from single-particle impact tests and the one prevailing during mixing of irregularly-
shaped particles, Equation (4) has been modified through the introduction of a fitting
parameter α, giving

ξ = 100kαdE (6)

4. Results and Discussion
4.1. Single-Particle Impact Tests

The validity of the attrition model (Equation (4)) for aggregate particles was demon-
strated by dropping aggregate particles, one by one, on a thick metal plate at different
impact velocities. Figure 4 compares data for the RCA to that of a natural aggregate, as well
as of these data to fitting to Equation (4). For the case of the RCA, the value of the attrition
parameter ξ from fitting Equation (4) was 0.025 s2 m−3. The values of total energy loss
were estimated from simulations with the no-slip Hertz–Mindlin model in DEM, dropping
the particles one by one using material and contact parameters given in Tables 3 and 4.
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Figure 4. Comparison between measurements of average mass loss per impact and Equation (4)
with the fitted value of ξ for the natural aggregate (19–22 mm) from the earlier work by Neves and
Tavares [31] and to the recycled aggregate (RCA) from the present work (10–14 mm) (ξ = 0.0063 s2m−3

for natural aggregate and 0.0250 s2m−3 for RCA).

4.2. DEM Simulation Results

Snapshots from simulation results of the mixer operation are presented in Figures 5 and 6
for the impeller frequencies of 150 and 500 rpm, respectively. At first, it is evident in the figures
that impeller frequency, mode of operation and contact model had significant effects on both the
motion pattern and the velocities of the aggregate particles in the simulations. A comparison
of Figures 5 and 6 shows that maximum particle velocities increased with increasing impeller
frequency. When operating at higher impeller frequencies, particles close to the stirrer reached
velocities up to 4 m s−1.
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When the non-cohesive material was mixed, that is, when the Hertz–Mindlin contact
model was used, the motion patterns responded to the mode of rotation and were relatively
independent of impeller frequency. In the case of the counter-current (CC) mode, the material
charge distributed, forming a nearly horizontal surface (left of Figures 5 and 6). On the other
hand, when the Hertz–Mindlin with JKR model was used, which is meant to mimic the
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condition in which water is added, the joint effect of the vessel and stirrer rotation was a lift
of the charge, which then developed a surface profile that was nearly parallel to the vessel
inclination. In this latter case, it was also evident that the charge became highly expanded
vertically.

For both co-current (CO) and counter-current (CC) configurations, at lower stirrer
speeds, particles closer to the walls of the vessel moved along the clockwise direction
for both non-cohesive and cohesive environments (Figure 5). However, at high speeds,
specifically in the counter-current 500 rpm case (Figure 6), particles collided with the back
of the tip. In addition, particles were found to concentrate on the opposite side of the tip,
and the effect of the rotating walls was less significant. This can be more clearly seen in
Figure 7, which shows the top view of the vessel.
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In the case of the co-current operation (Figure 7), higher particle velocities were
observed, whereas the bed of aggregates was less expanded along the axis of the impeller,
regardless of its frequency when compared to the counter-current mode.

A more direct analysis of the aggressiveness of the mixer, when operated under
different conditions, was possible through the analysis of the collision energy spectra.
Figure 8 displays the high-energy part of the collision energy spectra for simulations
without cohesion, which emulates dry mode operation. It is clear, as one could expect,
that the collision energy spectra widened when the impeller speed was increased. The
flow configuration also had a strong influence on the shape of the collision spectra, with
the co-current being responsible for higher frequencies of collisions in the intermediate
and high-energy part of the spectrum for 300 and 500 rpm. Spectra were found to display
power-law tails (low energies) decaying approximately with a −2 exponent.

In Figure 9, the collision energy spectra for simulations with cohesion (Hertz–Mindlin
with JKR) are displayed. It is evident that the effect of impeller speed was analogous to
that in the preceding case. On the other hand, some differences with respect to the effect of
the flow configuration can be noticed. In the high-energy tail, the co-current configuration
had a wider distribution, and this would likely result in more energy available for attrition.
The frequencies of collisions of magnitude higher than about 1 J/kg per particle for the co-
current cases were approximately 40% higher than those obtained for counter-current cases
for rotation speeds of 300 and 500 rpm. In Figure 9, it is also evident that the introduction



Materials 2021, 14, 3007 11 of 16

of cohesion forces through the JKR model had the effect of widening the collision energy
spectrum in comparison to those in Figure 8.
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4.3. Measurement and Simulation of Attrition

The effect of impeller frequency and flow configuration on the mass loss observed ex-
perimentally was analysed as follows. At first, results from tests involving only aggregates
(AD and AW in Table 2) were analysed. The values of mass loss after 60 s of mixing for the
dry and wet aggregates are displayed in Figure 10 for co- (CO) and counter-current (CC)
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configurations as a function of impeller speed. At first, it is evident that impeller speed
was the most significant effect influencing mass loss due to attrition. A comparison of
results for the different flow configurations demonstrated that the co-current configuration
yielded more attrition for all impeller speeds studied. A less marked effect was associated
with the presence of water, which was responsible for, in general, increasing the attrition of
the RCA.
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Figure 10. Experimental results on the effect of impeller frequency on the mass loss for tests with
coarse aggregates only (AD, dry mixing, and AW, wet mixing) as well as a concrete formulation
(CW), co- and counter-current configurations and 60 s of mixing.

In order to understand the effect of the different conditions tested during mixing,
predictions using the attrition model given by Equation (4) were compared to experiments.
At first, only data on the dry (AD) and wet (AW) mixing of the coarse aggregates were
considered, which were mimicked by the simulations using no-slip Hertz–Mindlin and
Hertz–Mindlin with JKR, respectively, given the effect of water in creating cohesion of
the aggregates. In this case, the value of ξ equal to 0.250 s2m−3 estimated from Figure 4
was used for the attrition amenability of the RCA. However, simulations demonstrated
that the values of predicted mass loss were about five times higher than those shown in
Figure 10. Given that the value of ξ estimated from single-particle impact tests represents
the first event of mass loss, which is typically significantly higher, given the irregularity in
particle shape, and also to the fact that a cushioning effect appeared due to fines that were
generated that dissipate part of the energy in the collisions, it is recognized that the use of
Equation (6), in which the calibration factor α appears, was necessary. As such, the value of
α equal to 0.18 (18%) was used in simulations involving only aggregates (AD and AW).

Therefore, Figure 11 presents results from the combination of simulation data and the
attrition model for the different formulations depicted in Table 2. Attention is first given to the
results from the predictions using the coarse aggregate alone. The general semi-quantitative
agreement with Figure 10 is clear, with the combination of the attrition model (Equation (6))
and the DEM simulations being able to properly account for the effect of impeller speed, as well
as for mode of operation, if co-current or counter-current, with a mean relative error, given by
the ratio between difference in estimates and the experimental value, equal to 29.0%. The effect
of water addition increasing the attrition at speeds higher than 150 rpm in the experiments
(Figure 10) was also observed in the simulations (Figure 11) but was only observed with the
highest speed simulated (500 rpm).
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Figure 11. Simulations on the effect of impeller frequency on the predicted mass loss for tests with
coarse aggregates only (AD, dry mixing, and AW, wet mixing), co- and counter-current configurations
and 60 s of mixing, as well as for the wet concrete mixture (CW). Dry mixing was modelled by means
of a non-slip Hertz–Mindlin contact law, while wet mixing is simulated by a cohesive contact model
(Hertz–Mindlin with JKR). Mass loss is predicted using Equations (5) and (6).

Finally, both experimental and simulation results were analysed for the wet concrete
formulation (Table 2). When comparing the attrition behaviour of the concrete formulation
to those characterized by only coarse aggregates (Figures 10 and 11), it is clear that the latter
were more damaged when mixed alone. The presence of mortar between the aggregate
particles had a protective and cushioning effect, which can be ascribed to the dissipation
of the collision energy by the paste. Another point that may influence the result is the
difference in batch volume (Table 2). It is reasonable to assume that attrition phenomena
were more likely to occur near the impeller of the mixer, where shear was higher, and
collisions were more frequent. The impeller was located in the lower half of the mixer so
that the increase in batch volume would expose more material to a zone of lower shear,
where attrition was not as significant.

Figure 11 also shows that attrition of CW also increased with the impeller frequency.
Another interesting point is regarding the flow configuration of the mixer, in which the
counter-current configuration seemed to be more aggressive for low impeller speeds,
while the co-current one yielded more attrition for high impeller speeds. This behaviour
was also observed in [5].

Application of the model to predict attrition in the concrete mixtures is even more
challenging, given the cushioning effect provided by the fine aggregate and cement paste,
which reduces attrition of the coarse aggregate. Given that particles responsible for the
cushioning effect were not included in the simulations, the factor α in Equation (5) would
need to be further modified. The value of 0.05 (5%) was used in the simulations shown in
Figure 11, which presents the same general trend for those obtained with the wet aggregate
(AW), only with a lower magnitude. As such, co-current operation predicted greater
attrition of RCA. Such results were in agreement only with the experimental result at the
impeller frequency of 500 rpm. Nevertheless, the mean relative error between experimental
and simulation results for aggregate degradation in the concrete mixture was 21.3%.

This work aimed to be a first step in the use of discrete methods for the understanding
of attrition of recycled aggregates during concrete mixing. From this perspective, one of
the main interrogations of the present work was to determine if discrete element model
simulations of coarse grains with cohesion could be somewhat representative of the attrition
behaviour of coarse aggregates in a concrete formulation. It is clear that the main trends of
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the attrition behaviour in the mixer were captured by the numerical simulation, too (effect of
water addition, effect of the flow configuration). Nevertheless, there were some deviations,
particularly for low impeller speeds, which, also considering the experiments performed
on coarse aggregates alone, could be ascribed to the polydisperse nature of the concrete
mixture. However, we can state that, even if it is necessary to employ some relatively crude
approximations when attempting to model concrete mixing using the discrete element
method, such numerical simulations can definitely be useful to understand the effect of
process parameters on the attrition of particles in the mixer.

5. Conclusions

In this paper, we evaluated a numerical approach to predict the attrition of recycled
concrete aggregates during mixing. The approach combined DEM simulations of the
coarse fraction with an attrition model, which allows computing the rate of mass loss of
the aggregates as a function of the energy dissipated by collisions, as obtained from the
simulations. The effect of water or mortar on the motion of the aggregates in the mixer was
mimicked by a cohesive contact law (JKR). The material-dependent propensity to attrition
was included in the model through a parameter that was determined by single-particle
impact tests. Reduction in attrition by cushioning due to fines was also considered through
an empirical correction.

In the case of experiments involving only aggregates, it was found that the impeller
speed was the most significant effect influencing mass loss due to attrition. A comparison
of results from the different flow configurations demonstrated that the co-current configu-
ration yielded more attrition for all impeller speeds studied and the counter-current. A less
marked effect was observed in respect to the presence of water, which was responsible for,
in general, increasing the attrition of the RCA.

A comparison between experiments and simulations involving only aggregates demon-
strated that the proposed approach, which combined DEM with the appropriate contact
model and a correction factor for the attrition model to account for the cushioning effects,
led to good semi-quantitative agreement between them, with mean relative errors of 29.0%.
In particular, similar behaviour was found for the joint effect of impeller frequency, water
addition and flow configuration. Indeed, simulations also showed that the main parameter
controlling aggregate attrition was mixer impeller frequency, that the co-current mixing
configuration was responsible for higher attrition, and that the difference between the
intensity of attrition in co-current and counter-current operation increased with impeller
frequency. The effect of water addition, which was described indirectly by the contribu-
tion of adhesion in the Hertz–Mindlin model with JKR, resulted in higher attrition for
higher mixer speeds when compared to the mixing of the dry aggregate as observed in the
experiments.

Experimental data on attrition of aggregates during mixing in a concrete formulation
showed similar trends but with a smaller number of fines generated by attrition. In the
model, this configuration was simply mimicked by a modification of the cushioning factor,
which is a quite strong simplification which, however, yielded reasonable results. Still, the
mean relative error between predicted and measure mass loss due to attrition in 1-min
mixing was 21.0%.

Due to the approximations made (neglecting fines, simple cohesive model), and also to
the definition of the attrition model, the comparison between experiments and simulations
was only semi-quantitative. In order to perform more quantitative comparisons, detailed
experiments should be performed. For instance, the effect of impact angle and cushioning
by fines could be analysed through experiments in which particles are dropped one by one
against either an angled steel plate or a surface containing fines, in addition to the variation
of the mass loss due to attrition with the number of impacts. The approach in the paper
was also only limited to cases when only surface breakage occurred. On the other hand,
the present approach already has the advantage of computational efficiency since valid
predictions are obtained without the need to include the fines explicitly in the simulations.
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The simulation approach proposed herein, with a mean relative error of 26.4%, can
already be used to compare the mass loss due to attrition as a function of material charac-
teristics (composition and size) as well as machine and process variables (vessel rotational
speed, angle, impeller geometry and speed, filling level, medium), being potentially useful
also to investigate the scale-up of the operation.
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