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We investigate the statistics of photons emitted by tunneling electrons in a single electronic level
plasmonic nanojunction. We compute the waiting-time distribution of successive emitted photons
w(τ). When the cavity damping rate κ is larger than the electronic tunneling rate Γ, we show
that in the photon-antibunching regime, w(τ) indicates that the average delay-time between two
successive photon emission events is given by 1/Γ. This is in contrast with the usually considered

second-order correlation function of emitted photons, g(2)(τ), which displays the single time scale
1/κ. Our analysis shows a relevant example for which w(τ) gives independent information on the

photon-emission statistics with respect to g(2)(τ), leading to a physical insight on the problem. We
discuss how this information can be extracted from experiments even in presence of a non-perfect
photon detection yield.

The correlation functions of the electromagnetic field
are known to contain a rich amount of information about
the intrinsic quantum nature of the electromagnetic field,
as well as of the sources at the origin of photon emission
[1]. The second-order correlation function (SCF) of the
electromagnetic field g(2)(τ), is of particular interest to
investigate the statistics of photons emitted by fluores-
cent atoms or molecules [2–4]. It was shown that for
a single-photon source, g(2)(τ) vanishes at short times,
a phenomenon known as photon antibunching [2]. In
the case that the emitter is a single atom or a molecule,
photon antibunching is interpreted as arising from the
wave-packet projection assumption of quantum mechan-
ics [3, 4] : after the first single-photon is emitted, the
atom is projected back to its ground state. The emission
of the next single-photon will then necessitate a finite
delay-time during which the atom will be excited again,
a necessary condition for another spontaneous emission
event to occur.

Photon antibunching which was revealed by mea-
surements of g(2)(τ) for fluorescent single-molecules de-
posited on surfaces [5–7], is now a cornerstone of molec-
ular spectroscopy. More recently, the progress in nan-
otechnologies extended the use of this experimental tool
to design a wealth of different single-photon sources
made of electrically-driven scanning tunneling micro-
scopes (STM)[8–13], quantum dots [14–17], nitrogen va-
cancy centers [16], single-molecules deposited in molec-
ular crystals [17], and plasmonic nanocavities [18, 19].
The crossover to antibunching in presence of dissipa-
tion has also been investigated theoretically for waveg-
uide quantum electrodynamics systems coupled to sin-
gle atoms [20, 21]. While most of these works deal with
the paradigmatic two-level system model to describe pho-
ton antibunching, recent experiments with STM on C60

molecular films invoke a Coulomb-blockade mechanism
resulting from tip-induced split-off single-level states [11].

The actual mechanism at the origin of light-emission in
current-driven STM nanojunctions is however still not
well understood and might be more complex. In such
systems indeed, current injection is believed to excite
the molecule to an electronic excited-state that further
decays back to ground state by emitting a photon. Sev-
eral mechanisms were proposed for describing this molec-
ular excitation, including elastic tunneling of an electron
and a hole from the metallic electrodes to the molecule
[22], inelastic tunneling of an electron across the junc-
tion at the origin of emission of a localized plasmon that
is further absorbed by the molecule [22, 23], and a more
complex energy-transfer mechanism in which the absorp-
tion and emission processes of the localized plasmon by
the molecule interfere one with each other [24]. Recently,
we theoretically predicted that upon proper tuning of the
external gate and electrode potentials, a single electronic
level was sufficient to generate electrically-driven single-
photon emission [25]. In the same publication we found
that g(2)(τ) relaxes exponentially towards unity on a time
scale given by the photon damping-time of the cavity 1/κ
[25] and not with the electronic tunneling-time 1/Γ. This
is surprising, since electronic tunneling is the main phys-
ical mechanism at the origin of photon emission in the
plasmonic nanocavity. To our knowledge, in the emerging
field of nanoplasmonics there is still no complete under-
standing of which timescale is actually controlling photon
antibunching. This question is of great experimental rel-
evance to unravel the nature of the light-emission mech-
anism in current-driven single-photon sources.

In this Letter, we investigate theoretically the statis-
tics of photon emission [26–28] in a single-level plasmonic
nanojunction, going beyond g(2)(τ). In particular, we
show that the delay-time or waiting-time distribution
(WTD) w(τ) between successive photon-emission events
[29, 30], provides important complementary statistical in-
formation to characterize the photon-emission statistics.
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Figure 1. Representation of a current-driven STM plasmonic
nanojunction. The molecule is shown as a single electronic
level of energy ε̃0. In presence of a bias-voltage V , electrons
from the STM apex (L) or from the substrate (R) can tunnel
to the electronic level, emitting a cavity plasmon of frequency
ωc. The former decays with rate κ, and a photon is emit-
ted (red wavy arrow) that is finally collected by a detector
(in black) with detection-yield η. Inset: Scheme of the rate
equation for the occupation probabilities P(q,n)(t) of the dot
charge and cavity plasmonic states (q, n). The dominant tran-
sition rates for the parameters of Fig. 2 are shown. Thick red
(thin blue) lines correspond to the dominant cavity-damping
(sub-dominant inelastic single-electron tunneling) processes.

The necessity to carefully discriminate between w(τ) an
g(2)(τ) is known in molecular fluorescence spectroscopy
[2, 5, 31]. Indeed, standard ”start-stop” photon correla-
tors actually measure directly the WTD and not g(2)(τ)
[2]. The difference between both quantities is neverthe-
less small for measurement times smaller than the aver-
age delay-time between photon emission events and for
weak photon-detection yields [2, 31]. The relevance of
studying both w(τ) an g(2)(τ) was recently noticed and
successfully applied to the investigation of the full count-
ing statistics of electronic currents in molecular junctions
[32–37], or of the statistics of photon emission in mi-
crowave cavities [38]. However, such is not the case for
current-induced single-photon sources, for which most
studies do not discriminate clearly between these two
quantities. We show how the joint calculation of g(2)(τ)
and w(τ) enables to unveil the timescales involved in the
photon-emission process, thus paving the way for using
these complementary observables in order to investigate
both theoretically and experimentally the various exist-
ing mechanisms predicting current-driven photon anti-
bunching.

Stochastic model of photon-emission.—We consider
the model of Ref. 25 describing a single electronic-level
molecule embedded inside a STM nanojunction, and cou-
pled to a cavity-plasmon mode (see Fig.1). The state of
the plasmon-molecule subsystem is described by two in-
dices i ≡ (q, n) corresponding respectively to the charged
(uncharged) dot-level q = 0(1), and occupancy state
n ∈ N of the localized plasmon-mode (see inset of Fig.1).

We consider the regime of sequential electronic tunnel-
ing and moderate cavity-damping Γ � κ ≤ kBT/~
[25], with T the temperature of the leads, ~ the re-
duced Planck constant and kB the Boltzmann constant.
In this regime, the dynamics of the probability Pi(t)
of occupying the state i is given by a rate-equation
Ṗi(t) =

∑
j ΓijPj(t)−

∑
j ΓjiPi(t), with Γij the incoher-

ent rate for the transition j → i. We consider two types
of rates. The first one involves transitions which change
the charge-state of the dot (q, n) → (q̄ = 1 − q,m) and
modify by m − n the occupancy of the cavity-plasmon
mode. We associate to these transitions the correspond-
ing inelastic tunneling rate of single-electrons across the
junction: Γ(q̄,m)(q,n) =

∑
α Γαfq (∆mn,α) | 〈n|m̃〉 |2, with

Γα=L the tunneling rate of electrons from the STM apex
(L) lead to the dot, and Γα=R the tunneling rate from the
substrate (R) lead to the dot. The factor | 〈n|m̃〉 |2 is the
Franck-Condon overlap [39] between the state |n〉 of the
cavity with empty dot and the displaced-state |m̃〉 of the
cavity with occupied dot. We introduced the functions
fq=0 (E) ≡ f(E) and fq=1 (E) ≡ 1− f(E), with f(E) ={
eE/kBT + 1

}−1
the Fermi-Dirac distribution of the elec-

trons populating the leads. This function is evaluated at
the transition energy ∆mn,α = ε̃0 + (m− n) ~ωc − µα,
with ε̃0 = ε0 − λ2~ωc the molecular dot-level energy
renormalized by its coupling λ to the cavity-mode ex-
pressed in units of ~ωc [25], ωc the cavity-plasmon fre-
quency, and µα the chemical potential of lead α. The
second type of rates involves transitions which do not
change the charge state of the dot (q, n)→ (q, n−1) and
decrease by one the number of cavity-plasmons. Those
incoherent transitions are associated to the cavity-photon
losses Γ(q,n−1)(q,n) = κn, with κ the cavity damping-rate
at the origin of photon emission by the nanojunction.

Monte Carlo approach.—We solve numerically the pre-
vious rate equation, using a kinetic Monte Carlo (MC)
approach [40, 41]. We assign a probability, or detection
yield, η for each photon that has been emitted by the
nanojunction to be finally collected and detected by an
external photon detector, a perfect detection-yield mean-
ing η = 1. We suppose in the MC calculation that the
photon-detection event by the photon detector is inde-
pendent from the photon-emission event by the junction
[42]. The output of the MC enables to record the history
of random times at which a photon is emitted and de-
tected. From those time-traces we extract S(τ) ≡ P (τ |0)
the conditional probability distribution that a photon is
emitted and detected at time τ , knowing that a photon
has been emitted and detected at time 0. Similarly, we
obtain Q (τ |0), the probability distribution of the first-
time photon detection event. It is defined as the exclusive
conditional probability distribution of a photon emission
and detection event at time τ , knowing that the previ-
ous photon detection event occurred at time 0, with the
constraint that no other photon was emitted in the time
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Figure 2. Second-order correlation function g(2)(τ) for
the emitted photons as a function of time τ , obtained nu-
merically from the Monte Carlo simulations (averaged over
40 runs). Blue lower triangles are obtained for a plasmon-
molecule coupling strength λ = 0.25, cyan upper triangles for

λ =
√

2−
√

2 ≈ 0.77 and red dots for λ =
√

2 ≈ 1.41. Plain
curves are the analytical results from Eq. (6). Parameters
are : η = 1, κ = kBT/~ = 0.1ωc, ΓL = ΓR = Γ = 0.01ωc,
µL = −µR = eV/2 = ~ωc, ε̃0 = 0.

interval ]0, τ [. The probability distributions P and Q are
different, since the first one collects all possible photon
emission and detection events in the intermediate time-
interval ]0, τ [, while the second one excludes them all.
The SCF and WTD of emitted and detected photons are
obtained from those fundamental distributions as [42]

g(2)(τ) =
S(τ)

Γ
(st)
γ

, (1)

w(τ) = Q (τ |0) , (2)

with Γ
(st)
γ = ηκ 〈n〉 the rate or stationary probability per

unit of time to emit and detect a photon, and 〈n〉 the
average occupation of the cavity-plasmon mode.

Expressions for the SCF and WTD.—In the follow-
ing, we write P q

′q
mn (τ) the occupation probability of the

plasmon-molecule state (q′m) at time τ that is solution of
the rate equation, with the state (qn) initially occupied.
Similarly, we note Qq

′q
mn (τ) the exclusive probability of

first reaching the state (q′m), leading to a first-photon
emission and detection event at time τ , knowing that the
state (qn) was occupied at time τ = 0. From Eqs. (1)
and (2), we derive the following expressions for the SCF
and WTD (see Supplementary Material [42] for further
details)

S(τ) =
κη

〈n〉

+∞∑
n,m=1

∑
q,q′=0,1

mnP q
′q

mn−1 (τ)P
(st)
(qn) , (3)

w(τ) =
κη

〈n〉

+∞∑
n,m=1

∑
q,q′=0,1

mnQq
′q
mn−1 (τ)P

(st)
(qn) , (4)

with P
(st)
(qn) = limτ→+∞ P(qn) (τ) the stationary occu-

Figure 3. Time-dependence of the distribution of delay-times
w(τ) between two successive photon emission and detection
events, obtained from the MC numerical calculation (yellow
histogram), expressed in units of Γ10. The blue plain (dashed
red) curve is the outcome of the analytical formula in Eq. (10),
for η = 0.75(1). Parameters are those of Fig. 2 with λ =

√
2,

for which photon antibunching occurs.

Figure 4. Average-delay time 〈τ〉 in units of Γ10 as a func-
tion of plasmon-molecule coupling λ, obtained from the MC
numerical calculation. Upper orange (lower cyan) triangles
correspond to the case of a perfect (non-perfect) detection
yield η = 1(0.75). Red stars (blue dots) are the correspond-

ing values of 1/Γ
(st)
γ ≡ 1/ηκ 〈n〉 appearing in Eq. (8). Dashed

curves are the values of 〈τ〉 given by approximate Eq. (12).

pancy of the state (qn). The Q-distribution is then solu-
tion of a renewal-like integral equation [3]

P qq
′

nm (τ) = Qqq
′

nm (τ) + κ

+∞∑
k=1

k
∑
r=0,1

(
P qrnk−1 ∗Q

rq′

km

)
(τ) ,

(5)

where we wrote (g ∗ h) (τ) ≡
∫ τ

0
dτ1g (τ − τ1)h (τ1) the

convolution between any two causal functions g and h.
In general, Eq. (5) has to be solved numerically, after
Laplace transforming.
Results for the SCF.—In the rest of the paper, we con-

sider the case of an electron-hole symmetric junction for
which ε̃0 = 0, ΓL = ΓR = Γ, and µL = −µR = eV/2,
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with V the bias-voltage between source and drain and e
the elementary charge. In this regime, the inelastic tun-
neling rates are independent of the charge state, namely
Γ(q̄,m)(q,n) = Γmn for all q = 0, 1. The general case of
asymmetric junctions regarding the SCF is considered in
details in Ref. 25.

In Fig. 2, we show g(2)(τ) as a function of time τ , ob-
tained from the MC simulations (averaged over 40 runs).
The voltage-bias is fixed at the first inelastic threshold for
photon-emission (eV = 2~ωc) and the photon detection
is perfect (η = 1). Upon increasing the plasmon-molecule
coupling strength λ, we find a crossover in the SCF from
photon-bunching to photon-antibunching. This result
agrees with the results found in Ref. 25, derived with an-
other method. In this range of parameters, the rate equa-
tion for P(qn)(t) is well approximated by truncating the
available cavity-occupancies to n ≤ 2 [25]. The dominant
transition rates are provided by the cavity-damping rate
κ (red downward arrows in inset of Fig. 1) and two single-
electron inelastic tunneling rates Γ10,Γ21 � κ (blue up-
ward arrows). This truncated rate equation can be solved
analytically exactly [42], to provide in the regime κ� Γ

g(2)(τ) ≈ 1 + e−κτ
(
g(2)(0)− 1

)
, (6)

g(2)(0) =
〈n(n− 1)〉
〈n〉2

≈ Γ21

Γ10
=

(
2− λ2

)2
2

. (7)

The analytical results of Eq. (6) are shown as plain curves
in Fig. 2, and perfectly agree with the numerically ex-
act MC. We thus confirm quantitatively the results of
Ref. 25 that g(2)(τ) relaxes exponentially in time to-
wards unity, with a rate given by the cavity-damping
rate κ. The convergence of g(2)(τ) to 1, is due to the
fact that two distinct photon emission events separated
by a time-interval τ � 1/κ become independent. The
zero-delay behavior g(2)(0) between two emission events
is given by Eq. (7). For weak plasmon-molecule coupling
λ = 0.25 < 1 (blue lower triangles), the stationary prob-
ability of having n = 2 occupancy of the cavity-plasmon
mode is significant. This results in an effective (out-
of-equilibrium) thermal state characterized by photon
bunching (g(2)(τ) ≤ g(2)(0) = 2). For a critical value of
λ =
√

2 (red points), the rate Γ21 vanishes due to the van-
ishing of the Franck-Condon matrix element. This results
in a vanishing probability to reach the n = 2 occupancy,
with only two possible occupations of the plasmon-mode
n = 0, 1. This leads to g(2)(τ) ≥ g(2)(0) = 0 and thus
to photon antibunching, a fingerprint of single-photon
emission. Finally the crossover region that is character-
ized by g(2)(τ) = g(2)(0) = 1 (Poissonian behavior), is

reached for λ =
√

2−
√

2 (cyan upper triangles).

Results for the WTD.—We now consider the time-
evolution of w(τ). The average delay-time between two
successive photon emission and detection events 〈τ〉 =∫ +∞

0
dττw(τ) can be derived analytically from Eqs. (4)

and (5), using a similar approach to the one used in com-
puting polymer mean reaction times [43–46]. We obtain
the general relation (see [42] for details)

〈τ〉 =
1

Γ
(st)
γ

≡ 1

ηκ 〈n〉
, (8)

which relates the average cavity-photon occupation 〈n〉
to the ratio between the dissipation-time 1/κ and the
average delay-time 〈τ〉. This relation is reminiscent of
Kac’s lemma [47, 48]. It is expected to hold in any ergodic
system, but as far as we know, Eq. (8) was not clearly
identified before in the field of plasmonics.

From now on, we focus on the case λ =
√

2, for which
maximal antibunching occurs. We show in Fig. 3, the
WTD computed numerically with the MC (yellow his-
togram), in the case of a non-perfect detection yield
η = 0.75. We obtain that w(τ) is a non-monotonous
function of time, with a maximum at times τ ≈ 1/κ.
In the same region of parameters for which Eq. (6) was
derived, we obtain [42]

S(τ) =
ηκΓ10

κt

{
1− e−κtτ

}
, (9)

w(τ) =
ηκΓ10

κd

{
e−

(κt−κd)τ
2 − e−

(κt+κd)τ
2

}
, (10)

with κd =
√
κ2
t − 4ηκΓ10, and κt = κ+ Γ10.

Equation (10) is one of the main results of this pa-
per. Its outcome is plotted as a plain(dashed) line in
Fig. 3 for η = 0.75(1), and matches very well the MC
histogram. At short delay-times (τ � 1/κ), the anti-
bunching mechanism implies that the probability of emit-
ting two successive photons in a short delay-time τ is
strongly reduced. The corresponding linear vanishing of
w(τ) ≈ ηκΓ10τ has a slope proportional to Γ10. This is
due to the fact that after the first emission event, inelastic
tunneling of a single-electron across the nanojunction is
necessary to emit another cavity-plasmon, that will later
decay through a photon-emission event with rate κ. The
slope also decreases with η, since it becomes less probable
to detect the emitted photon upon worst detection-yield.
At large delay-times (τ � 1/κ), the WTD vanishes ex-
ponentially as w(τ) ≈ ηΓ10e

−ηΓ10τ . This reflects the fact
that a long time τ after the first emission event, it be-
comes very unlikely that another photon has not been
emitted. At intermediate times (τ ≈ 1/κ), the maximum
WTD is reached at a time τm such that

τm =
1

κd
ln

(
κt + κd
κt − κd

)
≈ 1

κ
ln

(
κ

ηΓ10

)
. (11)

The average delay-time 〈τ〉 results from Eq. (10)

〈τ〉 =
1

η

{
1

Γ10
+

1

κ

}
, (12)

and recovers the result of Eq. (8), in the particular case
λ =

√
2. The average delay-time 〈τ〉 ≈ 1/ηΓ10 is thus
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proportional to the inelastic tunneling time of single-
electrons across the junction 1/Γ10, corresponding to the
necessary waiting-time needed for two successive current-
driven photon-emission events to occur. As expected, the
lower the detection-yield, the longer 〈τ〉.

We show in Fig.4 the robustness of Eq. (8) away from
the specific case λ =

√
2, for η = 0.75 and 1. The quan-

tity 〈τ〉 (lower cyan triangles) obtained from the MC,

and 1/Γ
(st)
γ (blue dots) derived from solving for the sta-

tionary state in the rate equation, are shown to coincide
as a function of λ, for η = 0.75. The same good agree-
ment is found for η = 1. Surprisingly, in the range of
moderate to strong plasmon-molecule coupling strengths
(λ ∈ [0.1, 2.0]), Eq. (12) is still a good approximation to
the exact value of 〈τ〉 (see blue dashed curve in Fig.4),
despite a strong modulation of the rate Γ10 with λ.

Furthermore, we note that an integral equation exists
relating S(τ) and w(τ) [42],

S(τ) = w(τ) + (S ∗ w) (τ) , (13)

that is consistent with Eqs. (9)-(10). Equation (13) was
derived previously in Refs. 2 and 6 for describing the
stochastic Markovian dynamics of fluorescent two-level
atoms or molecules. In our case, however, this relation is
valid only at electron-hole symmetric point for eV = 2ωc
and λ =

√
2, for which only two cavity states n = 0, 1

matter. In general, for arbitrary values of external pa-
rameters, the validity of this relation is not granted any-
more, and one resorts with either MC simulations, or
with solving numerically the linear system of Eqs. (5)
to obtain the Q-distribution and the WTD in Eq. (4).
Finally, we remark that Eqs. (6) and (12) resolve the
timescale issue noticed in the introduction. In the regime
Γ � κ, there is no contradiction having g(2)(τ) relaxing
exponentially with the cavity-damping time 1/κ, while
the average delay-time 〈τ〉 is given by the inverse in-
elastic tunneling time 1/Γ10 of single-electrons across the
nanojunction. This difference of timescales is due to the
fact that the SCF and WTD do not provide the same
information about the statistics of photon emission and
detection, and should thus be seen as complementary sta-
tistical indicators.

Conclusions.—We have investigated in depth the time-
dependence of the second-order correlation function
g(2)(τ) and waiting-time distribution w(τ) of photons
emitted by a current-induced plasmonic nanojunction
with a single electronic level. By using MC and ana-
lytical calculations, we have shown that the two quan-
tities provide a complementary information about the
statistics of emitted photons by the nanojunction. In the
regime of photon-antibunching, and when κ� Γ, g(2)(τ)
relaxes in time towards unity with the cavity damping-
time 1/κ, while the average delay-time 〈τ〉 between suc-
cessive photon emission and detection events is propor-
tional to the inelastic tunneling time of single-electrons

across the nanojunction 1/Γ10. We hope that our pa-
per will stimulate further experiments in current-driven
STM plasmonic nanojunctions, for which, to the best of
our knowledge, a comparative measurement of the WTD
with respect to the SCF of the emitted photons is still
lacking, but seems to be crucial to understand better
the timescales and physical mechanism involved in the
current-induced light-emission process.
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[44] T. Guérin, O. Bénichou, and R. Voituriez, J. Chem.
Phys. 138, 094908 (2013).
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