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Abstract

We discuss the prediction of critical behavior of lattice observables in SU(2) and SU(3)
gauge theories. We show that feed-forward neural network, trained on the lattice con-
figurations of gauge fields as input data, finds correlations with the target observable,
which is also true in the critical region where the neural network has not been trained.
We have verified that the neural network constructs a gauge-invariant function and this
property does not change over the entire range of the parameter space.

1 Introduction

The low-energy physics of strong interactions cannot be addressed analytically because of
the strong coupling, which makes perturbative approaches, usually used in the high-energy
region, unreliable. For that reason, all existing calculations in the non-perturbative domain
are based on effective low-energy models or sophisticated numerical methods involving the
Monte Carlo (MC) algorithms. The MC simulations are reasonably reliable to address various
thermodynamic properties of quantum chromodynamics (QCD) from the first principles. In the
physically relevant domain of parameters, the numerical simulations are very computationally
expensive and thus require powerful supercomputers.

In addition, the Monte Carlo methods cannot be applied to the interesting region of the
QCD phase diagram at finite baryon chemical potential, thus calling for the development of
alternative approaches aimed, in particular, at the investigation of the quark-gluon plasma at
finite density. A promising way to extend the MC techniques involves the machine learning
(ML) methods used nowadays to address various problems in physics [1, 2].

Our work discusses an example of the potentially helpful combination of the machine learn-
ing techniques with the standard MC methods. In the context of lattice field theory, the synergy
of these two approaches remains largely unexplored. The use of machine learning methods
is mainly reduced to (i) the investigation of the ability of neural networks to predict lattice
observables in non-perturbative domains of parameters and (ii) generate lattice field config-
urations as an alternative to the generally accepted Monte Carlo approach. In our paper, we
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address the question of the critical behavior of lattice observables in SU(2) and SU(3) gauge
theories with the ML techniques that respect the gauge-invariant structure of the theory.

2 Machine learning

The use of machine learning methods in lattice QCD is reduced to solving several problems:
regression problem, classification problem and simulation problem.

Simulations of configurations in lattice QCD are often computationally expensive, that
complicates the process of accumulating statistical data. Modern machine learning techniques
can provide opportunities to improve simulation speed. One can build neural network to
simulate lattice configurations and after training this approach require less computer power
and time than common methods to simulate lattice configurations [3,4].

In case of searching for new physics we try to solve regression or classification problem
where neural network trains to reconstruct certain observables from a given information of
Monte Carlo configurations corresponding to some set of lattice parameters. A well-trained
neural network is subsequently able to predict the value of the observable from data that was
previously unknown to it [5, 6]

But, generally accepted ML methods aimed to solving various problems in the field of
computer vision are not suitable for solving problems in the field of gluodynamics, since lattice
data is another kind of data that is fundamentally different from classical images. In order
to use machine learning in LQCD, it is necessary either to take into account the properties of
lattice data within the neural networks itself or transform the lattice data to a more convenient
form. The construction of neural networks consistent with the local symmetry and the matrix
origin of the lattice data is still an active topic of discussion in the current literature [7,8].

3 Lattice Simulations

We consider lattice SU(N) gauge theories with N = 2 and N = 3 colors at finite temperature.
The lattice theory is formulated via the Euclidean path integral

7= J(]_[ Ul)e_s[U], )
1

where the integration over the lattice gauge fields U; that belong to the SU(N) gauge group.
The Wilson action of the lattice SU(N) Yang-Mills theory,

1
S = 1—— . 2
(U] ﬂ;( NRe[TrUp])

is formulated in the Euclidean spacetime on the lattice with the volume N 53 x N; with periodic
boundary conditions in all dimensions. The sum runs over the lattice plaquettes P = {x, uv}
described by the position of a plaquette corner x and the plane orientation with directions
u # v. The non-Abelian plaquette field U, is given by the ordered product of the non-Abelian
link fields U, along the perimeter of the plaquette: Up = [ [;c5p U;-

The Yang-Mills theories possess the confining phase at low 3 values and the deconfinement
phase at high values. The phase transition in the simplest two-color (N = 2) gluodynamics is
of the second order while the theories with the N > 3 colors possess the stronger, first-order
phase transition.
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The well-known order parameter of the deconfinement phase transition is the Polyakov
loop. In the lattice calculations, it is convenient to identify the bulk Polyakov loop:

L=%<’ZXILX

where the sum goes over all spatial sites x of the lattice and V = Ns3 is the spatial volume. The
local Polyakov loop,

), (3)

=
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is given by the ordered product of the lattice U, , matrices along the temporal direction u = 4.

4 Neural network architecture and training process

We are trying to find such an architecture of a neural network that could catch correlations with
a targeted observable (Polykov loop) and display its properties. In this section, we describe
the machine-learning algorithm which includes building of the architecture and training of
the neural network. The training points for SU(2) and SU(3) gauge theories are set at the
lattice coupling constants 3 = fgy(2) =4 and 8 = fBsy(3) = 10, respectively. Both these points
correspond to a deep weak-coupling regime.

The training points fg;(2) and Bgy(sy do not correspond to physically viable realizations
of the continuum SU(2) and SU(3) Yang-Mills theories in their thermodynamic limits. These
points are selected to represent an uninteresting unphysical region of the theory at which,
however, the explicit calculations may be performed with the help of a Monte Carlo technique.
We will show that the information coming from the MC configurations are enough for the ML
algorithm to learn about the order parameter.

To build a machine-learning algorithm that can analyze lattice data of non-Abelian theory,
we need to construct a multidimensional dataset from a lattice configuration that is a matrices
dataset. To this end, we use the following vector representation for the SU(2) matrices:

a
u u a; +ia as +ia a
U= 11 12 = 1 .2 3 .4 N 2 , (5)
Ug1 Ugsp —ds + la4 a, —1idy ds
ay

where a; = Re(u;;), a; =Im(uyp), ag = Re(u,), and a, = Im(u;,).

After the matrix dimension’s flattening, an array with shape [N;, N;, N;, N;, Dim, 4] repre-
sents the lattice configuration. The last dimension corresponds to the matrix element num-
bering discussed above, and Dim is the direction u of the matrix U, (x) at every lattice site
[Nt, Ns, Ns, Ns]. We use 3D convolutional layers and reshape lattice configuration as a 4D
array (3 dimensions for spatial coordinates and one for channels) due to technical reasons.
Since we build a neural network that searches correlations between any two matrices U, (x)
and U, (y) at the points x and y closed to each other, we merge the last two dimensions of the
array. Other two dimensions could be also merged by cost of locality - array M [y ][x] can be
presented as an array M[y * N, + x]. The arichitecture of the neural network are the follow-
ing sequence of layers: convolution, relu activation, average pooling, flatten and dense layer.
Using different sizes of lattice data requires new architectures to be built, as it turned out, an
increase in the temporal direction in the input data requires an additional convolution-relu
sequence. The final arichitecture of neural networks are presented in the Table 1. Also more
detailed information about the architecture is described in the paper [9].
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InputData(N, = 2,N2,N;,U,) InputData(N, = 4,N2,N;,U,)

Conv3D + ReLU Conv3D + ReLU + Conv3D + ReLU
AveragePooling3D + Flatten AveragePooling3D + Flatten
Dense Dense

Table 1: Neural network architectures for various size of input configurations.

For training in SU(2) and SU(3) case, we generate 9000 lattice configurations at the one
point of the lattice coupling f for lattices with the spatial sizes N, = 8,16, 32 and the temporal
sizes N, = 2,4. We also generate 100 configurations for a number of points at lower values of
B, that the neural network does not use for training but rather for prediction.

Although a study of confinement-deconfinement phase transition does not require con-
figurations from all possible vacuum sectors, we found it essential to have high quality data
generated from different vacuum sectors to train a neural network.

We train the neural network on the lattice configurations generated in the deconfinement
phase at the point gy () and fgy(s) that is far from the phase transition point. The neural
network is trained to predict correctly the value of the Polyakov loop that is already known
from the Monte Carlo simulations. It is also important to note that in SU(3) case the Polyakov
loop becomes complex number, so we predict the real and imaginary parts separately. Also we
use the mean squared error (MSE) as a loss function and the Adam algorithm as the neural
network parameters’ optimization method. The training is done in batches of size 10 - 50
configurations. The training is halted when the loss function reached a plateau so that the
neural network gained the maximal possible — for the given architecture — knowledge how to
reconstruct the order parameter from the lattice configurations.

After the training phase, the neural network was able to build a trace of the gauge group
matrices product along a closed loop in the time direction. In Figure 1 we show how the neural
network trained at one (unphysical) value of the lattice coupling f is effectively able to predict
the order parameter in the whole region of the 8 values with a good precision.
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Figure 1: Prediction of neural network on a sample by sample basis of SU(3) 323 x 4
configurations.

Another important aspect of this prediction is the verification of the invariance of a given
observable with respect to gauge transformations. For this check, we completely change the
configuration using a set of different uniformly distributed SU(2) or SU(3) matrices respec-
tively. We do several changes and make a prediction for each step for the already changed
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Figure 2: Gauge invariant behavior of numerically constructed Polykov loop at differ-
ent phases of SU(2) theory as function of uniformly distributed global random gauge
transformation step.

configuration. In Figure 2, we demonstrate the result for such a test for the case of the SU(2)
theory and lattice size equal to N, = 4,N, = 16.

5 Conclusion

We demonstrate that the machine-learning algorithms allow us to restore, using the data from
an unphysical point of the lattice parameter space, the gauge-invariant order parameter appli-
cable to the whole physical critical region of the theory. In other words, our neural network is
able to the physical order parameter relevant to the numerically costly critical regime of the
model after a training procedure at a set of lattice field configurations that were generated by
fast Monte Carlo methods at a single unphysical point outside of the continuum limit of the
lattice model.

We also demonstrated that the classical feed-forward neural network could be used to
restore simple observables and predict their properties in the critical region of the theory. Our
work potentially implies that the ML techniques can predict other, more complex observables
and thus be applied to the regions which are unreachable to the standard MC methods. In
addition, we demonstrated that gauge-invariant architectures can be built on the basis of feed-
forward neural networks.
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