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Abstract: The AMPERA (Atmospheric Measurement of Potential and ElectRic field on Aircraft)
electric field network was integrated on the Falcon 20 (F20) of SAFIRE (the French facility for airborne
research) in the framework of EXAEDRE (EXploiting new Atmospheric Electricity Data for Research
and the Environment) project. From September 2018, an in-flight campaign was performed over
Corsica (France) to investigate the electrical activity in thunderstorms. During this campaign, eight
scientific flights were done inside or in the vicinity of a thunderstorm. The purpose of this paper is to
present the AMPERA system and the atmospheric electrostatic field recorded during the flights, and
particularly during the pass inside electrified clouds, in which the aircraft was struck by lightning. The
highest value of atmospheric electrostatic field recorded during these flights was around 79 kV·m−1

at 8400 m of altitude. A normalization of these fields is done by computing the reduced atmospheric
electrostatic field to take into account the altitude effect (ratio between the atmospheric electrostatic
field and the air density). Most of the significant values of reduced atmospheric electrostatic field
magnitude retrieved during this campaign occur between around 5.5 and 9.5 km and are included
between 50 and 100 kV·m−1. The highest value measured of the reduced atmospheric electrostatic
field is 194 kV·m−1 during the lightning strike of the F20. The merging of these results with data
from former campaigns suggests that there is a threshold (depending of the aircraft size) for the
striking of an aircraft.

Keywords: thunderstorm; lightning strike; aircraft; electric field; AMPERA

1. Introduction

In the 1980s, flight campaigns have been performed to understand the physical pro-
cesses occurring during a lightning strike to an aircraft when it flies in areas where the
atmospheric electrostatic field generated by the thundercloud is high. This field was mea-
sured by an electric field mills network on the skin of the aircraft, and its value just before
a lightning strike to the aircraft was recorded. During the C160 campaign performed in the
1980s [1,2], six values of atmospheric electrostatic field were recorded and are associated
with a triggered lightning.

A new version of this electric field mills network, called AMPERA (Atmospheric
Measurement of Potential and ElectRic field on Aircraft), has been developed by ONERA
(Office National d’Etudes et de Recherches Aérospatiales) since 2010. In September 2018, an
in-flight campaign was performed over Corsica (France) in the framework of the EXAEDRE
(EXploiting new Atmospheric Electricity Data for Research and the Environment) project to
investigate the electrical activity in thunderstorms. During this campaign, eight scientific
flights were done with a Falcon 20 (F20) of SAFIRE (the French facility for airborne research)
inside or in the vicinity of thunderstorms. During the flight of the 8 of October 2018, the
aircraft was struck by lightning at an altitude of 8400 m.
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The purpose of this paper is to present the AMPERA system and the atmospheric elec-
trostatic field recorded during EXAEDRE flights and then discuss a method to compare the
atmospheric electrostatic field values measured by C160 and F20 during lightning strikes.

2. AMPERA System
2.1. Electric Field Mill Network on Falcon 20

Since the 1940s, there have been many studies estimating the atmospheric electrostatic
field in fair weather conditions as well as in the vicinity of and inside thunderstorms. In
this framework, different kinds of sensors have been developed. There are some different
techniques to measure the atmospheric electrostatic field [3,4]. Many studies have used
different kinds of sensors, for example, the cylindrical field mills [5], the rotating field mills
([6] on airborne, [7] on balloon), the balloon-borne field meters [8–10], airborne field meters
e.g., [11], or the rocket-borne sensors [12]. From this perspective, airborne field mills have
been adopted for atmospheric research by ONERA for decades [13] and tested on different
kinds of aircraft (e.g., C160 Transall [1]; Gloster Meteor NF11 [14]; Falcon 20, nowadays).

The AMPERA network implemented on the Falcon aircraft for the EXAEDRE cam-
paign is the same that the one used during the HAIC (High Altitude Ice Crystals) cam-
paign [15]. An illustration of the field mill used is shown in Figure 1a. The characteristics
and performance of the sensor, determined from laboratory tests, are detailed in Table 1.
The field mill measures positive values of the electric field when the electric field direction
at the field mill head is outwards.
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Figure 1. Electric field mill used during the EXAEDRE campaign. (a) General view of the sensor;  
(b) Sensor implemented on a dummy window. 

Table 1. Performance and characteristics of field mill of the AMPERA system. 

Physical Mass 0.870 kg 
 Power 28 V (DC); 25 W max 
 Size 120 mm × 115 mm 

Dynamic Range  +/−5 V/m to +/−1 MV/m 

Threshold of Detection 
Below 5 kV/m 5 V/m 
Above 5 kV/m 20 V/m 

Sampling Rate  10 Hz 

The integration of the eight field mills on the F20 was done by the SAFIRE team (Ta-
ble 2). Two field mills were installed on the first two windows of the cabin (cf. Figure 1b). 
Four were integrated to the back of the pods. These locations enable having three couples 
of sensors, which are symmetrically placed from the fuselage. The two last ones are in-
stalled on ventral traps of the fuselage, one at the front and one at the rear (Figure 2). 

Figure 1. Electric field mill used during the EXAEDRE campaign. (a) General view of the sensor;
(b) Sensor implemented on a dummy window.

Table 1. Performance and characteristics of field mill of the AMPERA system.

Physical Mass 0.870 kg
Power 28 V (DC); 25 W max

Size 120 mm × 115 mm

Dynamic Range +/−5 V/m to +/−1 MV/m

Threshold of Detection
Below 5 kV/m 5 V/m
Above 5 kV/m 20 V/m

Sampling Rate 10 Hz

The integration of the eight field mills on the F20 was done by the SAFIRE team
(Table 2). Two field mills were installed on the first two windows of the cabin (cf. Figure 1b).
Four were integrated to the back of the pods. These locations enable having three couples of
sensors, which are symmetrically placed from the fuselage. The two last ones are installed
on ventral traps of the fuselage, one at the front and one at the rear (Figure 2).
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Table 2. Name and location of the field mills installed on the F20.

Name Number Aircraft Location

P1 EFM1 Back of the external left pod
P2 EFM2 Back of the internal left pod
LW EFM3 Left window (1st left window)
RW EFM4 Right window (1st right window)
P5 EFM5 Back of the internal right pod
P6 EFM6 Back of the external right pod
FV EFM7 Front ventral
RV EFM8 Rear ventral
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Figure 2. Photography of the Falcon 20 (F20) of SAFIRE (https://www.safire.fr/en/, accessed on
2 December 2021) on which the location of the eight field mills is shown.

The field mills P1, P2, P5, and P6 are installed either on the rear of the probes (P2,
P5, P6) or on the rear on the fastening system (P1). Unfortunately, a detailed meshing of
the fastening system for P1 and P6 was not available, leading to a rough approximation
of the P1 and P6 coefficients of Equation (1) (see below). The analysis of the flights has
shown that the sensors P1 (EFM1) and P6 (EFM6) cannot be used during the campaign
and are removed from the inverse method. So, the analysis has been performed by using
six sensors.

2.2. Inverse Method

Based on the assumption of a uniform atmospheric electrostatic field around the
aircraft [6,13,16–18], the electric field on the aircraft skin can be expressed by the following
linear relationship:

Emi = αiEox + βiEoy + γiEoz + λiVa, (1)

where Emi is the electric field recorded by the field mill n◦i; Emi is an electric field perpen-
dicular to the aircraft skin; Eox, Eoy, and Eoz are the three components of the atmospheric
electrostatic field in the aircraft reference (cf. Figure 3); Va is the aircraft potential; it is
associated with the net electrical charge on the aircraft. The electrical charge and the poten-
tial are linked by the capacitance of the aircraft; αi, βi, λi, and γi are constant coefficients.
Note that these coefficients can be positive or negative except for the λi coefficients, which
have all the same sign. This is shown by Figure 4a, which plots the electric field measured
on the aircraft skin when there is only potential. The figure shows that the electric field
variations are similar (in the same direction and with a same feature) from one field mill to
another. Figure 4b illustrates the field orientation when the aircraft potential is negative in
fair weather where the atmospheric electrostatic field can be neglected.

Figure 5a shows an event where the aircraft is electrically polarized by a mainly
vertical atmospheric electrostatic field. In this case, field mills on windows measure
negative values until the others placed under the aircraft wings and fuselage measure
positive values. Figure 5b shows the effect of the direction of the atmospheric electrostatic

field
→
E0 on the electric field at the aircraft skin.

https://www.safire.fr/en/
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The atmospheric electrostatic field components and the electric potential of the aircraft
are computed from: 

Eox
Eoy
Eoz
Va

 = AT
(

A.AT
)−1

 Em1
...

Em6

, (2)

where A =

 α1 · · · λ1
...

. . .
...

α6 · · · λ6

.

In the EXAEDRE campaign, the A matrix coefficients have been derived in two steps.
In the first step, a Poisson equation solver has been used to numerically compute the value
of Emi based on the three-dimensional shape model (cf. Figure 3) of the Falcon 20 aircraft.
Note that the geometry and the associated meshing is an approximation of the real aircraft.
From a real geometry of the F20, we add the probes and their fastening systems (which are
complex 3D objects).

In a second step, the computed coefficients have been corrected using in-flight mea-
surements. During the take-off and initial climb phase, the sensors measure large values
mainly due to the electric charging of the aircraft due to the engines (Emi ∼ λiVa). These
measurements have been used to tune the potential coefficients as follows:

• The field mill on the right window (RW, EFM4) is chosen as the reference because it is
in a low curvature part of the aircraft where the geometric approximation is small;

• The ratio between the electric field measured Emi
Em4

has been computed;

• The coefficients of potential are corrected by using the following expression: λi =
Emi
Em4

λ4
where λ4 is the potential coefficient associated with the field mill of the right window.

The methods proposed by Winn [19], Koshak [17], and Bateman et al. [20] were not
applied because calibration flights have been done either in cloudy conditions where the
atmospheric electrostatic field is unknown or at too high altitude where it is too weak to be
used. So, no correction has been applied on coefficients associated with the components
of the atmospheric electrostatic field. The matrix A obtained after the calibration for the
EXAEDRE campaign is shown in Table 3.

Table 3. Matrix A after the calibration method.

Name Number Eox Eoy Eoz Va

P2 EFM2 1.23 3.45 −5.26 0.55
LW EFM3 2.00 1.41 0.70 0.24
RW EFM4 2.00 −1.14 0.70 0.24
P5 EFM5 1.23 −3.45 −5.26 0.55
FV EFM7 2.79 0 −2.06 0.29
RV EFM8 0.1 0 −1.65 0.19

Mach [21] has shown that when an aircraft flies inside thunderclouds, there are
some nonlinear terms to add to Equation (1). We assume that these nonlinear terms
are associated with the charging of the aircraft’s painted layers due to a part of the
triboelectricity effects associated with charge exchanges during impingements of the
ice particles with the painted layer. Indeed, most of the charge due to triboelectricity
goes to the aircraft grounding, and a small part remains locally stored on the dielectric
painted layer, cockpit windows, and radome. This stored charge is caught on the surface
and typically relaxed to the aircraft grounding with a decay time of several minutes. We
choose to eliminate this nonlinear effect with a first-order high-pass filter with a cut-off
frequency equivalent to 5 min applied on the electric field measurements Emi. During 5
min, the aircraft has flown a distance of about 60 km. By applying this filter, we remove
the offset component due to the charge stored on the dielectric painted layer that we
observe when the aircraft exits the cloud. The objective of this filter is not to filter the
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electric field component during pass inside a cloud (around few minutes duration) but
to reset the offset before a new pass inside a cloud.

2.3. Inverse Method Error Analysis

Mazur et al. [22] and Mach et al. [23] have shown that there are different sources of
error associated with the methodology used. The accuracy is dependent on two causes: the
A coefficient matrix that reflects the airplane form factor, i.e., the link between ambient and
local field, and the measurement of the electrostatic field on the aircraft surface.

The total error on the evaluation of the aircraft potential Va and each component of
the atmospheric electrostatic field are computed by considering a random error on each
measurement (Emi) and on each computed element of the matrix A. Despite a careful
sensor calibration in laboratory and on the aircraft, we consider an overall relative
error in the measurement of 1%. For the matrix coefficient, A, the considered error was
+/−5%. The errors depend on the electrical state of the atmosphere (Eox, Eoy, and Eoz)
and the relative magnitude of the aircraft potential. The relative error computation
has been calculated with an atmospheric electrostatic field of 1 V·m−1 in the aircraft
reference by considering the six electric field mills in the EXAEDRE configuration. Each
component of the atmospheric electrostatic field is fixed to 1 V·m−1. For this state of
the atmosphere, the relative error on each electrostatic field component, on the aircraft
potential, and on the magnitude of the atmospheric electrostatic field has been estimated
for different values of aircraft potential.

With this theoretical evaluation, we obtain an error on the evaluation of each
component around 10 to 13% for the AMPERA system configuration used during the
EXAEDRE campaign. For the SAFIRE Falcon 20 in EXAEDRE, due to this error, the
minimum detectable atmospheric electrostatic field is about 1000 V·m−1 when the
aircraft potential has a magnitude of 100 kV. This finding is not harmful in the context of
the atmospheric electrostatic field assessment in thunderstorms because the expected
values are higher than this threshold. However, it makes the calibration difficult with
maneuvers in fair weather, knowing that the potential values in these cases for the
SAFIRE Falcon 20 usually reach 40 kV; that is to say, a minimum detectable atmospheric
electrostatic field is 400 V·m−1, which is higher than the fair weather electrostatic field
ranges between some. If the aircraft potential is 0 V, we are able to detect an atmospheric
electrostatic field of about 10 V·m-1.

The estimation of the theoretical error is based on the ratio between the aircraft
potential and the atmospheric electrostatic field magnitude. This ratio has been computed
for all the EXAEDRE campaign flights where the magnitude of the electrostatic field was
higher than 6 kV·m−1. This threshold is based on the maximum aircraft potential value
measured during the campaign.

Figure 6 represents the normalized cumulative distribution of these ratios for the
whole of flights in the cases where the atmospheric electrostatic field magnitude was higher
than 6 kV·m−1. For 90% of the cases, the ratio between the aircraft potential and the
magnitude of the atmospheric electrostatic field is weaker than 10, which corresponds
to a maximum global error on each component between +/−5 and +/−8% for the six-
sensor configuration. In the case of the atmospheric electrostatic field magnitude, this
corresponds to a maximum global error of +/−4%. This global error remains below
+/−5% until the aircraft potential is 25 times higher than the atmospheric electrostatic
field magnitude, which covers the majority of cases (around 99%) encountered during the
campaign (Figure 6).
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3. Atmospheric Electrostatic Field Measurements
3.1. EXAEDRE Campaign

The EXAEDRE (EXploiting new Atmospheric Electricity Data for Research and the
Environment) project (https://www.hymex.org/exaedre/ accessed on 2 December 2021)
aims to investigate the electrical activity in thunderstorms. The Special Observation
Period (SOP) of this in-flight campaign was performed over Corsica (France) in September
and October 2018. This project includes a part of ground instrumentation, as the site of
San Giuliano (INRA: Institut National de la Recherche Agronomique) in Corsica, and
an airborne component composed by the SAFIRE Falcon 20, on which several sensors
have been integrated: four microphysical probes (a Cloud Droplet Probe (CDP-2, [24]),
a 2D-Stereo probe (2D-S, [25]), a Precipitation Imaging Probe (PIP, [24]), and a Cloud
Particle Imager (CPI, [26])) operated by the French Laboratoire de Météorologie Physique
(LaMP), the 95-GHz Doppler Radar System Airborne (RASTA) cloud radar [27,28] and the
AMPERA network.

The analysis of the comparison and the combination of the dataset from different
instruments will be done in future communication. This paper is only focused on the
in-flight electric field measurements.

3.2. Electric Field Measurement during EXAEDRE Campaign

Eight scientific flights were performed during the SOP (Special Observation Period) of
this campaign to investigate different convective systems in particular by describing legs
inside the clouds at different altitude. The flight starts generally at high altitude around
8000 or 9000 m; then, the altitude is decreased with passes around 6000 m and 4500 m.
Longitude, latitude, and altitude (and other aircraft parameters such as pitch or roll) are
synchronized with the AMPERA measurement. During the flight 6 (IOP 6), several sensors
have too noisy measurements to be used as input of the inverse method. The trajectories of
the seven flights investigated are presented in Figure 7.

AMPERA is able to measure and retrieve the atmospheric electrostatic field, partic-
ularly during periods with strong atmospheric electrostatic field identifiable by a strong
electric polarization of the aircraft on the field mill measurements. In flight IOP 4, the time
variations of field mill value are shown in Figure 8. In this figure, the entry and the exit of
the cloud are shown. During this flight, the northeast of the Sardinia Island is explored to
catch moderate convective cells developing in a west flow.

https://www.hymex.org/exaedre/
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Figure 8. Flight IOP 4 between 07:26 and 07:35 UTC: illustration of the cloudy area in which the
electric field has been measured, which is followed by an area with aircraft potential, before leaving
the cloud. During the pass in the cloud area, the aircraft flies at an altitude of 7300 m (+/−20 m).
(a) Temporal evolution of measurements of the six field mills. (b) In the same period, atmospheric
electrostatic field magnitude, its components (left axis), and the aircraft potential (right axis) retrieved
from the six field mills.
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At the beginning of the cloud phase, multiple electric polarizations of the aircraft occur,
horizontal and vertical. Around 07:28 UTC, we observe a vertical electric polarization
of the aircraft. The electric fields measured by the field mills on the fuselage windows
(LW, RW) decrease and become negative while on the other field mills increase to positive
value. After 07:29 UTC, the electric fields measured by all the field mills are negative and
have similar variations. This indicates that the field mill values are driven by the aircraft
potential variation. Just before 07:33 UTC, the aircraft leaves the cloud and flies in clear
air, which is visible on the measurement. The inverse method was used to compute the
atmospheric electrostatic field and the aircraft potential. At the time corresponding to the
maximum electric polarization of the aircraft, the atmospheric electrostatic field reaches
35 kV·m−1 and is mainly vertical. In the second part of the cloud where only potential
is measured, the atmospheric electrostatic field magnitude is between 0.5 and 2 kV·m−1.
Outside the cloud, the magnitude of the electrostatic field is very weak around 40 V·m−1.
This low value can be resolved because the aircraft potential for this case is also very weak
around 0 kV after 07:33 UTC.

Other examples are shown in Figure 9 for two crossings of cloudy regions during
the flight IOP 8, with different electric polarizations of the aircraft. The conditions of this
flight are an upper-level flow low moving to the northeast of Spain, which lead to the
development of convective cells southeast of the Corsica Island in southwest flow. The
upper part of the figure represents the electric field measurements from the six field mills
used to retrieve the atmospheric electrostatic field and its components. The bottom part
represents the magnitude of the atmospheric electrostatic field, its components, and the
aircraft potential derived from the field mills measurements. In both cases, the vertical
electric polarization of the aircraft is shown by the field mills measurements. In both
cases, the atmospheric electrostatic field is mainly vertical (high values of Eoz compared to
Eox and Eoy).
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Figure 9. Flight IOP 8–between 09:20:30 and 09:26 UTC and 10:20 and 10:23 UTC: (a,b): Illustration of polarization of the
aircraft measured by the field mills. (c,d): For the same periods, temporal evolution of magnitude of the atmospheric
electrostatic field, its components (left axis), and aircraft potential (right axis) retrieved by the six field mills measurements.
During the both passes, the aircraft flies at an altitude of 7500 m (+/−20 m).
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3.3. Magnitude of Atmospheric Electrostatic Field Retrieved during the EXAEDRE Campaign

Dye and Bansemer [29] considered that an atmospheric electrostatic field is strong
inside a cloud as soon as it is higher than 10 kV·m−1. This value is consistent with the
AMPERA sensitivity, so we focus on these values for the next analysis. Figure 10 shows the
values of the atmospheric electrostatic field magnitude for the seven IOP flights versus the
altitude. Only values higher than 10 kV·m−1 are plotted. The highest value is 79 kV·m−1

and was measured during flight IOP 8 when the aircraft was struck by the lightning
flash. It can be noted that the range of the aircraft potential values corresponding to
these values of atmospheric electrostatic field magnitudes (higher than 10 kV·m−1) spread
from 0.6 to 432 kV. The extrema are −432 kV and 325 kV. The atmospheric electrostatic
field of 79 kV·m−1 associated with the lightning strike to aircraft is coherent with former
measurements (realized with balloons [30,31]).
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4. Atmospheric Electrostatic Field Measurements

In this part, the analysis is focused on flight IOP 8 during which the lightning struck
the aircraft. The aircraft flew inside and near isolated convective areas by describing some
loops. During the measuring phase of the flight, the altitude of the aircraft was from
6000 to 10,000 m. At 10 h 40′59” GMT, the aircraft was struck by lightning (the lightning
flash attached on the boom of the F20), and the crew had to stop the flight. The lightning
occurred when the aircraft was at 8400 m near a convective zone.

Figure 11a shows the time variation of the electric field measured by each electric field
mill for the last 20 min before the lightning strike. The field mills measured the electric field
from −140 to 410 kV·m−1. The duration can be split into five main sequences associated
with a penetration of the aircraft inside the cloud (cf. Figure 11a, sequences are the periods
between the arrows). The period during which the electric field measured by the sensors is
low corresponds to the flight track mainly outside or near the cloud except for the second
point. In Figure 11b, 2 min around the lightning strike are plotted. At 10 h 40′30”, the
measurements show that there is a vertical polarization of the aircraft. The electric fields
measured by the field mills on the fuselage windows (LW, RW) become negative, while on
the other field mills, they are positive.

The inverse method has been applied to these five sequences. Figure 12a shows that
the main component of the atmospheric electrostatic field is vertical (downward) and
that the absolute maximum value of this component is 75 kV·m−1. The aircraft potential
reaches a maximum of −400 kV. It decreases a few seconds later to −159 kV just before
the lightning strike. Figure 12b shows the magnitude of the atmospheric electrostatic
field during these last 20 min. The atmospheric electrostatic field leading to the lightning
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strike is of 79 kV·m−1, and the red point on the plot represents this value just before the
lightning strike to the F20. One second later, the atmospheric electrostatic field value is
about 27 kV·m−1.
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a lightning strike for the C160 [1,2] and the F20. 

  

Figure 11. (a) Time evolution of the electric field measured by each field mill on the 8 of October 2018 (IOP 8). The time
is UTC. The black arrows show periods where the aircraft was outside the clouds. The altitude of the aircraft was about
7500 m before 10:24 UTC and about 8400 m after this time and before the next phase of cloud exploration at 10:28 UTC.
(b) Electric fields measured by the six field mills on the fuselage around the lightning strike time. During this pass, the
altitude of the aircraft was about 8400 m.
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Tables 4 and 5 show the values of the atmospheric electric field measured just before a
lightning strike for the C160 [1,2] and the F20.

Table 4. Atmospheric electrostatic field measured on C160 just before the lightning strike to the
aircraft.

N◦ Ex (kV/m) Ey (kV/m) Ez (kV/m) E (kV/m) V (kV) Alt (km)

1 33 −19 −40 55 −1950 4.6
2 45 −7 −26 52 −840 4.2
3 31 15 −60 69 85 4.2
4 −30 14 −29 44 −157 4.2
5 58 −5 17 61 −1335 4.2
6 37 −36 −54 75 −1890 4.2
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Table 5. Atmospheric electrostatic field measured on F20 just before the lightning strike to the aircraft.

N◦ Ex (kV/m) Ey (kV/m) Ez (kV/m) E (kV/m) V (kV) Alt (km)

1 −4 −23 −75 79 −159 8.4

A direct comparison of the data from the C160 and the F20 is shown in Figure 13. In
this figure, we can observe that the values associated with lightning strike of the aircrafts
are lower for the C160 than for the F20. However, we also see that a direct comparison is
not obvious, because the size of these aircrafts is quite different. The C160 is about twice as
long as a F20. Moreover, the altitudes of the lightning are also different.
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Lalande et al. [32] have shown that lightning leader inception depends on the air den-
sity and on the electric length of the object from which the lightning flash develops [33]. In
order to take into account these dependencies, the atmospheric electrostatic field measured
by the F20 has been post-processed as follows:

• The effect of altitude is taken into account by dividing the atmospheric electrostatic
field value by the relative air density at the flight level. Neglecting the effect of
humidity, the relative air density is given by the following expression:

δr =
P
P0
× T0

T
, (3)

where P0 and T0 (P0 = 1013.25 hPa and T0 = 288.15 K) are the international standard at-
mosphere pressure and temperature at the mean sea level (atmosphere from the ICAO:
International Civil Aviation Organization). P and T are the pressure and temperature
at the flight level. Derived from the hydrostatic equation and the temperature lapse
rate in the troposphere from the ICAO, P and T can be expressed as a function of the
altitude z (km) by using:

P(z) = P0 ×
(

1 +
β× z

T0

) −g
R×β

, (4)

T(z) = T0 + β× z, (5)

where β is the lapse rate of the international standard atmosphere and is equal to
−6.5 K·km−1; R is the specific constant of the dry air ≈287 J·K−1·kg−1; and g is the
standard acceleration due to gravity equal to 9.80665 m·s−2. The use of the standard
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atmosphere parameter (ICAO) is chosen because we perform some comparison with
older campaigns where the atmospheric parameters are no longer available.

• The electrical length of the aircraft depends on the direction of the atmospheric electric
field in regard to the aircraft orientation. If the electric field component is vertical, the
length is the height of the aircraft. If the field is along the fuselage, the electrical length
is the aircraft length. For a given atmospheric electrostatic field direction, the electrical
length H of the aircraft is computed as follows:

# The geometry of the aircraft is projected on a line generated by the field direc-

tion
→
E0 (cf. Figure 14);

# The electrical length of the aircraft for this electric field direction is the distance
H (cf. Figure 14).
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this low amount of lightning strike data to define an accurate frontier between no risk and 
risk of lightning strike of the aircraft. On the C160, we do not observe any lightning strike 
for a reduced atmospheric electrostatic field lower than 60 kV·m-1. On the F20, we can go 
further because we have all the recordings of the field mills. 

Figure 14. Illustration of the computation of electrical length H of the aircraft for a given direction of
the atmospheric electrostatic field.

The result of this processing is shown in Figure 15. The module of the atmospheric
electrostatic field brought back to the mean sea level (reduced atmospheric electrostatic
field) is plotted as a function of the electrical length of the aircraft. The red circle is
associated with the lightning strike to the F20 of the 8 of October 2018 (Figure 12b). The
blue diamonds correspond to the lightning strikes of the C160. The figure shows the effect
of the electrical length on the lightning-triggered threshold. The longer the aircraft is, the
lower the reduced atmospheric electrostatic field to trigger lightning is. It is not easy from
this low amount of lightning strike data to define an accurate frontier between no risk and
risk of lightning strike of the aircraft. On the C160, we do not observe any lightning strike
for a reduced atmospheric electrostatic field lower than 60 kV·m-1. On the F20, we can go
further because we have all the recordings of the field mills.
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Figure 16a represents the reduced atmospheric electrostatic field and the associated
electrical length for the seven IOP flights of EXAEDRE with a colored differentiation
between the flights. The IOP 8 flight presents a few values higher than 150 kV·m−1 for a
small electrical length (representing a vertical polarization of the aircraft). For the same
flight, some values are ranging between 150 and 170 kV·m−1 for the higher electrical length
of the F20 associated mainly to a horizontal polarization. It can be also noted that another
flight presents reduced atmospheric electrostatic field values higher than 150 kV·m−1 (also
mainly to a horizontal polarization), the IOP 2, a flight during which the aircraft was able
to fly in deep convective clouds. This fact is also seen in Figure 16b, where the atmospheric
electrostatic field magnitude brought back to the mean sea level is plotted as a function
of the altitude (with the differentiation of the flight by color). The highest values (for IOP
8 and IOP 2) were measured between 7.9 and 8.4 km. These two altitudes allowed the
aircraft to fly close to the convective cells without being in the convective core. Between
5.5 and 9.5 km, a reduced atmospheric electrostatic field value of 60 kV·m−1 (or higher) is
commonly measured (cf. Figure 16a) inside or in the vicinity of different convective clouds
during the EXAEDRE campaign without triggering lightning on the F20. On contrary, for
the C160, this value can generate a lightning strike to this aircraft (cf. Figure 15).
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is associated with the value of the aircraft lightning strike of the F20 during the IOP 8. (b) The same figure as Figure 10 but
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5. Conclusions

During the EXAEDRE in-flight campaign, ONERA has measured the atmospheric
electrostatic field by using the AMPERA system integrated on the Falcon 20 of SAFIRE.
This campaign took place in Corsica in September and October 2018. The AMPERA system
is composed of a set of eight field mill sensors. Due to the configuration of two sensors, to
retrieve the atmospheric electrostatic field, six sensors have been used. The evaluation of
the error for this configuration shows that the maximum global error on each atmospheric
electrostatic field component ranges between +/−5 and 8%, and there is a maximum global
error of 4% for the atmospheric electrostatic field magnitude when the aircraft potential is
lower than 10 times the value of the component (or the magnitude of the electrostatic field),
which represents 90% of the cases.

Most of the significant values of atmospheric electrostatic field magnitude retrieved
during this campaign occur between 5.5 and 9.5 km, which is consistent with past studies
that describe the altitude of initiation of lightning flash [34,35]. The highest value of
electrostatic field recorded during these flights was around 79 kV·m−1 at 8400 m of altitude,
which is equivalent to a reduced atmospheric electrostatic field of 194 kV·m−1.

In order to compare this value to the ones obtained during the C160 in-flight campaign,
a method was proposed to take into account the altitude effect and the size of the aircraft.
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The results show that the longer the aircraft is, the lower the reduced atmospheric electric
field to trigger a lightning. From the few measured points (several for the C160, but only
a single lightning strike for the F20 during the EXAEDRE campaign), it is not possible to
infer a lightning strike threshold for a given aircraft. On contrary, the hours of flight of
the F20 show that for a reduced atmospheric electrostatic field lower than 160 kV·m−1, no
lightning strike of the aircraft occurred, even if natural lightning flashes occurred in the
surrounding of the plane (in an area of a few kilometers to 30 km).
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