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Abstract: This paper discusses the problem of choosing the optimal block length for two block bootstrap
methods designed for periodically correlated processes. These are the Generalized Seasonal Block Boot-
strap and the Extension of Moving Block Bootstrap. Two estimation problems are considered: the overall
mean and the seasonal means. In both cases, the optimal block length is obtained by minimizing the
mean squared error of the corresponding bootstrap variance estimator and in all cases it is proportional
to the cube root of the sample size and should be a multiple of the period length plus one observation to
avoid some bias. Finally, the results of the performed simulation are presented, in which optimal blocks
lengths are estimated for several periodically correlated time series.
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1. Introduction

The class of periodically correlated time series (PC) is an important example of nonstationary processes. To be
precise {Xt, t ∈ Z} is a PC (or equivalently cyclostationary) real-valued time series with period d, when Xt has
periodic mean and covariance functions, i.e. for any t and s,

E (Xt) = E (Xt+d) and Cov (Xt, Xs) = Cov (Xt+d, Xs+d) .

The study of PC sequences were initiated by Gladyshev (1961) and has been extensively developed ever since.
Processes that are generated by the mixing of randomness and periodicity usually have the structure of peri-
odic correlation. Consequently, many real data can be described by PC sequences. Many motivating examples
concerning economical, climatological, telecommunication and mechanical time series can be found e.g. in Hurd
and Miamee (2007); Antoni (2009); Napolitano (2012, 2016, 2019); Gardner (1994); Gardner et al. (2006).
Bootstrap for periodic data has been developed over the past 20 years. The first approach called the Seasonal
Block Bootstrap (SBB) was proposed by Politis (2001). The method assumes that the block length is always
an integer multiple of the period length. On the other hand, the Periodic Block Bootstrap of Chan et. al (2004)
is based on blocks, whose lengths are always smaller than the period length. These two bootstrap techniques
offer much flexibility in selecting the block length. For the SBB we need data that contain many periods, but
the period can be short, while the PBB requires long periods. In 2014 Dudek et al. introduced the Generalized
Seasonal Block Bootstrap (see Dudek et al. (2014)). It was the first approach for periodic data that did not
assume any relation between the block and the period lengths. Moreover, for particular block length choices it
reduces to the PBB and the SBB. Finally, in Dudek et al. (2016) Dudek et al. showed that the Tapered Block
Bootstrap (TBB) can be adapted for PC sequences. All mentioned methods assume that the period length is
known. But sometimes it may happen that the period length is unknown or the signal under consideration is a
composition of two components with incommensurable periods. In this case, a good candidate for bootstrapping
data could be the Moving Block Bootstrap (MBB), which is one of the oldest and most universal block boot-
strap techniques designed for stationary time processes. It was proposed independently by Künsch (1989) and
Liu and Singh (1992). When applied to PC sequence, it completely destroys the periodic structure in the data.
Therefore, Dudek (2015) and Dudek (2018) introduced the Extension of Moving Block Bootstrap (EMBB),
which retains all the advantages of the MBB while being valid for many characteristics of PC time series and
can even be applied to generalizations of PC processes.
The main problem when one wants to apply a block bootstrap method is the choice of block length. Unfortu-
nately, till now in the literature there is no result showing how this can be done for PC data. One of typical
approaches in the stationary case is to minimize the mean squared error (MSE) of the bootstrap variance esti-
mator (see e.g. Lahiri (2003)). The problem, however, is that the usual proving techniques for PC time series did
not give the expansion of the MSE. In addition, extensive simulation studies to verify whether certain heuristic
approaches for stationary data can be adapted to nonstationary PC case have shown that neither is suitable (see
Dudek and Potorski (2020)). Finally, at least in some cases one could use the fact that one-dimensional PC time
series with period d can be equivalently represented as Rd-valued stationary time series (see e.g. Preposition
1.1 in Hurd and Miamee (2007)). Then one could bootstrap the d-variate stationary data and apply one of the
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known block length selection methods. However, it turns out that it is preferable to bootstrap PC sequence.
The application of the SBB to one-dimensional PC time series is equivalent to using the MBB for Rd-valued
stationary time series. There is no equivalent approach to the GSBB and the EMBB in the multivariate station-
ary case, while these two methods are more universal and have higher overlap than the SBB (for more details
we refer the reader to Section 2.4 in Dudek (2018)). Summarizing, we have a few bootstrap approaches for PC
sequences and no method of choosing the block length.
While we cannot really exploit the relationship between the PC time series and a multivariate stationary se-
quence, we still expect that the methods for obtaining optimal block lengths for stationary data can be adapted
to the periodic case. In this paper we generalize the approach of Nordman (2009). Under the same kind of
assumptions on cumulants, summability of autocovariances and behavior of the block length when the sample
size is growing to infinity, we show that in the case of the overall mean and the seasonal means the optimal
block length for the GSBB and the EMBB is of order n1/3, where n is the sample size.

Paper is organized as follows. Section 2 provides a brief summary of Nordman’s results. In Section 3 the
GSBB and the EMBB algorithms are recalled. Bootstrap estimators of seasonal means and overall mean are
also presented. Section 4 is dedicated to PC time series and their properties. Finally, Section 5 contains our
main results. In particular, the MSE expansions for the GSBB and the EMBB variance estimators are obtained
in the case of the overall mean and the seasonal means. A brief summary of the obtained results with some
remarks is given in Section 6. Results of the performed simulation study and all proofs can be found in the
supplementary materials.

2. Stationary time series case

In this section, we first briefly introduce the MBB and CBB algorithms. Then, we recall the MSE expansion of
the bootstrap variance estimator.

Let {Xt, t ∈ Z} be a stationary time series and (X1, . . . , Xn) be an observed sample. Moreover, let Bi =
(Xi, . . . , Xi+b−1), i = 1, . . . , n − b + 1 be a block of observations, which starts with observation Xi and has
length b, b ∈ N .

MBB algorithm

1. Choose a block size b < n. Then our sample can be divided into l (non-overlapping) blocks of length b
and the remaining part is of length r, i.e. n = lb+ r, r = 0, . . . , b− 1.

2. From the set {B1, . . . , Bn−b+1} choose randomly with replacement l+ 1 blocks B∗1 , . . . , B
∗
l+1. Probability

of choosing any block is 1/(n− b+ 1).
3. Join the selected l+ 1 blocks

(
B∗1 , . . . , B

∗
l+1

)
and take the first n observations to get the bootstrap sample

(X∗1 , . . . , X
∗
n) of the same length as the original one.

Note that the MBB approach is based on n − b + 1 blocks of length b. Most of observations from the original
sample (X1, . . . , Xn) belong to exactly b different blocks. But the observations from the beginning and the end
of the sample appear more rarely. For example the first observation X1 is present only in the block B1. This
fact often causes bias in MBB estimators. Therefore, Politisand Romano (1992) introduced the Circular Block
Bootstrap (CBB), which ensures that each observation belongs to b blocks. The idea behind this approach is to
treat the data as wrap on a circle, and thus n different blocks can be defined. For i = n− b+ 2, . . . , n the block
Bi is created by combining the observations from the end and the beginning of the sample to obtain a block of
the required length. To be precise

Bi = (Xi, . . . , Xn, X1, . . . , Xb−n+i−1) for i = n− b+ 2, . . . , n.

CBB algorithm

The CBB, comparing with the MBB, differs only in the second step. Now we will select randomly blocks from
the set of n blocks. Step 2 of the CBB method is as follows:

2’. From the set B = {B1, B2, . . . , Bn} choose randomly with replacement l + 1 blocks B∗1 , . . . , B
∗
l+1. Proba-

bility of choosing any block is 1/n.

The idea behind the CBB is very universal. It can be easily adapted to other types of block bootstrap methods,
also for nonstationary cases.
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From now on, we denote a probability measure (conditional on the data X1, . . . , Xn) by P ∗ and expecta-
tion and variance with respect to P ∗ by E∗ and by Var∗ respectively.
Let µ = EX1, its estimator µ̂ = 1/n

∑n
i=1Xi and the bootstrap estimator (obtained using the MBB or the

CBB) µ̂∗ = 1/n
∑n
i=1X

∗
i . Moreover, let σ2∗ = Var∗ (

√
nµ̂∗).

To choose the optimal block length for the MBB and the CBB in the overall mean estimation problem, we may
minimize the MSE of the bootstrap variance estimator σ2∗. For this purpose we need to have an expansion
of the bias and variance of σ2∗. These kinds of results were obtained e.g., in Carlstein (1986), Bühlman and
Künsch (1999) , Hall et al. (1995), Lahiri (1999) and recently in Nordman (2009). Proving technique proposed
by Nordman (2009) is very general. He provided a very nice and elegant way for obtaining the variance expan-
sion of σ2∗ for different block bootstrap methods like the MBB, the CBB, the Nonoverlapping Block Bootstrap
(NBB), the Tapered Block Bootstrap (TBB) and the Stationary Bootstrap (SB). Below we focus only on the
MBB/CBB case as we will later generalize it to PC time series.

Let γ(k) = Cov(X1, X1+k) be the autocovariance function of the considered process {Xt} and

γ̂(k) =
1

n

n−k∑
t=1

(Xt − µ̂)(Xt+k − µ̂)

be its estimator.
Nordman’s approach is based on the fact that σ2∗ can be expressed (exactly or approximately) as a weighted
sum of autocovariance estimators, i.e. depending on the bootstrap approach we have

σ2∗ =

n−1∑
k=0

ak,nγ̂n(k) or σ2∗ ≈
n−1∑
k=0

ak,nγ̂n(k), (1)

where the symbol ’≈’ denotes that Var(σ2∗) = Var(
∑n−1
k=0 ak,nγ̂n(k)) + o(b/n).

The coefficients ak,n for the MBB are of the form

ak,n = 2(1− k/b) for 1 ≤ k < b and ak,n = 0 for k ≥ b,

and for the CBB

ak,n = 2(1− k/b) for 1 ≤ k < b, ak,n = 0 for b ≤ k ≤ n− b
and ak,n = an−k,k for n− b < k < n.

In the case of the MBB σ2∗ is only approximately equal to a weighted sum of γ̂n(k). The same fact applies to
the TBB. Values of ak,n for the other bootstrap approaches mentioned above can be found in Nordman (2009).
Nordman showed the following very general variance result (see Theorem 2(i) in Nordman (2009)). Denote

Tn =

n−1∑
k=0

ak,nγ̂(k), (2)

where ak,n are such that

An =

n−1∑
k=1

(ak,n)2

(
1− k

n

)2

> 0. (3)

Moreover, let f(ω) = 1/(2π)
∑∞
k=−∞ γ(k) exp(−ikω) be the spectral density function and cu(·) denotes the

cumulant. Let us recall that the pth order joint cumulant of p variate random variable (Z1, . . . , Zp) such that
E|Zi|p <∞ for i = 1, . . . , p is given by

cu (Z1, . . . , Zp) =
∑
π∈Πp

(|π| − 1)!(−1)|π|−1
∏
B∈Bπ

E

(∏
i∈B

Zi

)
,

where Πp is the set of all partitions of {1, . . . , p} and |π| is the number of parts in the partition π. Bπ is the set
of blocks induced by the partition (see e.g. Brillinger (2001)).
The following theorem holds.

Proposition 2.1. Let {Xt, t ∈ Z} be a strictly stationary time series such that γ(0) +
∑∞
k=1 k|γ(k)| < ∞.

Moreover, assume that
∑
t1,t2,t3∈Z |cu(X0, Xt1 , Xt2 , Xt3)| <∞ and max0≤k≤n−1 |ak,n| <∞. Then

Var(Tn) =
An(2π)2

n

∫ π

−π
Kn(ω)f2(ω)dω +O

((
AnBn
n

)1/2

+Bn

)
, (4)
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where

Bn =
1

n
+

log(n)

n2

(
n−1∑
k=1

|ak,n|

)2

+
1

n

n−1∑
k=1

|ak,n|
k

n

(
1− k

n

)
,

Kn(ω) =
Hn(ω)Hn(−ω)

2πAn
=
|Hn(ω)|2

2πAn
,

Hn(ω) =

n−1∑
k=1

ak,n

(
1− k

n

)
exp(−ikω).

Finally, using the form of the weights ak,n the following result can be obtained (see Theorem 1 in Nordman
(2009)).

Proposition 2.2. Let {Xt, t ∈ Z} be a strictly stationary time series such that γ(0) +
∑∞
k=1 k|γ(k)| <∞.

1. Let
∑
t1,t2,t3∈Z |cu(X0, Xt1 , Xt2 , Xt3)| <∞. Moreover, let b −→∞ and b log n/n −→ 0 as n −→∞. Then

the variances of the MBB and the CBB estimators of nVar(Xn) are

Var
(
σ2∗
MBB

)
= Var

(
σ2∗
CBB

)
=
b

n
D + o

(
b

n

)
,

where D = 4/3(2πf(0))2.
2. If b−1 + b2/n = o(1) as n −→∞, then the bias of the MBB and the CBB estimators are

Bias
(
σ2∗
MBB

)
= Bias

(
σ2∗
CBB

)
= −1

b
G+ o

(
1

b

)
,

where G =
∑∞
k=−∞ |k|γ(k).

Proposition 2.2 allows to get the MSE expansion for σ2∗. Then, the optimal block length bopt is obtained by
minimization of the MSE i.e.,

bopt = argminb{MSE(σ2∗)}.

It is easy to calculate that for large samples

bopt =
3

√
2G2

D
3
√
n

and hence for the MBB and the CBB bopt is proportional to n1/3. In fact, for the NBB and the SB, one gets
the same result, only with a different constant. In the case of the TBB, bopt is proportional to n1/5 (see e.g.,
Nordman (2009), Lahiri (2003)).

Remark 2.1. In Propositions 2.1 and 2.2 the condition on a strict stationarity of {Xt, t ∈ Z} can be weakened.
It may be replaced by the assumption that {Xt, t ∈ Z} is weakly stationary up to order 4. Therefore, in our
considerations, we do not use the concept of strict periodicity and we formulate all our results for weakly periodic
time series.

3. Bootstrap methods for PC time series

In this section we recall shortly the GSBB and the EMBB algorithms. For the sake of simplicity of the pre-
sentation we discuss only their circular versions, i.e. we treat data as wrapped on the circle. This simplifies in
particular the GSBB algorithm.
Let {Xt, t ∈ Z} be a periodic (strictly or weakly) time series with a period d and let (X1, . . . , Xn) be a considered
sample. Without loss of generality we take n = v1d, v1 ∈ N.
Let Bi, i = 1, . . . , n be a block of observations that starts with observation Xi and has length b. We have

Bi = (Xi, . . . , Xi+b−1), i = 1, . . . , n− b+ 1.

Additionally, for i = n − b + 2, . . . , n block Bi is created by joining the observations from the end and the
beginning of the sample to get a block of the required length. To be precise

Bi = (Xi, . . . , Xn, X1, . . . , Xb−n+i−1) , i = n− b+ 2, . . . , n.

Let n = bl + r, where l ∈ N and r ∈ {0, . . . , b− 1}, i.e., our sample can be divided into l disjoint blocks of the
length b and a remaining shorter block of length r.
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The Generalized Seasonal Block Bootstrap (GSBB) was introduced in Dudek et al. (2014). It is dedicated
to periodic data with known and fixed period d. It is worth to indicate that it is a very general bootstrap algo-
rithm because it does not require any relation between the block length b and the period length d. Moreover, it
completely preserves the periodic structure of the original data.
From now on by < t >, we denote the season associated with a time index t, where t = 1, . . . , n. To be precise

< t >= (t mod d) for (t mod d) 6= 0

and < t >= d, otherwise.

Circular Generalized Seasonal Block Bootstrap (CGSBB) algorithm

1. Choose a (positive) integer block size b < n.
2. For t = 1, b+ 1, 2b+ 1, . . . , lb+ 1, let

(X∗t , X
∗
t+1, . . . , X

∗
t+b−1) = (Xkt , Xkt+1, . . . , Xkt+b−1)

where kt is a discrete uniform random variable taking values in the set

St,n = {< t >,< t > +d, . . . , < t > +(v1 − 1)d}.

As usual, the random variables k1, k2, . . . are taken to be independent.
3. Join the l+ 1 blocks (Xkt , Xkt+1, . . . , Xkt+b−1) thus obtained together to form a new series of bootstrap

pseudo-observations X∗1 , X
∗
2 , . . . , X

∗
n, . . . , X

∗
(l+1)b from which only the first n points X∗1 , X

∗
2 , . . . , X

∗
n are

retained so that the bootstrap series has same length as the original.

The GSBB/CGSBB can be applied only when the period length is known d. In fact, if one needs to estimate
d, the problem is that the estimate must be very accurate. In the event of any deviation of the estimate from
the true value of d, the GSBB/CGSBB fails. Therefore, it is convenient to have an alternative approach that
works when the period length is unknown and is consequently suitable for more general classes of time series,
such as almost periodically correlated (APC) processes. The MBB of Künsch (1989) and Liu and Singh (1992),
which is one of the most versatile block bootstrap technique, might be a good candidate, but it has been found
to be generally inconsistent for PC time series and their generalizations. In fact it is valid only for the overall
mean of the PC/APC sequences (see Synowiecki (2007)). However, it turned out that it can be modified (see
Dudek (2015), Dudek (2018)) to ensure consistent results for different characteristics of PC and APC processes.
The idea of the Extension of Moving Block Bootstrap (EMBB) is very simple. Instead of bootstrapping the
original data, one bootstraps a new bivariate series. The key feature of this approach is the fact that it pre-
serves information on seasons of the observations. Below we present the circular version of the EMBB algorithm.

Circular Extension of Moving Block Bootstrap (CEMBB) algorithm

1. Define a bivariate series Yi = (Xi, i) and then do the CBB on the sample (Y1, . . . , Yn) to obtain (Y ∗1 , . . . , Y
∗
n ).

Note that in the second coordinate of the series Y ∗1 , . . . , Y
∗
n we preserve the information on the original time

indices of chosen observations. Below we show how this information can be included in the definitions of the
bootstrap estimators of the different parameters of {Xt} to provide the consistency of the EMBB. We start
with periodic characteristics of PC time series.

Let {i1, . . . , il+1} be the selected block numbers in step 2 of the CBB algorithm performed on (Y1, . . . , Yn).
Moreover, let us recall that n = lb+ r, where r ∈ {0, 1, . . . , b− 1}. Using the first and the second coordinates of
Y ∗1 , . . . , Y

∗
n we form a vector containing the selected observations

(X∗1 , . . . , X
∗
n) =

(
Xi1 , . . . , Xi1+b−1, . . . , Xil , . . . , Xil+b−1, Xil+1

, . . . , Xil+1+r−1

)
and the vector of their original time indices

TI = (i1, . . . , i1 + b− 1, . . . , il, . . . , il + b− 1, il+1, . . . , il+1 + r − 1) .

By v∗s we denote the number of elements in the EMBB sample that are from season s i.e.

v∗s = #TIs = #{t : t ∈ TI, t mod d = s} for s = 1, . . . , d− 1,

v∗d = #TId = #{t : t ∈ TI, t mod d = 0}.

Note that n = v∗1 + · · ·+ v∗d and that TIs contains those time indices from TI that represent season s.
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Since in this paper we focus on means, below we recall the bootstrap estimators of the overall mean and
the seasonal means. We denote by µ the overall mean of the considered time series and by µ1, . . . , µd the
seasonal means. Under the assumption n = v1d the estimators of µs and µ are of the following form

µ̂s =
1

v1

v1−1∑
m=0

Xs+md and µ̂ =
1

n

n∑
i=1

Xi =
1

d

d∑
s=1

µ̂i. (5)

The GSBB/CGSBB counterparts of (5) are very natural. They have exactly the same form and are simply com-
puted using the bootstrap sample. This property is a direct consequence of the fact that the GSBB/CGSBB
perfectly mimics the periodic structure contained in the data, so in the bootstrap sample each season is repre-
sented by exactly the same number of observations as in the original sample. Thus, for the GSBB/CGSBB we
have

µ̂∗s =
1

v1

v1−1∑
m=0

X∗s+md and µ̂∗ =
1

n

n∑
i=1

X∗i =
1

d

d∑
s=1

µ̂∗i . (6)

The EMBB/CEMBB estimators are generally more complicated. For seasonal means we have (see Dudek (2018))

µ̂∗s =
1

v∗s

∑
i∈TIs

X∗i for s = 1, . . . , d. (7)

If v∗s = 0 for some s then we take µ̂∗s = 0.
The number v∗s in (7) is equal to the number of observations from season s in the bootstrap sample. Unlike
the GSBB/CGSBB, the EMBB/CEMBB destroys the periodic structure of the data, and v∗s is generally not
equal to v1. Moreover, when the block length is smaller than the period length (b < d), it may happen that
in the bootstrap sample there will be no observations from certain seasons. Overall, some seasons may be
underrepresented and others may be overrepresented.
The case of the overall mean is much simpler. The EMBB/CEMBB estimator of µ is simply µ̂∗ = 1/n

∑n
i=1X

∗
i .

Thus, in this case we do not use information from which seasons the observations in the bootstrap sample come
from, so the EMBB/CEMBB method is equivalent to the usual MBB/CBB.

4. PC time series - short overview and some properties

In this section, we introduce some additional notation and we briefly recall some basic definitions and properties
of PC time series. We focus only on those that are essential for our results. For more details on PC sequences
we refer the reader to the book of Hurd and Miamee (2007).

Let B(t, k) be the autocovariance function of a PC time series {Xt, t ∈ Z} (with period d), i.e. B(t, k) =
Cov(Xt, Xt+k). Arguments t and k represent time and shift, respectively. Note that B(t, k) is a periodic function
of the time argument. Moreover, the seasonal variances Var(Xs) (s = 1, . . . , d) are values of the autocovariance
function at lag 0, i.e., Var(Xs) = B(s+md, 0) for m ∈ N.
The seasonal sample autocovariances are of the form (for s = 1, . . . , d and k ∈ Z)

Rn(s, k) =
1

vs,n

vs,n−k−1∑
m=0

(Xs+md − µ̂s) (Xs+md+k − µ̂<s+k>) , (8)

where < t >= (t mod d) for t 6= kd, k ∈ Z and < t >= d otherwise, denotes the season associated with t (see
also Section 3). Moreover, vs,n and vs,n−k are the numbers of observations from the season s in the samples
(X1, . . . , Xn) and (X1, . . . , Xn−k), respectively.
The circular version of (8) is defined as follows

Rn,cir(s, k) =
1

vs,n

vs,n−1∑
m=0

(Xs+md − µ̂s) (Xs+md+k − µ̂<s+k>) .

Finally, we denote

Rn(k) =
1

d

d∑
s=1

Rn(s, k) and Rn,cir(k) =
1

d

d∑
s=1

Rn,cir(s, k).

One of the key steps in our considerations will be to obtain an analogous relation to (1), that is, we will show
in all cases that the bootstrap variance can be expressed (exactly or at least approximately) as some linear
combination of Rn(s, k). In fact, in the case of circular versions of the bootstrap approaches, Rn,cir(s, k) will
naturally appear in the expansions and we therefore provide below the relation between Rn(s, k) and Rn,cir(s, k).
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Lemma 4.1. Let {Xt, t ∈ Z} be a PC time series with period d. Assume n = v1d for v1 ∈ N. Then for any
s = 1, . . . , d and k = 1, 2, . . .

Rn,cir(s, k) = Rn(s, k) for 0 ≤ s+ k < d,

Rn,cir(s, k) = Rn(s, k) +Rn(< s+ k >, n− k) for s+ k ≥ d.

The autocovariance function B(t, k) (for any fixed k ∈ Z) can be represented as Fourier series

B(t, k) =
∑
λ∈Λ

a(λ, k) exp(iλt), (9)

where the set Λ = {λ ∈ [0, 2π) : a(λ, k) 6= 0} ⊂ {2mπ/d,m = 0, 1, . . . , d− 1}. PC time series are harmonizable
in the sense of Loève (see Loève (1963)). When the period length is equal to d, then the spectral measure is
concentrated in the bifrequency square [0, 2π)2 on 2d−1 equally distanced diagonal lines (see Hurd and Miamee
(2007)). Consequently, one may associate with {Xt} a spectral matrix f = [fjl], j, l = 0, . . . , d− 1 of the form

fjl(ω) =
1

d
fl−j((ω − 2πj)/d), j, l = 0, . . . , d− 1,

where ω ∈ [0, 2π) and

fl(ω) =
1

2π

∞∑
τ=−∞

a

(
2lπ

d
, τ

)
exp(−iτω),

a

(
2lπ

d
, τ

)
=

1

d

d∑
t=1

Cov(Xt, Xt+τ ) exp

(
−2πilt

d

)
.

To estimate elements of the matrix f the dual-frequency periodogram is used.
Let {X̃t, t ∈ Z} be zero-mean version of {Xt}, i.e. X̃t = Xt − µ<t>. The dual-frequency periodogram based on

the sample (X̃1, . . . , X̃n) is defined as follows

In(ω1, ω2) =
1

2πn
d̃n(ω1)d̃n(−ω2), (10)

where

d̃n(ω) =

n∑
t=1

X̃t exp(−itω), ω ∈ [0, 2π). (11)

4.1. Relationship to multivariate stationary time series

One-dimensional PC time series {Xt} with period d can be equivalently expresses as d-variate stationary time

series {X̃m} (see Proposition 1.1 in Hurd and Miamee (2007)), where

X̃m = (X1+(m−1)d, . . . , Xd+(m−1)d)
′

is the vector consisting of observations from the m-th period. Consequently, working with one-dimensional PC
time series may seem unnecessary in view of the fact that the theory for multivariate processes is very well
established. In the following, we explain why this approach is not often used in the literature and direct analysis
of PC series is preferred.
Applying any block bootstrap approach to {X̃m} results in bootstrap blocks that are always an integer multiple
of the period length and that always start with observation from the first season. In this way, the MBB for
{X̃m} corresponds to the SBB method used for a one-dimensional PC series. The GSBB and the EMBB are
much more general. The block length is not related to the period length and it may start with observation from
any season. Moreover, the GSBB and the EMBB have higher overlap than the SBB among blocks to be boot-
strapped. Finally, if the considered data have few periods, then the choice of block length in the multivariate
case is very limited. Consequently, bootstrapping {Xt} is preferred to bootstrapping {X̃m}.

Approach via multivariate stationary time series requires knowledge of the period length, which is not al-
ways known for real data. To estimate it, one usually performs a time and frequency domain analysis on the
original periodic sequence. Moreover, it may happen that the considered data is a composite of two signals
with incommensurable periods and then the output signal is no longer PC, but almost periodically correlated
(APC). Such data cannot be transformed to a multivariate stationary sequence. In addition, methods developed
for discrete PC time series can often be generalized to discrete APC and continuous PC/APC processes. This
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fact is also true for bootstrap. For example, in Dudek (2015) is shown the EMBB consistency for the Fourier
coefficients of the mean and autocovariance function of an APC time series. Direct analysis of PC data also
allows easy switching between between time and frequency domain. In mechanics, for example, data are usu-
ally first demeaned by subtracting estimated seasonal means, and then analysis is performed in the frequency
domain to detect possible machine faults. For more details and some additional arguments on the advantages
of the original periodic sequence analysis, we refer the reader to Hurd and Miamee (2007).

5. Main results

In this section we provide the bias and variance expansions for the GSBB/CGSBB and the EMBB/CEMBB
variance estimators in the case of overall mean and seasonal means. As a consequence, we obtain the optimal
block lengths. To derive our results we adapt and generalize ideas of Nordman (2009). Additionally, they have
a general form that can be applied with minor modifications to other bootstrap approaches in the future.

A time series {Xt, t ∈ Z} is said to be a weakly periodic process of order k (say WP(k)) with period d, iff
{Xt} has periodic moments of order k, i.e. E|Xt|k <∞ and for any t, τ1, . . . , τk−1 ∈ Z

E(XtXt+τ1 . . . Xt+τk−1
) = E(Xt+dXt+τ1+d . . . Xt+τk−1+d).

Note that {Xt} is a PC time series iff it is WP(1) and WP(2).
In the sequel we assume the following conditions:

A0 {Xt, t ∈ Z} is a PC real-valued time series with period d that is WP(3) and WP(4);
A1 n = v1d, v1 ∈ N;
A2

∑d
s=1 Var (Xs) +

∑d
s=1

∑∞
τ=−∞ |τ | |Cov (Xs, Xs+τ )| <∞;

A3 sups=1,...,d

∑
t1∈Z

∑
t2∈Z

∑
t3∈Z |cu(Xs, Xt1 , Xt2 , Xt3)| <∞;

A4 b −→∞ and b log(n)/n −→∞ as n −→∞.

The condition A4 is exactly the same as the corresponding condition of Nordman (2009). The assumptions A2
and A3 are modified versions of the Nordman’s conditions for the considered PC case. A0 denotes that {Xt}
is weakly periodic up to order 4. Periodicity of the 3rd and the 4th order moments in A0 allows us to provide
results without assuming periodicity in distribution. Moreover, it is not a restrictive condition. For example, let
the time series {At, t ∈ Z} be weakly stationary up to order 4 and f(t) be a periodic real valued function. Then
time series Bt = f(t)At satisfies the condition A0. In general, if the second order moments are periodic, this is
a consequence of the existence of a periodic mechanism in the generation of the process. Therefore, it is very
likely that such a periodicity is present also in the distribution and in the higher-order statistics. For instance,
in a case of PC communications signals, higher-order moments and cumulants can be computed analytically
and they are usually periodic. Moreover, Lemma A.4 in Lenart (2011) provides moment and mixing conditions
under which A2 holds ( supt E|Xt|6+3δ < ∞ and

∑∞
k=0(k + 1)2α(k)δ/(2+δ) < ∞ for some δ > 0, where α(·)

is α-mixing sequence corresponding to {Xt}). Finally, A1 is necessary for the circular versions of the block
bootstrap methods in the periodic case. Thus, to make our results fully comparable for the usual and circular
methods, we assume A1 in all cases. This also allows us to simplify the computation and notation for the
non-circular cases, which are already very complicated. In practice, if n = v1d+ r, where r ∈ 1, . . . , d− 1 then
it is sufficient to remove the last r observations from the considered dataset.

In the following (X∗1 , . . . , X
∗
n) is a bootstrap sample. Depending on the case under consideration, it will be

obtained by means of the GSBB, CGSBB, EMBB or CEMBB methods. By b ∈ N we denote the bootstrap
block length. For the sake of simplicity without loss of generality we assume that n = lb, where l ∈ N is the
number of selected blocks to form the bootstrap sample.

5.1. Overall mean case

At first we introduce some additional notations. By σ2
as we denote the asymptotic variance of

√
nµ̂, i.e. as

n −→∞

Var
(√
nµ̂
)
−→ σ2

as =
1

d

d∑
s=1

∞∑
k=−∞

Cov (Xs, Xk) . (12)

The following results are divided into two parts. We first discuss the GSBB/CGSBB case and then we focus
on the EMBB/CEMBB case. For all bootstrap approaches we first obtain an analogous relation to (1), i.e.
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we show that the bootstrap variance Var∗ (
√
nµ̂∗) can be expressed (exactly or approximately) as some linear

combination of Rn(s, k). Then we provide the bias and variance expansions for Var∗ (
√
nµ̂∗), which ultimately

allow us to calculate the MSE and find the optimal block length.

5.1.1. Results for the GSBB/CGSBB

In the case of the GSBB/CGSBB the bootstrap variance Var∗ (
√
nµ̂∗) can be expressed in terms of Rn(s, k) as

follows.

Theorem 5.1. Let {Xt, t ∈ Z} be a PC real-valued time series with period d such that
∑d
s=1 Var (Xs) +∑d

s=1

∑∞
k=−∞ |Cov (Xs, Xs+k)| <∞. Moreover, assume that A1 holds. Then for the CGSBB we get that

Var∗
(√
nµ̂∗

)
=

1

d

d∑
s=1

Rn,cir(s, 0)

+ 2
1

n

l−1∑
m=0

d∑
s=1

b−1∑
k=1

(
vb−1 + I{rb−1≥s} −

⌊
k − 1

d

⌋)
Rn,cir(< mb+ s >, k) (13)

and for the GSBB we have that

Var∗
(√
nµ̂∗

)
≈ 1

d

d∑
s=1

Rn(s, 0)

+ 2
1

n

l−1∑
m=0

d∑
s=1

b−1∑
k=1

(
vb−1 + I{rb−1≥s} −

⌊
k − 1

d

⌋)
Rn(< mb+ s >, k), (14)

where

E
(
Var∗

(√
nµ̂∗

))
= E

(
1

d

d∑
s=1

Rn(s, 0)

)

+E

(
2

1

n

l−1∑
m=0

d∑
s=1

b−1∑
k=1

(
vb−1 + I{rb−1≥s} −

⌊
k − 1

d

⌋)
Rn(< mb+ s >, k)

)

+o

(
1

b

)
, (15)

Var
(
Var∗

(√
nµ̂∗

))
= Var

(
1

d

d∑
s=1

Rn(s, 0)

+ 2
1

n

l−1∑
m=0

d∑
s=1

b−1∑
k=1

(
vb−1 + I{rb−1≥s} −

⌊
k − 1

d

⌋)
Rn(< mb+ s >, k)

)
+ o

(
b

n

)
, (16)

and b− 1 = vb−1d+ rb−1, rb−1 ∈ {0, . . . , d− 1}.

For definition of the symbol ’≈’ see (1). In fact, the approximate variance expansion for the GSBB is a conse-
quence of the bias resulting from the fact that the observations at the beginning and end of the sample appear
in fewer blocks than the other observations. The edge effect disappears for the CGSBB. The same observations
can be made for the MBB and the CBB (see Section 5.1.2).
In the formulas (13)-(14) k is the distance between observations in a block of length b. Thus, the maximal value
of k equals b−1. The expression I{rb−1≥s} is a consequence of the fact that b−1 may be not an integer multiple
of the period length (rb−1 6= 0).

In the GSBB case, the formula (14) allows us to define a weighted average of the seasonal autocovariances
that we will consider and which is analogous to (2) in the stationary case. We denote

Tn =
1

d

d∑
s=1

Rn(s, 0) + 2
1

n

l−1∑
m=0

d∑
s=1

b−1∑
k=1

(
vb−1 + I{rb−1≥s} −

⌊
k − 1

d

⌋)
Rn(< mb+ s >, k).

Tn can be equivalently rewritten as follows

Tn =
1

d

d∑
s=1

as,0Rn(s, 0) +
1

d

d∑
s=1

n−1∑
k=1

as,k
1

l

l−1∑
m=0

Rn(< mb+ s >, k), (17)
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where as,0 = 1, s = 1, . . . , d, as,k = 2d/b
(
vb−1 + I{rb−1≥s} −

⌊
k−1
d

⌋)
, s = 1, . . . , d, k = 1, . . . , b− 1 and as,k = 0

otherwise. Note that for d = 1 these coefficients are matching those obtained for the MBB in stationary case
(see Section 2). The coefficients as,k depend of n, but to simplify the notation we do not introduce the subscript
n.

Remark 5.1. In the case of the CGSBB, applying Lemma 4.1, we obtain that the coefficients as,k in (17) are of
the form: as,0 = 1, s = 1, . . . , d, as,k = 2d/b

(
vb−1 + I{rb−1≥s} −

⌊
k−1
d

⌋)
, s = 1, . . . , d, k = 1, . . . , b− 1, as,k = 0

for s = 1, . . . , d, b ≤ k ≤ n−b and as,k = as,n−k for s = 1, . . . , d, n−b+1 ≤ k ≤ min{n−d+s, n−1}. However,
without loss of generality, to simplify the computation of bias and variance, the approximation of Tn is obtained
by taking ãs,k = as,k for s = 1, . . . , d, 1 ≤ k ≤ n− b and ãs,k = as,n−k for s = 1, . . . , d, n− b+ 1 ≤ k ≤ n− 1
can be used.

Theorem below generalizes results of Nordman (see Proposition 2.1 in Section 2).

Theorem 5.2. Assume that A0 - A3 hold. Moreover, let the coefficients as,τ ∈ R, 1 ≤ s ≤ d, 0 ≤ τ ≤ n − 1
be such that

(i) as,τ = as,mτd, where τ = sτ +mτd with sτ ∈ {0, . . . , d− 1}, mτ ∈ N;
(ii) supn max1≤s≤d max0≤τ≤n−1 |as,τ | <∞.

Then we have that

Var (Tn) =

d−1∑
k=0

(2π)2Ak,n
n

∫ 2π

0

Kn(k, ω)f2
k (ω)dω +O

((
AnBn
n

)1/2

+Bn

)
, (18)

where

An =

d−1∑
k=0

Ak,n =
d

2

n−1∑
τ=1

(
1− τ

n

)2 1

l

l−1∑
j=−l+1

(
1− |j|

l

) d∑
s1=1

as,τ (a<s−jb>,τ + a<s+jb>,τ ) ,

Bn =
1

n
+

log(n)

n2

(
d∑
s=1

n−1∑
k=1

|as,k|

)2

+
1

n

(
d∑
s=1

n−1∑
k=1

k

n

(
1− k

n

)
|as,k|

)
,

Ak,n =

n−1∑
τ1=1

(
1− τ1

n

)2 d∑
s1=1

d∑
s2=1

as1,τ1as2,τ1 cos

(
2πk

d
(s1 − s2)

)

· 1
l2

l−1∑
j1=0

l−1∑
j2=0

cos

(
2πk

d
(< (j1 − j2)b >)

)
,

Kn(k, ω) =
Wn(k, ω)Wn(−k,−ω)

2πAn
=
|Wn(k, ω)|2

2πAk,n
,

Wn(k, ω) =

d∑
s=1

n−1∑
τ=1

as,τ

(
1− τ

n

) 1

l

l−1∑
j=0

exp

(
i
2πk

d
(< jb+ s > +τ)

)
exp (−iωτ) .

The assumption (i) implies that the coefficients as,τ do not depend on sτ , i.e. they do not depend on season
from which τ orginates. Note that since τ can be equal to 0, we took sτ ∈ {0, . . . , d − 1}. In this form the
condition (i) is satisfied for all bootstrap approaches for PC time series considered in this paper. For instance,
in the case of the GSBB/CGSBB, the only term in the expression for as,τ that depends on τ is

⌊
τ−1
d

⌋
. Indeed,

we get that
⌊
sτ+mτd−1

d

⌋
= mτ does not depend on sτ . The condition (i) is used only in the final part of the proof

of Theorem 5.2 and allows for a considerable simplification of calculations. However, as this is not a necessary
condition, it could be replaced by another assumption for other bootstrap approaches.

Theorem 5.2 is very general. Below we state the form of variance in the case of the GSBB/CGSBB. In fact, we
managed to simplify the expression for Ak,n and thus the obtained formula more resembles Nordman’s formula
(see (4)) obtained for the stationary case.

Theorem 5.3. Let conditions A0 - A3 hold. Then for the GSBB and the CGSBB, (18) can be expressed as
follows

Var (Tn) =
(2π)2Ãn

n

d−1∑
k=0

∫ 2π

0

Kn(k, ω)f2
k (ω)dω +O

((
AnBn
n

)1/2

+Bn

)
, (19)
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where

Ãn = d2
n−1∑
τ1=1

(
1− τ1

n

)2

(ãτ1,n)
2
.

Note that Ãn matches the expression for An of Nordman (see 3). The only difference is d2, which is due to
the periodic structure of the PC time series considered in this paper. For d = 1 the coefficients ãτ1,n for the
GSBB and the CGSBB are equal to ak,n for the MBB and the CBB, respectively.
The next two theorems specify the form of the bias and the variance of Var∗ (

√
nµ̂∗).

Theorem 5.4. Under conditions A0 - A4 and as n −→∞, the variance of the GSBB and the CGSBB variance
estimators is of the form

Var
(
Var∗

(√
nµ̂∗

))
=
b

n

4(2πd)2

3

d−1∑
k=0

|fk(0)|2 + o

(
b

n

)
. (20)

For d = 1, which corresponds to the stationary case, the formula (20) is exactly the same as that given in
Proposition 2.2.

Theorem 5.5. Assume that A0 - A2 hold. Moreover, let 1/b+ b2/n = o(1) as n −→ ∞. Then for the GSBB
and the CGSBB we have

E
(
Var∗

(√
nµ̂∗

))
= σ2

as −
1

db

d∑
s=1

∞∑
k=−∞,k 6=0

(
rb−1 + d

∣∣∣∣⌊kd
⌋∣∣∣∣)Cov (Xs, Xs+k)

+
1

db

d∑
s=1

(
I{rb−1≥s}

) ∞∑
k=−∞,k 6=0

d−1∑
s̃=0

Cov (X<s̃b+s>, X<s̃b+s>+k) + o

(
1

b

)
, (21)

where σ2
as is given by (12) and b− 1 = vb−1d+ rb−1 with rb−1 ∈ {0, . . . , d− 1}, vb−1 ∈ N.

Remark 5.2. Note that the bias expansion, given by formula (21) with d = 1, matches the one obtained for the
stationary case (see Proposition 2.2). However, in general (21) has two additional summands that are result of
the periodic structure contained in the data and which depend on rb−1, i.e. the remainder obtained from dividing
b − 1 by the period length d. Moreover, the covariances Cov (X<s̃b+s>, X<s̃b+s>+k) also depend on b or more
precisely on rb. The only way to obtain a MSE expansion that is not an implicit equation of b is to set b such
that rb−1 = 0. This means that b = vbd + 1, vb ∈ N. Consequently, in the GSBB/CGSBB algorithm we will
use all possible blocks of observations. To explain that let us assume that the first observation in the sample
(X1, . . . , Xn) is from season s = 1. Then in the first step of the algorithm one considers all blocks of the length
b, whose first observation comes from season 1. Since b = vbd+ 1, in the second step one needs all blocks of the
length b that start with an observation from season 2 etc. Finally, already in d consecutive steps of the GSBB
algorithm one uses all possible blocks of observations. On the contrary, when b = vbd, only blocks whose first
observation is from season 1 are used in each step.

Denote by σ2∗
b,GSBB and σ2∗

b,CGSBB , the bootstrap variance Var∗ (
√
nµ̂∗) obtained with the block length b

for the GSBB and the CGSBB, respectively. Applying Theorems 5.4 and 5.5 and setting the block length
b = vbd+ 1, vb ∈ N (see Remark 5.2), one gets the following expansion for the mean squared error

MSE
(
σ2∗
b,GSBB

)
= MSE

(
σ2∗
b,CGSBB

)
=
b

n

4(2πd)2

3

d−1∑
k=0

|fk(0)|2 +
G(d)2

b2
+ o

(
b

n

)
+ o

(
1

b2

)
,

where G(d) =
∑d
s=1

∑∞
k=−∞

∣∣⌊k
d

⌋∣∣Cov (Xs, Xs+k) .
Taking

bopt = argminb{MSE(σ2∗
b )}.

one gets that

bopt,GSBB = bopt,CGSBB = 3

√
2G2(d)

D(d)
3
√
n, (22)

where D(d) = 4(2πd)2

3

∑d−1
k=0 |fk(0)|2 . Thus, for both the GSBB and the CGSBB in the overall mean estimation

problem, bopt is proportional to n1/3. Thus, as in stationary case (see Section 2) the optimal block length is
proportional to n1/3. Note also that for d = 1 the constants D and G are equal to the corresponding constants
obtained in the stationary case for the MBB/CBB.
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Remark 5.3. Our proposed value of bopt is in fact suboptimal. In the bias term (21), the dependence on b
reduces to a dependence on rb−1 and rb. Thus, in the general case where rb−1 need not be equal to 0, (21) can
be expressed as

E
(
Var∗

(√
nµ̂∗

))
= σ2

as −
1

db
(G+G1(rb−1)−G2(rb−1)) + o

(
1

b

)
,

where G(d) is defined as before, G1(rb−1) =
∑d
s=1

∑∞
k=−∞,k 6=0 rb−1Cov (Xs, Xs+k) and G2(rb−1) =∑d

s=1

(
I{rb−1≥s}

)∑∞
k=−∞,k 6=0

∑d−1
s̃=0 Cov (X<s̃b+s>, X<s̃b+s>+k). Note that since rb−1 fully determines the value

of rb, we write G2(rb−1) instead of G2(rb−1, rb). Furthermore, rb−1 depends on d, but to simplify notation we
write Gi(rb−1), i = 1, 2.
The constants G1(rb−1) and G2(rb−1) can take only a finite number of values G1(0), . . . , G1(d − 1) and
G2(0), . . . , G2(d−1). We can therefore calculate the MSE for each value of rb−1 and define ropt ∈ {0, . . . , d−1}
such that

MSE(ropt) = min{MSE(0), . . . ,MSE(d− 1)}.

Then the optimal block size is

bopt,GSBB = bopt,CGSBB =
3

√
2G̃2(ropt)

D(d)
3
√
n,

where G̃(ropt) = G+G1(ropt)−G2(ropt). Note that estimation of G2(rb−1) is particularly difficult because the sum

does not include all covariances. Since for now we do not have an efficient method to estimate G̃(0), . . . , G̃(d−1),
in the paper we always assume rb−1 = 0.

5.1.2. Results for the MBB/CBB

Let us recall that in the overall mean case the EMBB/CEMBB reduces to the MBB/CBB (see Section 3).
Below we provide all corresponding results to those presented in the previous section for the GSBB/CGSBB.
In particular, we give the form of Var∗ (

√
nµ̂∗) as the weighted average of Rn,cir(s, k). The expression is exact

for the CBB and approximate for the MBB. Then we present the bias and the variance expansions for the
bootstrap variance estimator. Finally, we obtain the optimal block length.

Theorem 5.6. Let {Xt, t ∈ Z} be a PC real-valued time series with period d such that
∑d
s=1 Var (Xs) +∑d

s=1

∑∞
k=−∞ |Cov (Xs, Xs+k)| <∞. Moreover, assume that A1 holds. Then for the CBB we get that

Var∗
(√
nµ̂∗

)
=

1

d

d∑
s=1

Rn,cir(s, 0)

+
2

b

1

d

d∑
s=1

d∑
s1=1

b−1∑
k=1

(
vb−1 + I{rb−1≥s} −

⌊
k − 1

d

⌋)
Rn,cir(< s+ s1 − 1 >, k) (23)

and for the MBB we have that

Var∗
(√
nµ̂∗

)
≈ 1

d

d∑
s=1

Rn(s, 0)

+
2

b

1

d

d∑
s=1

d∑
s1=1

b−1∑
k=1

(
vb−1 + I{rb−1≥s} −

⌊
k − 1

d

⌋)
Rn(< s+ s1 − 1 >, k), (24)

where

E
(
Var∗

(√
nµ̂∗

))
= E

(
1

d

d∑
s=1

Rn(s, 0)

)

+E

(
2

b

1

d

d∑
s=1

d∑
s1=1

b−1∑
k=1

(
vb−1 + I{rb−1≥s} −

⌊
k − 1

d

⌋)
Rn(< s+ s1 − 1 >, k)

)

+o

(
1

b

)
, (25)
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Var
(
Var∗

(√
nµ̂∗

))
= Var

(
1

d

d∑
s=1

Rn(s, 0)

+
2

b

1

d

d∑
s=1

d∑
s1=1

b−1∑
k=1

(
vb−1 + I{rb−1≥s} −

⌊
k − 1

d

⌋)
Rn(< s+ s1 − 1 >, k)

)

+o

(
b

n

)
, (26)

and b− 1 = vb−1d+ rb−1 with rb−1 ∈ {0, . . . , d− 1}, vb−1 ∈ N.

Theorem 5.7. Under conditions A0 - A4 and as n −→ ∞, the variance of the CBB and the MBB variance
estimators is of the form

Var
(
Var∗

(√
nµ̂∗

))
=
b

n

4(2πd)2

3

d−1∑
k=0

|fk(0)|2 + o

(
b

n

)
. (27)

Note that the variance expansion is exactly the same as the one for the GSBB/CGSBB (see Theorem 5.4).
Thus, for d = 1, it matches the formula obtained in the stationary case (see Proposition 2.2).

Theorem 5.8. Assume that A0 - A2 hold. Moreover, let 1/b + b2/n = o(1) as n −→ ∞. Then for the MBB
and the CBB we have

E
(
Var∗

(√
nµ̂∗

))
= σ2

as −
1

db

d∑
s=1

∞∑
k=−∞,k 6=0

(
rb−1 + d

∣∣∣∣⌊kd
⌋∣∣∣∣)Cov (Xs, Xs+k)

+
1

b

d∑
s=1

(
I{rb−1≥s}

)(
σ2
as −

1

d

d∑
s1=1

Var(Xs1)

)
+ o

(
1

b

)
, (28)

where σ2
as is given by (12) and b− 1 = vb−1d+ rb−1 with rb−1 ∈ {0, . . . , d− 1}, vb−1 ∈ N.

Remark 5.4. As in the case of the GSBB/CGSBB the bias expansion, given by formula (28) with d = 1,
matches the one obtained for stationary case (see Proposition 2.2). However, again in general case we have
two additional terms that are a consequence of the periodic structure contained in the data and that depend
on rb−1, i.e. the remainder obtained from dividing b − 1 by the period length d. Thus, one should consider
b = vbd+ 1, vb ∈ N. Then, minimizing the MSE results in bopt exactly the same as for the GSBB/CGSBB, i.e.
bopt is proportional to n1/3 (see (22)).

Remark 5.5. Note that the third summand on the right-hand side of (28) is equal to
1
b

∑d
s=1

(
I{rb−1≥s}

) (∑d
s1=1

∑∞
k=−∞,k 6=0 Cov (Xs1 , Xs1+k)

)
. The bias expansions (28) matches the corre-

sponding expansion for the GSBB/CGSBB (21) only if rb−1 = 0. If this is not the case, which bootstrap
approach produces a larger bias of the variance estimator depends on the values of the individual covariances.

5.2. Seasonal means case

Let the season s be fixed. We consider estimation of the seasonal mean µs. Under the condition A1 our sample
(X1, . . . , Xn) contains v1 observations from the season s. The asymptotic variance of

√
v1µ̂s is of the form

σ2
s,as =

∞∑
k=−∞

Cov (Xs, Xs+kd) . (29)

Let µ̂∗i be the bootstrap counterpart of µ̂i. Since the distance between two consecutive observations from the
season s is always equal to d, we express Var∗(

√
v1µ̂
∗
s), depending on the bootstrap approach, in terms of

Rn,cir(s, kd) or Rn(s, kd). Note that series {Xs+kd, k ∈ Z} is stationary. Let us recall that we bootstrap the
original sample (X1, . . . , Xn), not just the stationary subsample.

We denote the spectral density function of {Xs+kd, k ∈ Z} by

fs0 (ω) =
1

2π

∞∑
k=−∞

Cov (Xs, Xs+kd) exp(−ikdω), ω ∈ [0, 2π).
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5.2.1. Results for the CGSBB/GSBB

Similarly to the overall mean case, the bootstrap variance Var∗
(√
v1µ̂
∗
s

)
can be expressed as the weighted

average of Rn(s, k). Depending on the bootstrap approach, the relationship is either exact or approximate.

Theorem 5.9. Let {Xt, t ∈ Z} be a PC real-valued time series with period d such that
∑d
s=1 Var (Xs) +∑d

s=1

∑∞
k=−∞ |Cov (Xs, Xs+k)| <∞. Moreover, assume that A1 holds. Then for the CGSBB we get that

Var∗ (
√
v1µ̂
∗
s) (30)

= Rn,cir(s, 0) + 2
d

n

l−1∑
m=0

vb−1∑
k=1

(
vb−1 − k + I{rb−1≥<s−mb>}

)
Rn,cir(s, kd)

and for the GSBB we have that

Var∗ (
√
v1µ̂
∗
s) ≈ Rn(s, 0) + 2

d

n

l−1∑
m=0

vb−1∑
k=1

(
vb−1 − k + I{rb−1≥<s−mb>}

)
Rn(s, kd), (31)

where

E (Var∗ (
√
v1µ̂
∗
s)) (32)

= E

(
Rn(s, 0) + 2

d

n

l−1∑
m=0

vb−1∑
k=1

(
vb−1 − k + I{rb−1≥<s−mb>}

)
Rn(s, kd)

)
+ o

(
1

b

)
,

Var (Var∗ (
√
v1µ̂
∗
s)) (33)

= Var

(
Rn(s, 0) + 2

d

n

l−1∑
m=0

vb−1∑
k=1

(
vb−1 − k + I{rb−1≥<s−mb>}

)
Rn(s, kd)

)
+ o

(
b

n

)
.

Note that k is the distance between observations in a block of length b. In the formulas for the overall mean
case (Theorem 5.1) k = 1, . . . , b − 1, while in (30)-(31) k = 1, . . . , vb−1. In the overall mean case we use all
observations in the block and the maximal distance is b − 1. Here, we focus only on observations from the
season s and hence the maximal value of k is vb−1. The expression I{rb−1≥<s−mb>} in the formulas (30)-(31) is a
consequence of the fact that b− 1 may not be an integer multiple of the period length (rb−1 6= 0). Additionally,
among all blocks of a fixed length b, some may have more observations from the season s than others. For
instance, if b is an integer multiple of a period length (b = vbd), then all blocks have exactly the same number
of observations from the season s. But if b = vbd+ rb with rb 6= 0, then some blocks will contain vb observations
from the season s, while others vb + 1.

Below we provide the variance and bias expansions for Var∗
(√
v1µ̂
∗
s

)
. We omit the details of the proofs be-

cause the reasoning proceeds exactly as presented by Nordman (2009) for the overall mean of a stationary time
series with some adaptations to the case of the seasonal mean case considered here.

Theorem 5.10. Under conditions A0 - A4 and as n −→ ∞, the variance of the GSBB and the CGSBB
seasonal mean variance estimators is of the form

Var (Var∗ (
√
v1µ̂
∗
s)) =

b

n

4(2πd)2

3
(fs0 (0))

2
+ o

(
b

n

)
. (34)

When d = 1, i.e. data are stationary, the estimation of µs reduces to the estimation of µ and the formula
(34) exactly matches the formula in Proposition 2.2. In general case, the extra d2 in the first summand of (34)
is a consequence of the periodicity in the data.

Theorem 5.11. Assume that A0 - A2 hold. Moreover, let 1/b + b2/n = o(1) as n −→ ∞. Then for the
GSBB/CGSBB we have

E (Var∗ (
√
v1µ̂
∗
s)) = σ2

s,as −
1

b

∞∑
k=−∞,k 6=0

(rb−1 + dk) Cov (Xs, Xs+dk)

+
1

b

d−1∑
s̃=0

(
I{rb−1≥<s+d−s̃b>}

) ∞∑
k=−∞,k 6=0

Cov (Xs, Xs+dk) + o

(
1

b

)
, (35)

where σ2
as is given by (29) and b− 1 = vb−1d+ rb−1 with rb−1 ∈ {0, . . . , d− 1}, vb−1 ∈ N.
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As with the overall mean, (35) contains summands that depend on rb−1. In fact the expansion (35) depends
also on rb, because < s+ d− s̃b >=< s+ d− s̃rb >, where b = vbd+ rb, vb ∈ N and rb ∈ {0, . . . , d− 1.}. To be
able to minimize the MSE, as for the overall mean, we take b = vbd+ 1 and hence we get rb−1 = 0.
We denote by σ2∗

b,s,GSBB and σ2
b,s,CGSBB , the bootstrap variance Var∗

(√
v1µ̂
∗
s

)
obtained with the block length

b for the GSBB and the CGSBB, respectively. Applying Theorems 5.10 and 5.11 and setting the block length
b = vbd+ 1, vb ∈ N, we get the following expansion for the mean squared error

MSE
(
σ2∗
b,s,GSBB

)
= MSE

(
σ2∗
b,s,CGSBB

)
=
b

n
Ds(d) +

G2
s(d)

b2
+ o

(
b

n

)
+ o

(
1

b2

)
,

where Ds(d) = 4
3 (2πdfs0 (0))

2
and Gs(d) =

∑∞
k=−∞ d|k|Cov (Xs, Xs+kd) .

Taking

bs,opt = argminb{MSE(σ2∗
b,s)}.

we have that

bs,opt,GSBB = bs,opt,CGSBB = 3

√
2G2

s(d)

Ds(d)
3
√
n.

Thus, for both the GSBB and the CGSBB in the seasonal mean estimation problem, bs,opt is proportional to n1/3.

In practice one does not estimate the single seasonal mean, but all seasonal means µs, s = 1, . . . , d at the
same time. The data are bootstrapped once using some fixed b and all bootstrap estimates are computed. Thus,
to find bopt in this case, we propose instead minimizing MSE(σ2∗

b,s) to minimize
∑d
s=1MSE(σ2∗

b,s). Then

ball,opt = argminb

{
d∑
s=1

MSE(σ2∗
b,s)

}
,

which gives

ball,opt,GSBB = ball,opt,CGSBB = 3

√√√√2
∑d
s=1G

2
s(d)∑d

s=1Ds(d)

3
√
n.

Finally, ball,opt can be used to construct the simultaneous confidence intervals for the seasonal means.

Remark 5.6. In Section 4.1 we showed that the SBB for {Xt} is equivalent to the MBB for the d-variate
stationary time series. Since we consider rb−1 = 0 and consequently b = vbd + 1, one might think that we can
simply perform the MBB for the stationary time series {Xs+kd, k ∈ Z}, obtain the optimal block length voptb ,
and then use it to compute bopt for {Xt}. However, we would like to point out that this approach is not correct.
Note that by using the GSBB with b = vbd + 1, we obtain a bootstrap sample consisting of blocks that contain
vb or vb + 1 observations from a fixed season s. More specifically, for example, if s = 1, then the first selected
block contains vb + 1 observations from the first season. Subsequent d − 1 blocks each contain vb observations
from the first season, and so on, i.e., blocks numbered 1, d+ 1, 2d+ 1, . . . have vb + 1 observations from the first
season, and all others have only vb. On the other hand, when we apply the MBB to the stationary time series
{Xs+kd, k ∈ Z}, all bootstrap blocks have vb observations from the first season.

5.2.2. Results for the EMBB/CEMBB

Below we provide all the results for the EMBB/CEMBB. We only comment on those that differ from the
corresponding ones in Section 5.2.1.

Theorem 5.12. Let {Xt, t ∈ Z} be a PC real-valued time series with period d such that
∑d
s=1 Var (Xs) +∑d

s=1

∑∞
k=−∞ |Cov (Xs, Xs+k)| <∞. Moreover, assume that A1 holds. Then for the CEMBB we get that

Var∗ (
√
v1µ̂
∗
s) (36)

≈ Rn,cir(s, 0) + 2
1

b

d∑
s1=1

vb−1∑
k=1

(
vb−1 − k + I{rb−1≥<s−s1>}

)
Rn,cir(s, kd),

where for the CEMBB

E (Var∗ (
√
v1µ̂
∗
s)) (37)

= E

(
Rn,cir(s, 0) + 2

1

b

d∑
s1=1

vb−1∑
k=1

(
vb−1 − k + I{rb−1≥<s−s1>}

)
Rn,cir(s, kd)

)
+ o

(
1

b

)
,
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Var (Var∗ (
√
v1µ̂
∗
s)) (38)

= Var

(
Rn,cir(s, 0) + 2

1

b

d∑
s1=1

vb−1∑
k=1

(
vb−1 − k + I{rb−1≥<s−s1>}

)
Rn,cir(s, kd)

)
+ o

(
b

n

)
.

Moreover, for the EMBB (36), (37), (38) hold with Rn,cir(·, ·) replaced by Rn(·, ·).

As in the CGSBB/GSBB case, the expression I{rb−1≥<s−s1>} is a consequence of the fact that a block of
length b − 1 may not be an integer multiple of the period length (rb−1 6= 0) and furthermore that the consid-
ered block starts with an observation from the season s1 (s1 can take any value in the set {1, . . . , d}). Since
s = s1 + (s − s1) and we are interested only in the observations from the season s, we consider only the ob-
servations Xs1+(s−s1)+wd, w ∈ N, belonging to this block. Finally, the term I{rb−1≥<s−s1>} is nonzero, if the
observation from the season s is among the last rb−1 observations in the block starting with the observation
from the season s1 and having length b− 1. Recall that we are considering a block of length b− 1, since we are
interested in the distance between the observations. In the case of the overall mean, all observations in a block
of length b were used and hence the maximal distance between them was b− 1. Here, we have only observations
from one season and the maximal distance is vb−1.
Note that the variance expansions of both the EMBB and the CEMBB for the seasonal means are approximate.
Recall that for the overall mean, the variance expansions for the CGSBB and the CBB are exact. The same
phenomenon is observed for the CGSBB in the case of seasonal means (see Theorem 5.10. Since the CGSBB
preserves the periodicity of the data in the bootstrap sample we have exactly the same number of observations
from each season as in the original sample. It no longer true for the CEMBB. The expansion would only be
exact if the block length is an integer multiple of the period length.

Similarly to the GSBB/CGSBB case one may obtain the following results.

Theorem 5.13. Under conditions A0 - A4 and as n −→ ∞, the variance of the EMBB and the CEMBB
seasonal mean variance estimators is of the form

Var (Var∗ (
√
v1µ̂
∗
s)) =

b

n

4(2πd)2

3
(fs0 (0))

2
+ o

(
b

n

)
. (39)

Theorem 5.14. Assume that A0 - A2 hold. Moreover, let 1/b + b2/n = o(1) as n −→ ∞. Then for the
EMBB/CEMBB we have

E (Var∗ (
√
v1µ̂
∗
s)) = σ2

s,as −
1

b

∞∑
k=−∞,k 6=0

(rb−1 + dk) Cov (Xs, Xs+dk)

+
1

b

d∑
s1=1

(
I{rb−1≥<s−s1>}

) ∞∑
k=−∞,k 6=0

Cov (Xs, Xs+dk) + o

(
1

b

)
. (40)

As in the overall mean case (see Theorem 5.8) the bias expansion depends on rb−1. To minimize the MSE, we
take b = vbd+ 1 to get rb−1 = 0 (as we did for the GSBB/CGSBB). This leads to the same results as obtained
for the GSBB/CGSBB (see Section 5.2.1), i.e.

bs,opt,EMBB = bs,opt,CEMBB = 3

√
2G2

s(d)

Ds(d)
3
√
n.

and

ball,opt,EMBB = ball,opt,CEMBB = 3

√√√√2
∑d
s=1G

2
s(d)∑d

s=1Ds(d)

3
√
n,

where all constants are defined in Section 5.2.1.

Remark 5.7. Note that the bias expansions (40) coincides with the corresponding expansion for the GSBB/CGSBB
(35) only when rb−1 = 0. In all other cases, the indicator functions appearing in both equations are not equal.
Therefore, which bootstrap method produces larger bias of the variance estimator depends on the values of the
individual covariances.

6. Summary and conclusions

In this paper, we considered four block bootstrap approaches designed for periodic time series. These are the
GSBB, CGSBB, EMBB and CEMBB methods. We focused on two parameters: the overall mean and the
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seasonal means. In all cases, we tried to solve the problem of the block length choice. First of all, our results
indicated choice of the block length that is equal to an integer multiple of the period length plus one. Such
choice guarantees for the GSBB and the CGSBB that in the bootstrap algorithm all possible blocks will be
used. Furthermore, in all cases, we found the optimal bootstrap block length bopt minimizing the MSE of the
corresponding bootstrap variance estimator and we obtained bopt proportional to n1/3. Thus, the order is the
same as in the stationary case for the overall mean when the MBB or the CBB is used. One may expect that
this property will hold for other bootstrap methods for PC time series.
In Dudek et al. (2016) the authors showed that the Tapered Block Bootstrap can be adapted to PC processes.
In the stationary case, bopt for the TBB is proportional to n1/5. However, since already in the stationary case
this result was technically more challenging than the corresponding one for the MBB, we expect it for PC
time series to be much more difficult than proofs presented in this paper. Also it seems possible to modify the
Stationary Bootstrap for periodic sequences. In this case we believe that the MSE expansion will match (up to
some constants) to that obtained by Nordman (2009).
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