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ABSTRACT Integral equation formulations are a competitive strategy in computational electromagnetics
but, lamentably, are often plagued by ill-conditioning and by related numerical instabilities that can
jeopardize their effectiveness in several real case scenarios. Luckily, however, it is possible to leverage
effective preconditioning and regularization strategies that can cure a large majority of these problems. Not
surprisingly, integral equation preconditioning is currently a quite active field of research. To give the reader
a propositive overview of the state of the art, this paper will review and discuss the main advancements in
the field of integral equation preconditioning in electromagnetics summarizing the strengths and weaknesses
of each technique. The contribution will guide the reader through the choices of the right preconditioner
for a given application scenario. This will be complemented by new analyses and discussions which will
provide a further and more intuitive understanding of the ill-conditioning of the electric field (EFIE),
magnetic field (MFIE), and combined field integral equation (CFIE) and of the associated remedies.

INDEX TERMS Integral equations, boundary element method, computational electromagnetic, precondi-
tioning, EFIE, MFIE.

I. INTRODUCTION

INTEGRAL equation formulations, solved by the bound-
ary element method (BEM), have become a well estab-

lished tool to solve scattering and radiation problems in
electromagnetics [1]–[4]. What makes these schemes so
suitable for electromagnetic analyses is that, differently
from approaches based on differential equations such as
the finite element method (FEM) or the finite-difference
time-domain method (FDTD), they naturally incorporate
radiation conditions without the need for artificial absorbing
boundary conditions, they only set unknowns on boundary
surfaces (two-dimensional manifolds) instead of discretizing

the entire volume, and they are mostly free from numer-
ical dispersion. On the other hand, linear system matrices
arising from differential equations schemes are sparse [5],
while those arising in BEM are, in general, dense. This
drawback, however, can be overcome if a fast method such
as the multilevel fast multipole method (MLFMM) [6], the
multilevel matrix decomposition algorithm (MLMDA) [7]
and later equivalents [8]–[12] are used at high frequency, or
the adaptive cross approximation (ACA)/H-matrix methods
and related schemes [13]–[18] are used at lower frequencies.
These schemes are often capable of performing matrix-vector
products in O(N logN) or even O(N) complexity, where N
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denotes the number of unknowns (the linear system matrix
dimension). Thus the complexity to obtain the BEM solution
of the electromagnetic problem is, when an iterative solver
is used, O(NiterN logN) (or O(NiterN) in the low-frequency
regime), where Niter is the number of iterations.

The number of iterations Niter is generally correlated with
the condition number of the linear system matrix, that is,
the ratio between the largest and smallest singular values
of the matrix [19]. This number is often a function of N
and, when the BEM formulation is set in the frequency
domain, of the wavenumber k. This can potentially result in
a solution complexity greater, and sometimes much greater,
than O(N2), something that would severely jeopardize the
other advantages of using BEM approaches.
For this reason it is of paramount importance to address

and solve all sources of ill-conditioning for integral equations
and, not surprisingly, this has been the target of substantial
research in the last decade that this work will analyze, review,
and summarize.
For surface integral equations (SIEs) that model scatter-

ing or radiation problems for perfect electrical conductors
(PEC) geometries, we can typically distinguish the fol-
lowing sources of ill-conditioning: i) the low-frequency
breakdown, ii) the h-refinement (dense-discretization) break-
down, iii) high-frequency issues (including internal resonances
and the high-frequency breakdown), and iv) the lack of lin-
ear independence in the basis elements (including lack of
orthogonality and mesh irregularities).
Some of the first methods explicitly addressing electro-

magnetic integral equation ill-conditioning date back to the
1980s, when the focus was on the low-frequency break-
down [20] and on the problem of interior resonances [21].
Since then, a plethora of schemes and strategies address-
ing one or more of the issues i)–iv) have been presented
and some of these strategies are still the topic of intense
research. In the past, a few review articles have appeared
that dealt with aspects of stabilizing ill-conditioned elec-
tromagnetic integral equations. Most recently, Antoine and
Darbas [22] presented an extensive review on operator pre-
conditioning with a focus on high-frequency issues. A few
years ago, Ylä-Oijala et al. [23] discussed issues in find-
ing a stable and accurate integral equation formulation and
they addressed certain open issues in preconditioning, and
Carpentieri discussed preconditioning strategies with a focus
on large-scale problems [24], [25].
Finally, although for space limitation this paper will focus

on the electric field integral equation (EFIE) and magnetic
field integral equation (MFIE) operators (which are the fun-
damental building blocks for several other formulations), the
reader should note that a substantial amount of literature and
quite effective preconditioned methods have been presented
for modeling penetrable bodies both homogeneous and inho-
mogeneous [26]–[29]. The reader should also be aware that
domain decomposition schemes can play a fundamental
role in managing and solving electromagnetic problems
containing even severely ill-conditioned operators [30], [31].

These approaches, however, are per se a discipline within
Computational Electromagnetics and any brief treatment out-
side of a dedicated review would inevitably be insufficient
and partial. Moreover, domain decomposition algorithms are
not competing with the strategies discussed here but, often
times, complementary [32]. For these reasons, we will not
treat domain decomposition strategies in this review, but
rather refer the interested reader to the excellent contri-
butions in [33]–[35]. Similarly, discontinuous Galerkin and
related methods for handling non-conformal meshes will not
be treated here as extensive additional treatments would be
required; the reader can refer to [36], [37], and references
therein for specific discussions on this family of methods.
The purpose of this article is two-fold: on the one hand,

we review and discuss the strategies that have been devised
in the past to overcome the sources of ill-conditioning
i)-iv) summarizing strengths and weaknesses, guiding the
reader through the choices of the right preconditioner for a
given application scenario. On the other hand, we comple-
ment the overview with new results that contribute to better
characterizing the ill-conditioning of the EFIE and MFIE.
Finally, we will complement our discussions with a spec-
tral analysis of the formulations on the sphere, which will
provide a further and more intuitive understanding of the ill-
conditioning of the EFIE, MFIE, and combined field integral
equation (CFIE) and of the associated potential remedies. In
contrast to [22], our focus will include low-frequency effects
and wideband stable formulations as well as Calderón and
quasi-Helmholtz projection strategies. Moreover, whenever
appropriate, we will provide implementational considerations
and details that will enable the reader to dodge all practical
challenges that are usually faced when engineering the most
effective preconditioning schemes.
This paper is organized as follows: Section II introduces

the background material and sets up the notation, Section III
reviews the connection of the spectrum of matrices and the
role of the condition number in the solutions of the asso-
ciated linear systems. Section IV focuses on low-frequency
scenarios analyzing their main challenges and solution strate-
gies. Section V presents problems and solutions associated
with highly refined meshes, while Section VI focuses on sce-
narios in the high-frequency regime. Section VII considers
the role of mesh and basis functions quality on the overall
conditioning and Section VIII presents the conclusions and
final considerations.

II. NOTATION AND BACKGROUND
We are interested in solving the electromagnetic scatter-
ing problem where a time-harmonic, electromagnetic wave
(ei,hi) in a space with permittivity ε and permeability μ

impinges on a connected domain Ω− ⊂ R
3 with PEC bound-

ary Γ := ∂Ω− resulting in the scattered wave (es,hs). The
total electric e := ei + es and magnetic h := hi + hs fields
satisfy Maxwell’s equations

∇ × e(r) = + i k h(r) for all r ∈ Ω+, (1)
∇ × h(r) = − i k e(r) for all r ∈ Ω+, (2)
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where Ω+ := Ω−
c
, k := ω

√
εμ is the wave number, ω

the angular frequency, and e, h must satisfy the boundary
conditions for PEC boundaries

n̂× e = 0 for all r ∈ Γ , (3)
n̂× h = jΓ for all r ∈ Γ , (4)

where jΓ is the induced electric surface current density. In
addition, es and hs must satisfy the Silver-Müller radiation
condition [38], [39]

lim
r→∞|hs × r− res| = 0. (5)

We assumed (and suppressed) a time dependency of e− i ωt

and normalized h with the wave impedance η := √
μ/ε.

To find (es,hs), we can solve the EFIE

Tk jΓ = −n̂× ei (6)

for jΓ , where n̂ is the surface normal vector directed into
Ω+ and

Tk := i kTA,k + 1/(i k)TΦ,k (7)

is the EFIE operator composed of the vector potential operator

(
TA,k jΓ

)
(r) = n̂×

∫

Γ

Gk
(
r, r′

)
jΓ

(
r′
)

d S
(
r′
)

(8)

and the scalar potential operator
(
TΦ,k jΓ

)
(r) = −n̂× gradΓ

×
∫

Γ

Gk
(
r, r′

)
divΓ jΓ

(
r′
)

d S
(
r′
)

(9)

where

Gk
(
r, r′

) = ei k|r−r′|

4π |r− r′| (10)

is the free-space Green’s function. A definition of the sur-
face differential operators gradΓ and divΓ can be found
in [40, Appendix 3] or [41, Ch. 2]. Once jΓ is obtained, es,hs

can be computed using the free-space radiation operators.
Alternatively, one can solve the MFIE for the exterior

scattering problem

n̂× hi =M+
k jΓ := +(I/2 +Kk)jΓ , (11)

where I is identity operator, M+
k is the MFIE operator for

the exterior scattering problem, and

(
KkjΓ

)
(r) := −n̂×

∫

Γ

∇Gk
(
r, r′

) × jΓ d S
(
r′
)
. (12)

The MFIE operator for the interior scattering problem is
M−

k := −I/2+Kk and will be used later in the construction
of preconditioners.
The EFIE and the MFIE have non-unique solutions for

resonance frequencies. A classical remedy is the use of the
CFIE [21]

−αTk jΓ + (1 − α)n̂×M+
k jΓ

= αn̂× ei + (1 − α)n̂× n̂× hi (13)

which is uniquely solvable for all frequencies.

FIGURE 1. The vector field of an RWG function. The vector en denotes the directed
edge, c+

n and c−
n denote the domains of the cells, v+

n and v−
n denote vertices on the

edge en , and r+n and r−n are the vertices opposite to the edge en .

For the discretization of the EFIE, we employ Rao-Wilton-
Glisson (RWG) basis functions fn ∈ Xf which are here—in
contrast to their original definition in [42]—not normalized
with the edge length, that is,

fn =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

r− r+n
2Ac+n

for r ∈ c+n ,

r−n − r
2Ac−n

for r ∈ c−n
(14)

using the convention depicted in Figure 1.
Following a Petrov-Galerkin approach, we obtain the

system of equations

Tkj =
(
i kTA,k + 1/(i k)TΦ,k

)
j = −e i (15)

that can be solved to obtain an approximation of the solution
in the form jΓ ≈ ∑

n jn fn and where

[TA,k]nm := 〈
n̂× fn,TA,k fm

〉
Γ

, (16)

[TΦ,k]nm := 〈
n̂× fn,TΦ,k fm

〉
Γ

, (17)

e i
n :=

〈
n̂× fn, n̂× ei

〉

Γ
, (18)

with

〈f , g〉Γ :=
∫

Γ

f (r) · g(r) d S(r). (19)

Even though we are testing with n̂× fn, the resulting system
matrix Tk is the one from [42] (up to the fact that the
RWG functions we are using are not normalized), because
our definition of the EFIE operator includes an n̂× term (in
contrast to [42]).
For the discretization of the MFIE, functions dual to the

RWGs must be used for testing [43]. Historically, the first
dual basis functions for surface currents where introduced by
Chen and Wilton for a discretization of the Poggio-Miller-
Chang-Harrington-Wu-Tsai (PMCHWT) equation [44]. Later
and independently, Buffa and Christiansen introduced the
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FIGURE 2. The vector field of a BC function.

Buffa-Christiansen (BC) functions [45], which differ from
the Chen-Wilton (CW) functions in that the charge on the
dual cells is not constant. Figure 2 shows a visualization of a
BC function. In our implementation, we are using BC func-
tions and denote them as f̃ ∈ X̃f , where the tilde indicates
that the function is defined on the dual mesh. The analysis
is, however, applicable to CW functions as well, and thus,
we will mostly speak of “dual functions” to stress the gener-
ality of our analysis. For a definition of the BC functions as
well as implementation details, we refer the reader to [46].
For the discretization of the MFIE, we obtain

M+
k j :=

(
1/2Gn̂×̃f,f +Kk

)
j = hi, (20)

where

[Kk]nm := 〈
n̂× f̃n,Kk fm

〉
Γ

, (21)
[
hi
]

n
:=

〈
n̂× f̃n, n̂× hi

〉

Γ
, (22)

and where the Gram matrix for any two function spaces Xf
and Xg is defined as

[
Gf ,g

]
mn := 〈fm, gn〉Γ , (23)

with fm ∈ Xf and gn ∈ Xg.
For the discretization of the CFIE, we have

Ckj :=
(
−αTk + (1 − α)Gf ,fG

−1
n̂×̃f ,fM

+
k

)
j

= αe i + (1 − α)Gf ,fG
−1
n̂×̃f ,fh

i (24)

with the combination parameter 0 < α < 1.

III. CONDITION NUMBERS, ITERATIVE SOLVERS, AND
COMPUTATIONAL COMPLEXITY
To solve the linear system of equations arising from bound-
ary element discretizations, such as (15), one can resort either
to (fast) direct or to iterative solvers. For direct solvers, the
time to obtain a solution is independent from the right-hand
side, whereas for iterative solvers, the right-hand side as
well as the spectral properties of the system matrix influence

the solution time. Standard direct solvers such as Gaussian
elimination have a cubic complexity, which renders them
unattractive for large linear systems. Recent progress in the
development of fast direct solvers has improved the overall
computational cost [47]–[50].
Iterative solvers, on the other hand, start from an ini-

tial guess of the solution, x(0), and compute a sequence of
approximate solutions, where the following element of such
a sequence is based on the previously computed one, until a
desired accuracy is achieved. Formally, given a linear system
of equations

Ax = b, (25)

an iterative solver should stop when ‖Ax(i) − b‖/‖b‖ < ε,
where ε > 0 is the solver tolerance and x(i) the approximate
solution after the ith iteration. Whether an iterative solver
will converge or not, depends on the chosen solver and the
properties of A, as we will discuss in the following.

To assess the overall complexity in N for obtaining an
approximation of x within the tolerance ε, a relation between
Niter and N is needed. One way to obtain such a relationship
is via the condition number of the matrix, which is defined as

condA = ‖A‖2

∥∥
∥A−1

∥∥
∥

2
= Σmax(A)

Σmin(A)
, (26)

where ‖.‖2 is the spectral norm, and Σmax/min denotes the
maximal and minimal singular value.
In the case of the conjugate gradient (CG) method, which

requires A to be Hermitian and positive definite, there is an
upper bound on the error e(i) := x(i) − x given by [51]

∥∥e(i)
∥∥
A

≤ 2

(√
condA− 1√
condA+ 1

)i
∥∥e(0)

∥∥
A
, (27)

where ‖.‖A is the energy norm defined by ‖x‖A :=
(x†Ax)1/2 and x† denotes the conjugate transpose of x .
If the objective is to reduce the relative error ‖e(i)‖/‖e(0)‖
below ε and by considering limits for condA � 1, one
notes [51] that

i ≤
⌈

1

2

√
condA ln

(
2

ε

)⌉
(28)

iterations are at most needed (assuming an exact arithmetic).
If the condition number grows linearly in N, as observed for
the EFIE when the mesh is uniformly refined, this implies
that the complexity is at most O(N1.5 logN).
One could argue that this is an overly simplified picture

of the situation; indeed, the CG method is not applica-
ble to standard frequency domain integral equations as the
resulting system matrices are neither Hermitian nor positive
definite. One strategy to still obtain a bound on the num-
ber of iterations is to use the CG method on the normal
equation

A†Ax = A†b. (29)

The price for this, however, is that the condition number
of the resulting system matrix is (condA)2 and thus this
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approach is, for the standard formulations, of little practical
value. In addition, round-off errors due to finite precision can
lead to a non-converging solver—despite the theory dictating
that CG should converge in at most N steps [52], [53]. Thus,
the condition number bound is relevant in practice often only
in the case that condA is small.

The problem with other popular Krylov methods such as
the generalized minimal residual (GMRES) or the conjugate
gradient squared (CGS) method is that, for general matrices,
no bound on the number of iterations in terms of the condi-
tion number alone is available. In fact, even if two matrices
have the same condition number, their convergence behavior
can significantly differ: the distribution of the eigenvalues
in the complex plane impacts the convergence behavior as
well [22]. Typically, a better convergence can be observed if
all the eigenvalues are located on either the real or the imagi-
nary axis and if they are either strictly positive or negative (if
they are on the imaginary axis, then positive or negative with
respect to Im (Λi)). We will see in the following that, under
certain conditions, for low-frequency electromagnetic prob-
lems it is possible to cluster the eigenvalues on the real axis
and that the condition number becomes a good indicator of
the convergence behavior. Moreover, some preconditioning
strategies, such as the refinement-free Calderón precondi-
tioner which will be discussed in Section V-A2, give rise to
a Hermitian, positive-definite system, and thus the CG and
the associated convergence theory is applicable.
For frequency-independent problems, it is customary to

call a formulation well-conditioned if condA is asymptoti-
cally bounded by a constant C which is independent from
the average edge length h of the mesh. For dynamic prob-
lems, however, we also need to study the condition number
as a function of the frequency f := ω/(2π), and one must
specify if a formulation is well-conditioned with respect to
h, to f , to both, or only in a particular regime, for example,
for frequencies where the corresponding wavelength is larger
then the diameter of Γ .

The classical remedy to overcome ill-conditioning and
thus improve the convergence behavior of iterative solvers
is to use a preconditioning strategy. Such a strategy results,
in the general case, in a linear system

PLAPRy = PLb, (30)

where x = PRy and the matrices should be chosen such
that, if possible,

cond(PLAPR) ≤ C, (31)

where C is a constant both independent of h and f (in which
case the preconditioner is optimal). Normally, the matrix-
matrix products in (30) are not formed explicitly and, to
be an efficient preconditioner, the cost of a matrix-vector
product should not jeopardize the lead complexity set by the
fast method. In practice, to obtain an optimal preconditioner,
the nature of the underlying operators must be taken into
account. Thus, in the following sections, we will analyze
the spectral properties of the (discretized) EFIE, MFIE, and

FIGURE 3. Radar cross sections calculated, with different formulations, for the
sphere of unit radius discretized with an average edge length of 0.15 m, and
excited by a plane wave of unit polarization along x̂ and propagation along ẑ
oscillating at f = 10−20Hz. The “EFIE” and “MFIE” labels refer to the standard
formulations (15) and (20), while the “Loop-star EFIE” and “P-EFIE” refer to the
EFIE stabilized with the loop-star (61) and quasi-Helmholtz projectors (72),
respectively.

CFIE operator, discuss the causes of their ill-conditioning as
well as potential remedies.

IV. LOW-FREQUENCY SCENARIOS
The low-frequency breakdown of the EFIE, that is, the
growth of the condition number when the frequency f
decreases, was one of the first sources of ill-conditioning
of the EFIE to be studied. From a physical point of view,
several problems at low-frequency are rooted in the decou-
pling of the electric and the magnetic field in the static limit:
magnetostatic loop currents excite the magnetic field and
electrostatic charges excite the electric field [20]. Both the
EFIE and the MFIE suffer from computational challenges at
low-frequencies. As we will see in this section, the EFIE suf-
fers from conditioning issues when the frequencies decreases
and so does, albeit for different reasons, the MFIE when
applied to non-simply connected geometries (i.e., geome-
tries containing handles like the torus illustrated in Figure 4,
for example). The condition number growth is, however,
only one of the possible problems: finite machine precision
and inaccuracies due to numerical integration that result in
catastrophic round-off errors are also plaguing the otherwise
low-frequency well-conditioned integral equations such as
the MFIE on simply-connected geometries. Together, these
issues make the two formulations increasingly inaccurate
as the frequency decreases, which is attested by the low-
frequency radar cross sections illustrated in Figure 3 that
show wildly inaccurate results for the standard formulations.
The low-frequency analysis of electromagnetic integral

equations benefits from the use of Helmholtz and quasi-
Helmholtz decompositions that we will summarize here for
the sake of completeness and understanding. The well-known
Helmholtz decomposition theorem states that any vector field

VOLUME 2, 2021 1147
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FIGURE 4. Illustration of a torus and the corresponding toroidal (in blue) and
poloidal (in orange) loops.

can be decomposed into a solenoidal, irrotational, and a
harmonic vector field, which in the case of a tangential
surface vector field such as jΓ leads to [41, p. 251]

jΓ = curlΓ Φ + gradΓ Ψ +H, (32)

where Φ and Ψ are sufficiently smooth scalar functions,
curlΓ Φ := gradΓ Φ × n̂, and divΓ H = curlΓ H = 0;
here, curlΓ is the adjoint operator of curlΓ , that is, we
have 〈curlΓ f , g〉Γ = 〈f , curlΓ g〉Γ (see [41, eq. (2.5.194)]).
The space of harmonic functions HH(Γ ) is finite dimen-
sional with dimHH(Γ ) = 2g on a closed surface, where g
is the genus of Γ . The Helmholtz subspaces are all mutually
orthogonal with respect to the L2(Γ )-inner product.

When jΓ is a linear combination of div- but not curl-
conforming functions (e.g., RWG and BC functions), only
a quasi-Helmholtz decomposition is possible, where jΓ
is decomposed into a solenoidal, a non-solenoidal, and
a quasi-harmonic current density. It is not possible to
obtain irrotational or harmonic current densities, since the
curl of div-conforming (but not curl-conforming) functions
such as the RWGs (or their dual counterparts) is, in gen-
eral, not existing as a classical derivative; therefore, it is
termed quasi-Helmholtz decomposition. Next we introduce
the quasi-Helmholtz decompositions for primal (i.e., RWGs)
and dual (i.e., BCs) functions that we will use for our analysis
in the next section.
Just as the Helmholtz decomposition (32) decomposes the

continuous solution jΓ , a quasi-Helmholtz decomposition
decomposes the discrete solution j as

N∑

n=1

[j ]n fn =
NV∑

n=1

[jΛ]n Λn +
NC∑

n=1

[jΣ ]n Σn +
2g∑

n=1

[jH]nHn,

(33)

where Λn ∈ XΛ are solenoidal loop functions, Σn ∈ XΣ

are non-solenoidal star functions, and Hn ∈ XH are quasi-
harmonic global loops [54] and where jΛ, jΣ , and jH are
the vectors containing the associated expansion coefficients;
moreover, NV is the number of vertices and NC is the number
of cells of the mesh.
We highlight some of the properties which we are going

to use throughout this article. First, and most importantly,

the functions Λn, Hn, and Σn can be represented in terms
of RWG functions [54]. Thus the expansion coefficients are
linked by linear transformation matrices Λ, H, and Σ. For
the loop transformation matrix, we have

[Λ]ij =

⎧
⎪⎨

⎪⎩

1 for vj = v−i ,

−1 for vj = v+i ,

0 otherwise,

(34)

where vj is the jth vertex of the mesh (inner vertex if Γ is
open), and for the star transformation matrix

[Σ]ij =

⎧
⎪⎨

⎪⎩

1 for cj = c+i ,

−1 for cj = c−i ,

0 otherwise,

(35)

where cj is the jth cell of the mesh, following the con-
ventions depicted in Figure 1. With the definition of these
matrices, the quasi-Helmholtz decomposition in (33) can be
equivalently written as

j = ΛjΛ︸︷︷︸
=jsol

+ HjH︸︷︷︸
=jqhar

+ΣjΣ︸︷︷︸
=jnsol

= jsol + jqhar + jnsol. (36)

The linear combinations of RWGs implied by the coefficient
vectors jsol, jnsol, and jqhar are solenoidal, non-solenoidal, and
quasi-harmonic current densities. These decompositions are
not unique: if we were to use, for example, the loop-tree
quasi-Helmholtz decomposition, we would obtain different
coefficient vectors jsol, jnsol, and jqhar. The decomposition is,
however, unique with respect to the loop-star space, that is,
when the linear dependency of loop and of star functions
(see [55] and references therein) is not resolved by arbitrarily
eliminating a loop and a star function; what sets the loop-star
basis apart from other quasi-Helmholtz decompositions is the
symmetry with respect to dual basis functions. A symmetry
that we are now going to further highlight.
First, we give to Λ and Σ a meaning that goes beyond

merely interpreting them as basis transformation matrices.
The matrices Λ and Σ are edge-node and edge-cell inci-
dence matrices of the graph defined by the mesh and they
are orthogonal, that is, ΣTΛ = 0. It follows that jsol and
jnsol are l2-orthogonal, that is, jTnsoljsol = 0. We find this
noteworthy for two reasons: i) the loop Λi and star func-
tions Σ j are, in general, not L2-orthogonal (after all, Σ j is
not irrotational); ii) the l2-orthogonality is not true for other
quasi-Helmholtz decompositions such as the loop-tree basis.
In light of this consideration, the matrices Λ and Σ could
be interpreted as the graph curl (Λ) and graph gradient (Σ)
of the standard mesh, an interpretation that further increases
the correspondence with the continuous decomposition (32).
For global loops Hn, no such simple graph-based defini-

tion exists. Indeed, they are, in general, not uniquely defined
and must be constructed from a search of holes and handles.
For any global loop basis so obtained, we have ΣTH = 0;
however, ΛTH = 0 is, in general, not true. This property
can be enforced by constructing H as the right nullspace of[
Λ Σ

]T. Such a construction is possible, for example, via a
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full singular value decomposition (SVD), or, via more com-
putationally efficient randomized projections [56]. However,
the computational cost is higher, in general, compared with
using a global loop-finding algorithm, in particular, since H
will be a dense matrix.
A similar decomposition can be obtained for dual

functions
N∑

n=1

[m]n f̃n =
NV∑

n=1

[
mΛ̃

]
n Λ̃n +

NC∑

n=1

[
mΣ̃

]
n Σ̃n

+
2g∑

n=1

[
mH̃

]
n H̃n, (37)

where, in contrast to the RWG case, Λ̃n are non-solenoidal
dual star and Σ̃n are solenoidal dual loop functions. In matrix
notation, we have

j = ΣmΣ̃︸ ︷︷ ︸
msol

+ H̃mH̃︸ ︷︷ ︸
mqhar

+ΛmΛ̃︸ ︷︷ ︸
mnsol

= msol +mqhar +mnsol. (38)

Note that the same matrices Σ and Λ are present both in the
decomposition of RWG functions and in the one of dual func-
tions. However, while for RWGs the transformation matrix Λ
describes solenoidal functions and the transformation matrix
Σ describes non-solenoidal functions, the opposite is true
for dual functions: it is Σ that describes solenoidal func-
tions, while Λ describes non-solenoidal. Thus on the dual
mesh, Λ acts as graph gradient and Σ as a graph curl. This
is consistent with the definition of dual functions: dual basis
functions can be interpreted as a div-conforming “rotation”
by 90◦ of the primal functions (note that the functions n̂× f i
are a rotation by 90◦, which is not div-confirming); given
that curlΓ Φ := ∇Γ Φ × n̂, it is consistent that the roles
of Λ and Σ as graph counterparts to continuous differential
surface operators are swapped on the dual mesh with respect
to the primal mesh.
Regarding the quasi-harmonic functions, it must be

emphasized that we cannot identify H̃ = H. This equality
is only true if H is the nullspace of

[
Λ Σ

]T, a condi-
tion, which evidently leads to the aforementioned unique
definition of H. Even though the construction of H as the
nullspace of

[
Λ Σ

]T is cumbersome—and by introducing
quasi-Helmholtz projectors in the following, we will sidestep
it—it suggests that these global loops are capturing the ana-
lytic harmonic Helmholtz subspace better than arbitrarily
chosen global loops.

A. ELECTRIC FIELD INTEGRAL EQUATION
To put into light the low-frequency challenges that plague
the EFIE, its behavior on both the solenoidal and the
non-solenoidal subspaces must be analyzed. The following
developments focus on geometries that do not contain global
loops, however the results can be immediately extended
to the general case by considering that—in the case of
the EFIE—global and local loops have similar properties.
While they have practical limitations, loop-star bases are

a convenient tool to perform this analysis. The loop-star
transformed EFIE matrix T LS

k := [
Λ Σ

]T
Tk

[
Λ Σ

]
can

be represented in block matrix form as

T LS
k =

[
ΛTTkΛ ΛTTkΣ

ΣTTkΛ ΣTTkΣ

]
, (39)

and the corresponding matrix equation now reads T LS
k jLS =[

Λ Σ
]T ei, where j = [

Λ Σ
]
jLS. In these definitions,

the Λ and Σ matrices refer to the full-rank transformation
matrices in which linearly dependent columns have been
removed: for each connected component of Γ one star basis
function (column of Σ) must always be removed and one
loop basis function must be removed (column of Λ) if the
component is closed [57].
To evidence the different low-frequency behaviors of the

EFIE matrix on the solenoidal and non-solenoidal subspaces,
the properties ΛTTΦ,k = 0 and TΦ,kΛ = 0, which follow
directly from the divergence-free nature of solenoidal func-
tions, must be enforced. In addition, the behavior of the
matrix terms must be derived by performing a Taylor series
expansion of the Green’s function in both TA,k and TΦ,k for
k → 0. For instance,

〈
n̂× Σm,TA,k Λn

〉
Γ

=
k→0

∫

Γ

∫

Γ

Σm(r) · Λn
(
r′
)

4π
(

1

R
− k2R

2
− i k3R2

6
+ O

(
k4
))

d S
(
r′
)

d S(r), (40)

where R = |r − r′| and where we have used∫
Γ

i kΛn(r′) d S(r′) = 0. We can deduce that, in general,

Re
〈
n̂× Σm,TA,k Λn

〉
Γ

=
k→0
O(1), (41)

Im
〈
n̂× Σm,TA,k Λn

〉
Γ

=
k→0
O
(
k3
)
. (42)

This process can be repeated for both TA,k and TΦ,k when
both expansion and testing functions are non-solenoidal and
when at least one of the two is solenoidal. In summary,

Re
〈
n̂× Σm,Tk Σn

〉
Γ

=
k→0
O
(
k2
)
, (43)

Im
〈
n̂× Σm,Tk Σn

〉
Γ

=
k→0
O
(
k−1

)
, (44)

Re
〈
n̂× Σm,Tk Λn

〉
Γ

=
k→0
O
(
k4
)
, (45)

Im
〈
n̂× Σm,Tk Λn

〉
Γ

=
k→0
O(k). (46)

By symmetry, both
〈
n̂× Λm,Tk Σn

〉
Γ

and〈
n̂× Λm,Tk Λn

〉
Γ

have the same low-frequency behavior as〈
n̂× Σm,Tk Λn

〉
Γ
. The scaling of the behavior of the block

matrix is now straightforward to obtain, resulting in

Re
(
T LS
k

)
=
k→0

[
O
(
k4
)
O
(
k4
)

O
(
k4
)
O
(
k2
)
]
, (47)

Im
(
T LS
k

)
=
k→0

[
O(k) O(k)
O(k) O

(
k−1

)
]
, (48)
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and the dominant behavior of T LS
k is that of its imaginary

part.
These results can be used to demonstrate the issues

plaguing the EFIE at low frequencies, starting with its ill-
conditioning. Consider the block diagonal matrix Dk =
diag

[
k−1/2 k1/2

]
in which the block dimensions are con-

sistent with that of the loop star decomposition matrix.
Clearly,

DkT
LS
k Dk =

k→0

[
O(1) O(k)
O(k) O(1)

]
, (49)

is a well-conditioned matrix, in the sense that
limk→0 condDkT LS

k Dk := γ is finite. It then follows
that

condT LS
k = condD−1

k DkT
LS
k DkD

−1
k

≤ (condDk)
2 condDkT

LS
k Dk (50)

and thus limk→0 condT LS
k = O(k−2). A lower bound for the

condition number of interest can be obtained through the
application of the Gershgorin disk theorem after diagonal-
ization of the bottom right block of T LS

k , which proves that
cond(T LS

k ) ≥ Σmink−2 where Σmin is the smallest singular
value of (ΣTTΦ,0 Σ). Considering these results and that the
loop-star transformation matrix is invertible and frequency
independent, we conclude that cond(Tk) ∼ k−2 when k → 0.

The second source of instability of the EFIE at low
frequencies is the loss of significant digits in the right-hand
side e i, solution j , or radiated fields. To see this effect,
the behavior of the right-hand side of the EFIE must be
considered. Here we will restrict our developments to the
plane-wave excitation, but similar results can be obtained
for other problems [58]. Following the same procedure as
for the matrix elements, we can determine the behavior of
the loop and star right-hand side elements

Re
〈
n̂× Λm, n̂× ei

PW

〉

Γ
=
k→0
O
(
k2), (51)

Im
〈
n̂× Λm, n̂× ei

PW

〉

Γ
=
k→0
O(k), (52)

Re
〈
n̂× Σm, n̂× ei

PW

〉

Γ
=
k→0
O(1), (53)

Im
〈
n̂× Σm, n̂× ei

PW

〉

Γ
=
k→0
O(k), (54)

where ei
PW is the electric field of the incident plane-wave. It

is crucial to remember that when the standard EFIE—with no
treatment—is solved numerically in finite precision floating
point arithmetic, the real parts (resp. imaginary parts) of the
loop and star components of the right-hand side are stored in
the same floating point number. In particular, the real part of
the solenoidal component that behaves as O(k2) is summed
with an asymptotically much larger non-solenoidal compo-
nent behaving as O(1). In the context of finite precision
arithmetic, the dynamic range of the floating point number
will be imposed by the larger of the two components, mean-
ing that the floating point number will become increasingly
incapable of storing accurately the smaller one. This loss of

significant digits will worsen until the solenoidal component
has completely vanished from the numerical value. This phe-
nomenon is not necessarily damageable per se, but can lead
to drastic losses in solution accuracy. In the particular case
of the plane-wave excitation, we will study the effect of this
loss of accuracy on the dominant parts of the solution. Using
the well-known relations on block matrix inverses [59], one
can show that

Re
(
T LS
k

)−1 =
k→0

[
O
(
k2
)
O
(
k4
)

O
(
k4
)
O
(
k4
)
]
, (55)

Im
(
T LS
k

)−1 =
k→0

[
O
(
k−1

)
O(k)

O(k) O(k)

]
, (56)

which, in combination with the right-hand side results yields
the behavior of the solution coefficients

Re (jΛ) =
k→0
O(1), (57)

Im (jΛ) =
k→0
O(k), (58)

Re (jΣ ) =
k→0
O
(
k2), (59)

Im (jΣ ) =
k→0
O(k), (60)

which are indeed the behavior predicted by physics [60].
Note that the inaccurate right-hand side component will
only have a significant contribution to the imaginary part
of the solenoidal component of the solution, which is non-
dominant. As such, although the error of the current could
be low, the error of the charge or field could be quite high.
Finally, the reader should note that to numerically observe

these results—and successfully implement the remedies that
we will see later on—the vanishing of all relevant integrals
must be explicitly enforced in some way, because floating
point arithmetic and numerical integration are not capable of
obtaining an exact zero in their computation and will saturate
at machine precision, in the best case scenarios. Indeed, had
they not been enforced, the solenoidal and non-solenoidal
parts of the solution would have had the same behavior and,
as such, would not yield a solution behaving as predicted
by physics.

1) LOOP-STAR/TREE APPROACHES

Historically, the loop-star and loop-tree decompositions have
been used to cure the low-frequency breakdown of the
EFIE [20], [54] and as such are well-known and studied [55].
The fundamental curing mechanism of these approaches is
to decompose the EFIE system using a RWG-to-loop-star or
RWG-to-loop-tree mapping and isolate the solenoidal and
non-solenoidal parts of the system. This separation allows
for a diagonal preconditioning of the decomposed matrix to
cure its ill-conditioning (as was done in Section IV-A). In
addition, this separation makes it possible to enforce that the
required integrals and matrix products vanish and cures the
loss of significant digits that plagues the EFIE, since the
loop and star contributions of each entity are stored in sep-
arate floating point numbers. In the case of the loop-star
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approach, the stabilized matrix system is

DkT
LS
k DkjDLS = Dk

[
Λ Σ

]T
e i, (61)

where j = [
Λ Σ

]
DkjDLS, following the notations of

Section IV-A. Once the intermediate solution jDLS has been
obtained, it must be handled with particular care. If, for
instance, the quantity of interest is the field radiated by
the solution, the radiation operators must be applied sep-
arately on the solenoidal and non-solenoidal parts of the
solution that can be retrieved as jsol = [

Λ 0
]
DkjDLS and

jsol = [
0 Σ

]
DkjDLS, because additional vanishing inte-

grals must be enforced in the scattering operators when
applied to solenoidal functions. In addition, any explicit
computation of j would be subject to a numerical loss of
significance and would further compromise the accuracy of
the fields.
The key difference between loop-tree and loop-star tech-

niques is that, in the former, the quasi-Helmholtz decom-
position leverages a tree basis in place of the star basis, as
indicated by their names. To define this tree basis consider
the connectivity graph joining the centroids of all adjacent
triangle cells of the mesh. To each edge of this graph cor-
responds a unique RWG function. Then, given a spanning
tree of this graph, a tree basis can be defined as the subset
{θ j} of the RWG functions whose corresponding edge in the
connectivity graph is included the spanning tree [54], [61].
The rationale behind the technique is that, by construction,
such a basis will not be capable of representing any loop
function. Clearly, the construction of this basis is not unique,
since it depends on the choice of spanning tree. In practice,
the loop-tree approach results in a matrix system similar
to (61), in which the RWG-to-loop-star mapping

[
Λ Σ

]

is replaced by an RWG-to-loop-tree mapping
[
Λ Θ

]
and

T LS
k becomes T LT

k := [
Λ Θ

]T
Tk

[
Λ Θ

]
where

[Θ]ij =
{

1 if f i = θ j,

0 otherwise,
(62)

is the general term of the RWG-to-tree transformation matrix.
The resulting preconditioned equation is

DkT
LT
k DkjDLT = Dk

[
Λ Θ

]T
e i, (63)

where j = [
Λ Θ

]
DkjDLT.

At first glance, the computational overhead of the two
methods seems low, since Λ, Σ, Θ, and Dk are sparse
matrices. However, while both methods adequately address
the low-frequency breakdown of the EFIE, in the sense that
they yield the correct solution (Figure 3) and prevent the con-
ditioning of the system to grow unbounded as the frequency
decreases (Figure 5), they cause the conditioning of the
system matrix to artificially worsen because the loop-star
and loop-tree bases are ill-conditioned [62]. This has led
to the development of a permutated loop-star and loop-tree
bases to reduce the number of iterations required to solve the
preconditioned system using iterative solvers [61]. In general,
the loop-tree preconditioned EFIE was observed to converge

FIGURE 5. Comparison of the conditioning of the system matrices for several
formulations on a sphere of radius 1 m discretized with an average edge length of
0.15 m, for varying frequency.

FIGURE 6. Comparison of the conditioning of the loop-star, loop-tree, and
projector-based preconditioned EFIE matrices on a spheres of radius 1 m discretized
with an average edge length of 0.3 m (solid lines) and 0.2 m (dotted lines) as a
function of the frequency. The labels “Loop-tree EFIE” and “P-CMP-EFIE” refer to the
EFIE stabilized with the loop-tree approach (63) and the Calderón EFIE stabilized with
quasi-Helmholtz projectors (128).

faster than the loop-star preconditioned EFIE [63], which can
be explained by the fact that Λ and Σ can be interpreted as
the discretizations of the graph curl and graph gradient [55],
[62], that are ill-conditioned derivative operators. While a
rigorous proof of the effect of this ill-conditioning on the
preconditioned EFIE matrix is out of the scope of this review,
pseudo-differential operator theory can be used to show that
the differential strength of the loop-star transformation oper-
ators is sufficiently high not to be compensated by that of the
vector potential. To illustrate this adverse effect, the condi-
tioning of the system matrices has been obtained numerically
and is presented in Figure 6. Clearly, the standard EFIE
matrix shows a condition number growing as the frequency
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decreases. However, at moderate frequencies, the condition-
ing of the loop-star and loop-tree preconditioned matrices is
significantly higher than that of the original matrix.

2) QUASI-HELMHOLTZ PROJECTORS

From the previous sections, it is clear that although the loop-
star/tree decompositions are helpful in analyzing the reasons
behind the low-frequency breakdown and that historically
provided a cure for it, they still give rise to high condition
numbers since they introduce an ill-conditioning related to
the mesh discretization. Moreover, for non-simply connected
geometries, loop-star decompositions require a search for the
mesh global cycles, an operation that can be computationally
cumbersome.
A family of strategies to overcome the drawbacks of

loop-star/tree decompositions while still curing the low-
frequency breakdown is the one based on quasi-Helmholtz
projectors [62], [64]. Quasi-Helmholtz projectors can decom-
pose the current and the operators into solenoidal and
non-solenoidal components (just like a loop-star/tree decom-
position does) but, being projectors, have a flat spectrum that,
differently from loop-star/tree decompositions, do not alter
the spectral slopes of the original operators and thus do not
introduce further ill-conditioning.
Starting from the quasi-Helmholtz decomposition (36)

j = ΣjΣ + ΛjΛ +HjH, (64)

the quasi-Helmholtz projector for the non-solenoidal part is
the operator that maps j into ΣjΣ . Since

ΣTj = ΣTΣjΣ , (65)

the looked for projector is

PΣ := Σ(ΣTΣ)+ΣT, (66)

where + denotes the Moore–Penrose pseudoinverse. The pro-
jector for the solenoidal plus harmonic components can be
obtained out of complementarity as

PΛH := I − PΣ. (67)

The same reasoning for dual functions leads to the dual
definitions of the projector

PΛ := Λ(ΛTΛ)+ΛT, (68)

which is the non-solenoidal projector for dual functions.
The solenoidal plus harmonic projector for dual functions
is, again, obtained by complementarity as

PΣH := I − PΛ. (69)

It is important to note that, even though the projectors
presented so far include a pseudo-inverse in their defini-
tion, they can be applied to arbitrary vectors in quasi-linear
complexity by leveraging algebraic multigrid precondition-
ing [62], [65], [66] and, as such, are fully compatible with
standard fast solvers.

Quasi-Helmholtz projectors can be used to cure the dif-
ferent deleterious effects of the low-frequency breakdown
by isolating the solenoidal and non-solenoidal parts of the
system matrix, unknowns, and right-hand side and rescaling
them appropriately. Thus they are an alternative to loop-
star/tree decompositions that presents several advantages
when compared to these schemes. Quasi-Helmholtz projec-
tors have been used to cure the low-frequency breakdowns
of several formulations, however for the sake of readabil-
ity and conciseness, we will only detail their application
to the standard EFIE where it is more straightforward, but
will point to relevant papers describing their applications to
other well-known formulations. Preconditioning the original
system (15) with matrices of the form

P := αPΛH + βPΣ, (70)

where, following a frequency analysis similar to the one
used for loop-star/tree decompositions, an optimal coefficient
choice can be found to be α ∝ k− 1

2 and β ∝ k
1
2 , that is,

Pk := √
C/kPΛH + i

√
k/CPΣ, (71)

resulting in a new system of equations

PkTkPky = Pke i, (72)

where Pky = j . The constant C can be obtained by max-
imizing the components of the solution current that are
recovered [60] and by enforcing an equal contribution of
the vector and scalar potential components; this results in

C :=
√ ∥∥TΦ,k

∥∥
∥
∥PΛHTA,kPΛH

∥
∥ . (73)

The analysis of the conditioning effect of the projector can
mimic the strategy used for the loop-star decomposition. In
particular, the EFIE preconditioned with the projectors has
a frequency-independent limit

lim
k→0
PkTkPk → iCPΛHTA,0PΛH + i /CTΦ,0, (74)

where we used that PΣTΦ,kPΣ = TΦ,k and PΛTΦ,k =
TΦ,kPΛ = 0 and thus

lim
k→0

cond(PkTkPk) = γ, (75)

where γ is a frequency independent constant. This approach
can be proved to simultaneously solve the problem of catas-
trophic round-off errors in both the current and the right-hand
side of the EFIE [60]. Finally, the use of the projectors has
clear advantages in terms of conditioning with respect to
the use of loop-star or related decompositions that can be
seen in Figure 6. The impact on current and right-hand side
cancellation effects can be observed in Figures 7 and 8.
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FIGURE 7. Comparison of the solenoidal part of the surface current density induced
on a sphere of radius 1 m discretized with an average edge length of 0.3 m at
f = 10−20 Hz, computed with different formulations.

FIGURE 8. Comparison of the non-solenoidal part of the surface current density
induced on a sphere of radius 1 m discretized with an average edge length of 0.3 m at
f = 10−20 Hz, computed with different formulations.

3) OTHER STRATEGIES FOR THE EFIE
LOW-FREQUENCY REGULARIZATION

From previous sections, it is clear that the main drawbacks
of loop-star/tree decompositions reside in their constant-in-
frequency, but still high, condition number and also in the
need to be enriched with global loop functions [67], [68].
Both of these drawbacks can be overcome by the use of
quasi-Helmholtz projectors, as explained above, but other
schemes can alternatively be used as effective cures for one
or both of the drawbacks above. By using a rearranged
non-solenoidal basis, for example, the conditioning of a
loop-star or a loop-tree preconditioned EFIE could be fur-
ther improved [61]. Moreover, to avoid the construction of
global loops on multiply-connected geometries, formulations
have been presented that consider the saddlepoint formula-
tion of the EFIE [69], [70], where the charge is introduced
as unknown, in addition to the current in the RWG basis.
The most notable are the current-charge formulation [71]

and the augmented EFIE [72]. However, these formulations
are, in general, not free from round-off errors in the cur-
rent or the right-hand side so that, for example, perturbation
methods need to be used [58] for further stabilization. An
alternative to the perturbation method is the augmented EFIE
with normally constrained magnetic field and static charge
extraction, which includes a boundary integral equation for
the normal component of magnetic field [73]. A disadvan-
tage of current-charge formulations is the introduction of an
additional unknown, the charge; hence, methods have been
presented to save memory by leveraging nodal functions [74].
An entirely different approach is used in [75], where a
closed-form expression of the inverse of the EFIE system
matrix is derived based on eigenvectors and eigenvalues of
the generalized eigenvalue problem.
Another class of strategies forfeits the EFIE approaches;

instead, they are based on potential formulations [76], [77].
These formulations are low-frequency stable on simply- and
multiply-connected without the need for searching global
loops. The potential-based approaches [76], [77] are also
dense-discretization stable. This property is shared with hier-
archical basis and Calderón-type preconditioners. With a few
exceptions [78], hierarchical basis preconditioners are based
on explicit quasi-Helmholtz decomposition [79]–[84], since
it then suffices to find a hierarchical basis for scalar-valued
functions. While they yield an overall improved condition
number with respect to classical loop-star and loop-tree
approaches, they require the search for global loops on
multiply-connected geometries; a suitable combination with
quasi-Helmholtz projectors has been shown to alleviate the
need for this search [85]. Calderón-type preconditioners will
be discussed in the next section in greater detail. At this
point, we are content to say that standard Calderón precon-
ditioned EFIEs have a spectral behavior similar to that of the
MFIE operator: thus certain low-frequency issues that plague
the MFIE (and which we discuss in the next subsection) per-
sist in the Calderón preconditioned EFIE. Initially remedies
relied on combining Calderón preconditioners with loop-
star preconditioners. However, the Gram matrix becomes
ill-conditioned and global loops must be explicitly recov-
ered [86], [87]. As we will show in Section V, this can be
avoided by using quasi-Helmholtz projectors [64].

4) HANDLING OF THE RIGHT-HAND SIDE AND FIELD
COMPUTATION

As we have already mentioned, a well-conditioned discretiza-
tion alone is not sufficient to accurately compute j : the
right-hand side suffers typically from numerical inaccura-
cies due to finite integration precision and from round-off
errors. The main reason for this is that the quasi-Helmholtz
components scale differently in frequency. As an example,
for the case of the plane-wave excitation, the asymptotic
behavior is noted in (51)–(54).
Strategies have been presented in the past to yield stable

discretizations of the right-hand side [20], [61], which work
with arbitrary right-hand side excitations. For the plane-wave
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excitation, a simple solution is to not only compute e as
in (18), but also an eextracted, where the static contribution is
extracted. We obtain this by replacing ei kk̂·r with ei kk̂·r −1,
where k̂ denotes the direction of propagation. Then

√
C/kPΛHeextracted + i

√
CkPΣe (76)

is a stable discretization of the preconditioned right-hand
side. To obtain a stable discretization for small arguments of
the exponential function, the subtraction in ei kk̂·r −1 should
be replaced by a Taylor series, where the static part is
omitted.
Similarly, the far-field cannot be computed by simply

evaluating

∫

Γ

N∑

n=1

[j ]n fn
(
r′
)

e− i kr̂·r′ d S
(
r′
)
, (77)

where j = Pky from (72), r̂ = r/|r|. On the one hand,
by computing the unknown vector of the unpreconditioned
formulation j = Pky , the different asymptotic behavior
in k of the quasi-Helmholtz components of j as denoted
in (57)–(60) would lead to a loss of the solenoidal/quasi-
harmonic components in the static limit due to finite machine
precision. Thus for the field computation, one should keep
the unpreconditioned components of j separately, that is,
jsol-qhar = √

C/kPΛHy and jnsol = i
√
CkPΣy . On the other

hand, it has been pointed out that also the far-field compu-
tation suffers from round-off errors [88]. To avoid these,
we compute the far-field in two steps: we compute the
contribution of jnsol to the far-field by evaluating

Efar
nsol(r) =

N∑

n=1

[jnsol]n

∫

Γ

fn
(
r′
)

e− i kr̂·r′ d S
(
r′
)

(78)

and the contribution of jsol-qhar by

Efar
sol-qhar(r) =

N∑

n=1

[
jsol-qhar

]
n

∫

Γ

fn
(
r′
)(

e− i kr̂·r′ −1
)

d S
(
r′
)
,

(79)

where a Taylor-series expansion should be used for small
arguments of the exponential; then

Efar(r) = Efar
nsol(r) + Efar

sol-qhar(r). (80)

Also for the near-field computation, the separation in jsol-qhar
and in jnsol must be maintained, the static contribution
removed from the Green’s function, and, in addition, the
divergence of the scalar potential explicitly enforced by
omitting it.

B. MAGNETIC FIELD INTEGRAL EQUATION
The MFIE has, other than in the Green’s function kernel,
no explicit dependency on k and should thus be expected to
remain well-conditioned in frequency for k → 0. Indeed, for
simply-connected geometries Γ , we have cond(Mk) = O(1)

when k → 0. In the case of multiply-connected geometries,

the MFIE operator exhibits a nullspace associated with the
toroidal (for the exterior MFIE) or poloidal loops (for the
interior MFIE) in the static limit [89]–[91]. This leads to
an ill-conditioned system matrix [91]; in the following, we
are going to show that cond(Mk) ≥ C/k2 for some constant
C ∈ R

+.
To prove this result on the condition number, we will

consider the low-frequency behavior of block matrices that
result from a discretization of the MFIE with a loop-star
basis. For the analysis, we must however distinguish two
types of harmonic functions, the poloidal and the toroidal
loops. If Ω− has genus g, then the space HH(Ω−) defined by
the harmonic functions in Ω− and the space HH(Ω+) defined
by the harmonic functions in Ω+ have both dimension g. The
space defined by HĤP

(Γ ) := n̂×HH(Ω−) |Γ are the poloidal
loops and the space defined by HĤT

(Γ ) := n̂×HH(Ω+) |Γ
are the toroidal loops [92], [93]. HĤP

(Γ ) has been show [89]
to be the nullspace ofM−

0 and HĤT
(Γ ) the nullspace ofM+

0

and that n̂× ĤTn ∈ HĤP
(Γ ) and n̂× ĤPn ∈ HĤT

(Γ ).
We need to address how quasi-harmonic functions formed

from primal (RWG) or dual (CW/BC) functions are related
to harmonic functions. On the one hand, neither with RWG
nor with BC functions, we can find linear combinations that
are in HĤP

(Γ ) or in HĤT
(Γ ), a consequence of the fact

that these functions are not curl-conforming, as mentioned
in Section IV. On the other hand, quasi-harmonic functions
Hn (and dual quasi-harmonic functions H̃n, respectively) are
associated with the holes and handles of the geometry. They
are not, unlike the locally defined loop functions Λn, derived
from a continuous scalar potential on Γ . Together with
the fact that Hn and H̃n are solenoidal but not irrotational
(since the RWG/BC functions are not curl-conforming), (32)
implies that quasi-harmonic loops are linear combinations of
solenoidal and harmonic functions (i.e., quasi-harmonic func-
tions are harmonic functions with solenoidal perturbation).
Clearly, any quasi-harmonic basis {Hn}2g

n=1 can be rearranged
into two bases, where one basis {HT n}gn=1 is orthogonal to
poloidal loops and the other basis {HP n}gn=1 is orthogonal to
toroidal loops. In the following, ĤT n ∈ HĤT

(Γ ) denote the

harmonic toroidal and ĤP n ∈ HĤP
(Γ ) denote the harmonic

poloidal basis functions on Γ , while HT n,HP n ∈ Xf and
H̃T n, H̃P n ∈ X̃f are their quasi-harmonic counterparts.
In [91], scalings were reported of the blocks of the system

matrix ofM+
k in terms of a quasi-Helmholtz decomposition

⎡

⎢⎢
⎣

Λ Σ HT HP

n̂×Σ̃ O(k2) O(1) O(k2) O(k2)

n̂×Λ̃ O(1) O(1) O(1) O(1)

n̂×H̃P O(k2) O(1) O(k2) O(k2)

n̂×H̃T O(k2) O(1) O(k2) O(1)

⎤

⎥⎥
⎦. (81)

An analogous result can be obtained forM−
k with exchanged

roles for poloidal and toroidal loops. To observe such a
frequency behavior, it is necessary that the testing functions
are curl-conforming. Indeed, for the historical MFIE tested
with RWG functions, the scalings are not observed [94].
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To derive the asymptotic behavior for k → 0 of the block
matrices, we start by considering the Taylor series of the
Green’s function kernel of the MFIE

∇G(
r, r′

) = R
4πR3 (i kR− 1) ei kR (82)

= R
4πR3

(
−1 + 1

2
(i k)2R2 + 1

3
(i k)3R3 + · · ·

)
,

(83)

where R = |r − r′| and R = r − r′. An O(k2)-scaling is
observed for a block matrix if the contribution due to the
static term in the Taylor series vanishes. For Σn as expansion
function or n̂× Λ̃ as testing function, the static contribution
does not vanish and thus we conclude that the scalings of
the blocks in the second column and the second row of (81)
are constant in k.
We now consider the static MFIE, which models the mag-

netostatic problem, where jΓ is either solenoidal or harmonic.
In this case, we have

〈
n̂× Σ̃m,M±

0 Λn
〉
Γ

= 0, (84)
〈
n̂× Σ̃m,M±

0 HT n
〉
Γ

= 0, (85)
〈
n̂× Σ̃m,M±

0 HP n
〉
Γ

= 0. (86)

This can be seen by considering that a solenoidal function
Λ has a corresponding scalar potential

Λ = curlΓ Φ. (87)

Furthermore, we have the equality
〈
n̂× Λ,M±

0 jΓ
〉
Γ

= −〈
Λ, n̂×M±

0 jΓ
〉
Γ

. (88)

Inserting (87) for the testing function in the right-hand side
of (88) and using the fact that curlΓ is the adjoint operator
of curlΓ , we obtain

〈
n̂× Λ,M±

0 jΓ
〉
Γ

= 〈
Φ, curlΓ n̂× (

M±
0 jΓ

)〉
Γ

= −〈
Φ, curlΓ h∓

T

〉
Γ

, (89)

where h∓
T := n̂ × (M±

0 jΓ ) is the (rotated) tangential
component of the magnetic field

h(r) = curl
∫

Γ

Gk
(
r, r′

)
jΓ

(
r′
)

d S
(
r′
)

for r ∈ Ω±, (90)

that is, h−
T is the (rotated) tangential component of h when

Γ is approached from within Ω−, and h+
T when Γ is

approach from within Ω+. We recall that (90) is obtained
by finding a vector potential a such that h = curl a and
noting that curl curl a = jΓ under the assumption that
div jΓ = 0 [40, Ch. 6.1].

From

curlΓ
(
v±T (r)

) = lim
Ω±�r′→r

(
curl

(
v
(
r′
))) · n̂(r′) (91)

and from [40, eq. (6.17)]

curl v = {curl v} + n̂× (
v+ − v−

)
δΓ (92)

where curly braces {} mean that this part is evaluated only
in Ω± and δΓ is the surface Dirac delta function, together
with (90), we have

curlΓ h∓
T = curl h · n̂ = 0. (93)

Next we will establish that
〈
n̂×HPm,M±

0 Λn
〉
Γ

= 0 and〈
n̂×HTm,M±

0 Λn
〉
Γ

= 0. First, note that the exterior MFIE
operator has the mapping properties [89]

M+
0 ĤT n = 0 (94)

and

M+
0 ĤP n = ĤP n, (95)

while for the interior MFIE operator, we have the mappings
properties

M−
0 ĤP n = 0 (96)

and

M−
0 ĤT n = ĤT n. (97)

Furthermore, for any two surface functions f , g, we
have [89, Sec. 5]

〈
g,Kf

〉
Γ

= 〈−n̂× (
K
(
g× n̂

))
, f

〉
Γ

= 〈−K(
g× n̂

)
, f × n̂

〉
Γ

. (98)

Then we find
〈
n̂× ĤT n,M+

0 Λ
〉

Γ
=

〈
M−

0 ĤT n,Λ × n̂
〉

Γ

(97)= 0, (99)
〈
n̂× ĤP n,M+

0 Λ
〉

Γ
=

〈
M−

0 ĤP n,Λ × n̂
〉

Γ

(96)= 0, (100)
〈
n̂× ĤT n,M−

0 Λ
〉

Γ
=

〈
M+

0 ĤT n,Λ × n̂
〉

Γ

(94)= 0, (101)
〈
n̂× ĤP n,M−

0 Λ
〉

Γ
=

〈
M+

0 ĤP n,Λ × n̂
〉

Γ

(95)= 0, (102)

where we used (94)-(97) and the orthogonality of harmonic
and irrotational functions n̂× Λ. Now consider that H̃P n =
ĤP n + Σ̃P n and H̃T n = ĤT n + Σ̃T n, where Σ̃P/T n is the
respective perturbation. Thus by taking into account (84),
we have

〈
n̂× H̃Pm,M±

0 Λn
〉
Γ

= 0, (103)
〈
n̂× H̃Tm,M±

0 Λn
〉
Γ

= 0. (104)

From now on, we will only consider the harmonic
functions ĤT n and ĤP n instead of their quasi-harmonic
counterpart since, as we have seen, the solenoidal pertubation
will always vanish. Then for M+

0 , we have
〈
n̂× ĤTm,M+

0 ĤT n

〉

Γ
=

〈
n̂× ĤPm,M+

0 ĤT n

〉

Γ

(94)= 0,

(105)
〈
n̂× ĤTm,M−

0 ĤP n

〉

Γ
=

〈
n̂× ĤPm,M−

0 ĤP n

〉

Γ

(96)= 0

(106)

due to the nullspace. Finally, we have
〈
n̂× ĤPm,M+

0 ĤP n

〉

Γ

(95)=
〈
n̂× ĤPm, ĤP n

〉

Γ
= 0, (107)
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as n̂ × ĤPm ∈ HĤT
(Γ ) and this space is orthogonal to

HĤP
(Γ ). Likewise, we can conclude that there is at least

one m such that
〈
n̂× ĤTm,M+

0 ĤP n

〉

Γ
�= 0. (108)

Analogously, we obtain
〈
n̂× ĤPm,M−

0 ĤT n

〉

Γ
�= 0. (109)

This has established the scalings of the different block
matrices composing M±

k .
To prove the ill-conditioning in k, we consider the static

limit k → 0, where jΣ = 0 and

‖jΛ‖ = ‖jHT‖ = ‖jHP‖ = O(1),

following the argumentation in [95]. Forming the matrix-
vector product, we find

M+
k

⎡

⎢
⎢
⎣

jΛ
0
jHT

jHP

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

O
(
k2
)

O(1)

O
(
k2
)

O(1)

⎤

⎥
⎥
⎦. (110)

Thus for k → 0, we have the reduced system
[
M+

0,n̂×Λ̃,Λ
M+

0,n̂×Λ̃,HT
M+

0,n̂×Λ̃,HP

0 0 M+
0,n̂×H̃T,HP

]

︸ ︷︷ ︸(
NΛ̃+NH̃T

)
×(
NΛ+NHT+NHP

)

⎡

⎣
jΛ
jHT

jHP

⎤

⎦

︸ ︷︷ ︸(
NΛ+NHT+NHP

)×1

=
[
O(1)

O(1)

]

︸ ︷︷ ︸(
NΛ̃+NHP

)×1

, (111)

where NX is the dimensionality of the respective finite ele-
ment space of the basis functions Xn. Since NΛ̃ = NΛ, this
implies that M+

0 has an NHP = g-dimensional nullspace.
To obtain a lower bound on the condition number depen-

dency of M±
k on k, we consider that for all j±0 ∈ null(M±

0 ),
we have ‖M±

k j
±
0 ‖ = O(k2) for k → 0. Thus cond(M±

k )� k2.

1) QUASI-HELMHOLTZ PROJECTORS

It is not possible to cure the low-frequency breakdown of
the MFIE on multiply-connected geometries with projectors.
The reason is that only a part of the harmonic Helmholtz
subspace is affected. What, however, is more critical for the
MFIE in low-frequency scenarios than the ill-conditioning,
is that round-off errors and finite precision of integration
rules lead to non-vanishing static components. Equation (81)
shows that several block matrix entries should vanish when
k → 0, for example, we should observe ‖PΣM±

0 PΛ‖ = 0;
this is not observed in practice due to errors, for example,
in numerical integration. To obtain accurate solutions even
for k → 0, the contribution of the static kernel K0 must be
removed. On simply-connected geometries, it is sufficient
to explicitly set the term PΣM

±
0 PΛ to zero. On multiply-

connected geometries, this is not possible due to the different
scaling of the block matrices in (81) associated with poloidal

and toroidal loops (i.e., it could be cured with projectors on
the poloidal and toroidal quasi-Helmholtz subspace. These
are, however, numerically expensive to construct).
Quasi-Helmholtz projectors can be used to ensure the van-

ishing of the static components that ought to be, according
to (81), zero, but are not due to numerical integration errors.
This is obtained by a combination of the interior and the exte-
rior MFIE operator together with quasi-Helmholtz projectors
as outlined in [96], that is,

P̃k

⎛

⎜⎜
⎝M

−
k G

−1
n̂×̃f ,fM

+
k − PΣHM

−
0 G

−1
n̂×̃f ,fM

+
0 PΛH

︸ ︷︷ ︸
remove static kernel contribution

⎞

⎟⎟
⎠Pky

= P̃kM−
k G

−1
n̂×̃f ,fh

i, (112)

where

P̃k = 1/
√
kPΣH + i

√
kPΛ, (113)

is the counterpart of Pk on the dual mesh. The formula-
tion in (112) symmetries the behavior on the quasi-harmonic
Helmholtz subspace and ensures that the MFIE can be solved
accurately for k → 0 since no catastrophic round-off errors
occur in the right-hand side and j , and since the numerical
integration error that leads to a nonphysical contribution of
the static kernel is removed. Moreover, as we will see in
the next section, it can be directly combined with an EFIE
resulting in a stable CFIE formulation.
It should be noted that for a stable implementation

of (112), one should, instead of removing the static kernel
contribution by a subtraction, build the system matrix with-
out this contribution in the first place. To this end, we define
the operator

(
K ′

k jΓ
)
(r) := −n̂×

∫

Γ

∇ ei k|r−r′| −1

4π |r− r′| × jΓ d S
(
r′
)

(114)

and its discretization as

[
K′
k

]
nm := 〈

n̂× f̃n,K′
k fm

〉
Γ

, (115)

where we note that for small k|r− r′| a Taylor-series should
be used to remove the static contribution. Then the overall
system matrix is

1/
√
kPΣH

((−K′
k

)
G−1
n̂×̃f ,fM

+
k +M−

k G
−1
n̂×̃f ,fK

′
k

)(
1/

√
kPΛH

)

+ 1/
√
kPΣHM

−
k G

−1
n̂×̃f ,fM

+
k

(
i
√
kPΣ

)

+ i
√
kPΛM

−
k G

−1
n̂×̃f ,fM

+
k

(
1/

√
kPΛH

)

+ i
√
kPΛM

−
k G

−1
n̂×̃f ,fM

+
k

(
i
√
kPΣ

)
, (116)

which evidently does not contain the static kernel contribu-
tion PΣHM

−
0 G

−1
n̂×̃f ,fM

+
0 PΛH.
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2) HANDLING OF THE RIGHT-HAND SIDE

Similarly to the case of EFIE, the right-hand side requires
special treatment. First, we note

P̃kM
−
k G

−1
n̂×̃f ,fh

i

= P̃kM−
k G

−1
n̂×̃f ,fPΣHh

i
extracted + P̃kM−

k G
−1
n̂×̃f ,fPΛh

i,

(117)

where hi
extracted is computed analogously to e i

extracted. Again,
the equality is only true in exact arithmetic; the first term
on the right-hand side needs no further treatment as the
asymptotically constant blocks of K−

k will dominate. The
second term, however, needs to be further stabilized. We
note

P̃kM
−
k G

−1
n̂×̃f ,fPΛh

i = P̃kM−
k (PΛ + PΣH)G−1

n̂×̃f ,fPΛh
i

= P̃kM−
k PΛG

−1
n̂×̃f ,fPΛh

i, (118)

where we used PΣHG
−1
n̂×̃f ,fPΛ = 0 from Lemma 1.

Using (81), we have

P̃kM
−
k PΛG

−1
n̂×̃f ,fPΛh

i

= 1/
√
kPΣH

(−K′
k

)
PΛG

−1
n̂×̃f ,fPΛh

i

+ i
√
kPΛM

−
k PΛG

−1
n̂×̃f ,fPΛh

i

= 1/
√
kPΣH

(−K′
k

)
G−1
n̂×̃f ,fPΛh

i

+ i
√
kPΛM

−
k G

−1
n̂×̃f ,fPΛh

i. (119)

Summarizing, we obtain for the right-hand side

P̃kM
−
k G

−1
n̂×̃f ,fPΣHh

i
extracted

+ 1/
√
kPΣH

(−K′
k

)
G−1
n̂×̃f ,fPΛh

i

+ i
√
kPΛM

−
k G

−1
n̂×̃f ,fPΛh

i, (120)

which can be rearranged into

1/
√
kPΣHM

−
k G

−1
n̂×̃f ,fPΣHh

i
extracted

+ 1/
√
kPΣH

(−K′
k

)
G−1
n̂×̃f ,fPΛh

i

+ i
√
kPΛM

−
k G

−1
n̂×̃f ,fh

i (121)

using
∥
∥∥i

√
kPΛ M

−
k G

−1
n̂×̃f ,fPΣHh

i
extracted

∥
∥∥

�
∥∥∥i

√
kPΛM

−
k G

−1
n̂×̃f ,fPΛh

i
∥∥∥. (122)

3) OTHER LOW-FREQUENCY REGULARIZATIONS OF
THE MFIE

When it comes to the low-frequency regularization of the
MFIE, the body of literature falls shorter than that of the
EFIE. In light of the discussion of the previous section, it
is evident that a correct low-frequency behavior can only be
expected when the MFIE operator is tested with dual basis
functions [43], even though improvements can be expected

for the standard MFIE by using, for example, a perturbation
method [94]. Instead of quasi-Helmholtz projectors, explicit
quasi-Helmholtz decompositions can be used to ensure the
vanishing of the static components of the discretized MFIE.
Standard bases such as the loop-star worsen, however, the
conditioning in h [62] since the identity operator is turned
into a discretized Laplace-Beltrami operator. This can be
avoided with hierarchical bases as denoted in [97] in the
context of the CFIE, or by using quasi-Helmholtz projectors
as outlined in Section IV-C1.
A remaining issue is the ill-conditioning due to the quasi-

static nullspace of either the toroidal or the poloidal loops
of the exterior or the interior MFIE operator, respectively.
Strategies that have been presented in the past typically
introduce an extra condition based on vector potential con-
siderations and on an explicit detection of global loops to
remove the ill-conditioning [98], [99].
To obtain a wideband stable solver, an extension of the

preconditioning schemes to the CFIE are necessary. For
Calderón preconditioning, we will discuss this in greater
detail in the next section, but a few words should be
said on the other techniques. As mentioned earlier, explicit
quasi-Helmholtz decompositions can be readily extended
to the CFIE, however, some such as the loop-star basis
will worsen the conditioning of the CFIE. Hierarchical
basis preconditioners can be extended without the worsen-
ing [97]. An augmented CFIE has been presented [100],
however, it does not appear to resolve numerical round-off
losses.
In concluding this section on the EFIE and the MFIE low-

frequency behavior, a word should be said regarding fast
methods. Typically, a fast method is employed to accelerate
the matrix-vector products. One of the most popular choices,
the MLFMM, is not low-frequency stable [6]. Even if a
low-frequency stable method is chosen, such as the ACA,
catastrophic round-off errors can appear in the EFIE due
to the different scaling of the vector and scalar potential
part in frequency. This can be resolved by simply storing
those contributions separately [101]. More memory efficient
approaches have been presented [102] at the price of a more
complicated implementation.

V. DENSE-DISCRETIZATION SCENARIOS
The dense-discretization breakdown is sometimes confused
with the low-frequency breakdown. They are, however,
two distinct phenomena: the dense-discretization breakdown
implies that the condition number grows when h → 0.

The condition number of the EFIE is known to grow as

cond(T ) = O
(

1/h2
)
. (123)

Unlike the low-frequency breakdown, it is more diffi-
cult to prove this statement rigorously. One possible line
of argumentation is based on pseudo-differential operator
theory [103].
Another line of argumentation follows from a functional

analytic point of view, where the link between the coefficient
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FIGURE 9. The figure shows Σmax(Tk ) and Σmin(Tk ) as a function of the maximum
spectral index 1/h for a sphere of unit radius.

space CN and the domain and range of the respective operator
is considered [104]. Based on inverse inequalities, the norm
of a Sobolev space Hm is bounded by the norm of Hl, where
l < m. In the case of the EFIE operator, this approach needs
a non-trivial extension as the H−1/2

div -space necessitates a
Helmholtz decomposition.
To avoid the introduction of either Sobolev space or

pseudo-differential operator theory [105], one can also study
the singular value spectrum. This is typically only possible
for a few canonical geometries and thus the results are not a
rigorous proof. They do provide, however, a more intuitive
understanding of the underlying physics. In the Appendix,
we have included a discussion of the singular value spectrum
of the EFIE on a sphere and its link to the breakdowns.
From Appendix A-B, it is evident that TA,k has singular

values that accumulate at zero with a rate of h, while TΦ,k
has singular values that grow to infinity with a rate of 1/h
resulting in an overall condition number scaling proportional
to 1/h2. The discretized operator inherits the spectral prop-
erties of the analytic EFIE operator, though the effect of the
basis function should be removed by considering the spec-
trum of G−1

f ,f T . Figure 9 shows the maximum and minimum
singular values of the EFIE operator discretized on a sphere,
confirming that indeed the condition number scales as 1/h2.

For the MFIE, we observe that the singular values are
bounded from above and below. Indeed, second-kind integral
equations such as the MFIE are known to result in well-
conditioned system matrices if the expansion and testing
functions are L2-stable (i.e., that the Gram matrix is well-
conditioned) [106].
For the CFIE, the conditioning improves to

cond(Ck) = O(1/h), (124)

due to the MFIE part of the CFIE: the identity of the MFIE
introduces a lower bound on the singular values, which

annihilates the ill-conditioning due to TA,k. Hence, only TΦ
contributes to the growing condition number.

A. CALDERÓN PRECONDITIONING
The Calderón identity

Tk ◦ Tk =M−
k ◦M+

k = −I
4

+K2
k (125)

suggests that the EFIE operator can be turned into a second-
kind integral operator, which, as other second-kind integral
equations like the MFIE, is well-conditioned in h. The stable
discretization of (125) is not trivial, however, (see, for exam-
ple, the pioneering works [103], [107]–[109]) and research
for a stable discretization lead to discovery of an alternative
to CW functions in the form of the BC functions [45] that
leveraged the seminal work in operator preconditioning of
Steinbach and Wendland [110].

1) CALDERÓN PRECONDITIONING WITH BC FUNCTIONS

The Calderón multiplicative preconditioner (CMP) is an
effective and well-conditioned scheme for intricate geome-
tries [46]. With the notation of this paper, the CMP-EFIE
can be expressed as

T̃kG
−1
n̂×f ,̃fTkj = −T̃kG−1

n̂×f ,̃fe
i, (126)

where
[
T̃k

]
nm := 〈

n̂× f̃n,Tk̃fm
〉
Γ

. (127)

The preconditioning strategy has been used extensively and
successfully in several application scenarios with effective
improvements [111]–[113].
However, when the frequency is extremely low (when k2

normalized by the norm ratio of the scalar and vector poten-
tials reaches 10−16 in double precision), the standard CMP
will break down: in fact, from Section IV, we can expect
that (126) inherits the low-frequency issues that the MFIE is
suffering from on multiply-connected geometries due to the
Calderón identity −I/4+K2

k = (I/2+Kk)(−I/2+Kk). To
overcome the low-frequency breakdown due to the harmonic
Helmholtz subspace and due to catastrophic round-off errors,
a quasi-Helmholtz decomposition must be introduced.
In [64], quasi-Helmholtz projectors are leveraged yielding

P̃kT̃kP̃kG
−1
n̂×f ,̃fPkTkPky = −P̃kT̃kP̃kG−1

n̂×f ,̃fPke
i. (128)

The projectors ensure that the overall system matrix is
well-conditioned also on multiply-connected geometries.
Figure 10 shows that the condition number of the precon-
ditioned system matrix in (128) is asymptotically bounded.
A similar result holds even on the more challenging NASA
almond benchmark [114] (Figure 11).

2) REFINEMENT-FREE CALDERÓN PRECONDITIONING

The use of BC functions increases, unfortunately, the numer-
ical costs due to their larger support compared with RWG
functions (though specific implementations can help offset
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FIGURE 10. Condition number of the system matrices as a function of 1/h, which is
proportional to the maximum spectral index, for a cube with side length 1 m and a
frequency of 107 Hz. The labels “CMP-EFIE”, “CFIE”, “RF-CMP-EFIE”, “P-CMP-MFIE”,
and “P-CMP-CFIE” refer to the standard Calderón EFIE (126), the conforming CFIE, the
refinement-free Calderón preconditioned EFIE (129), and the Calderón preconditioned
MFIE and CFIE with projectors (112) and (142).

FIGURE 11. Conditioning of the different formulations on the NASA almond —
scaled to be of 1.1 m in diameter — and a simulating frequency of 5 × 107 Hz.

the overhead [115], [116]). Moreover, no extension to geome-
tries with junctions is available. Fortunately, a Calderón
preconditioned EFIE has been obtained without the use
of BC functions by indirectly using the Laplace-Beltrami
operator as preconditioner. The formulation reads [117]

P †
o T

†
k PmTPoi = −P †

o T
†
k Pme

i, (129)

where the outer matrix Po is

Po := PΛH/α + iPgΣ/β (130)

with

PgΣ := Σ(
ΣTΣ

)+
G−1

Λ̃,p
ΣT, (131)

where GΛ̃,p is the Gram matrix of piecewise linear dual basis
functions as defined in [45] and patch basis functions with

FIGURE 12. Condition number of the system matrices of several formulations, for a
sphere of radius 1 m and average edge length of 0.15 m as a function of the
frequency f . The label “Yu-CMP-CFIE” refers to the standard Calderón CFIE with
modified Yukawa wavenumber (141).

patch height 1/Ai, where Ai is the area of cell i of the mesh;
furthermore, the middle matrix is

Pm := PmΛ + PmΣ (132)

with the definitions

PmΛ := ΛG−1
ΛΛΛ

T/α2 + PΛH/γ, (133)

PmΣ := Σ(
ΣTΣ

)+
G−1
pp

(
ΣTΣ

)+
Σ/β2, (134)

where GΛΛ and Gpp are the Gram matrices of piecewise
linear and piecewise constant basis functions on the primal
mesh (for a detailed definition, we refer the reader to [117]),
and the scaling coefficients are

α = 4
√

‖PΛHT
†
A,kΛG

−1
ΛΛΛ

TTA,kPΛH‖2, (135)

β = 4

√∥
∥
∥PT

gΣT
†
Φ,kΣ

(
ΣTΣ

)+
G−1
pp

(
ΣTΣ

)+
ΣTTΦ,kPgΣ

∥
∥
∥

2
,

(136)

γ =
∥∥
∥(PΛH/α)T

†
A,kPΛHTA,k(PΛH/α)

∥∥
∥

2
, (137)

where the norms can be estimated with the power iteration
method for computing the largest singular value. We note
that for k → 0, we have

α ∝ √
k, (138)

β ∝ 1/
√
k, (139)

γ ∝ k, (140)

which are similar scalings as encountered for the quasi-
Helmholtz projectors. A key property of this formulation
is that the resulting system matrix is Hermitian, positive
definite. This allows the use of CG, which in exact arithmetic
guaranties convergence, and has a lower computational cost
with respect to CGS or GMRES [53].
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FIGURE 13. Number of iterations needed by GMRES(50) to converge for tolerance
10−4 when solving the linear systems arising from different formulations discretized
on a cube, for a frequency of 107 Hz. For the RF-CMP from (129), the iterations needed
by CG are shown (since for this formulation the system matrix is Hermitian, positive
definite).

Figure 13 shows the number of iterations for the
refinement-free preconditioned compared with (128), a stan-
dard EFIE and a loop-tree preconditioned EFIE. It displays
that the number of iterations become bounded independently
from h, thus confirming the dense-discretization stability of
the formulation.

3) ALTERNATIVE CALDERÓN-TYPE STRATEGIES

Many alternative Calderón-identity based preconditioning
strategies have been presented, most prominently the pioneer-
ing works by Adams and Brown [118] and by Christiansen
and Nédélec [103], [119]. Often the focus was not
only on obtaining a well-conditioned EFIE, but rather a
well-conditioned CFIE or combined source integral equa-
tion (CSIE) [120], [121] with the pioneering works by
Contopaganos et al. [108] and Adams [122]. These schemes
do not use dual basis functions, but instead require ad-
hoc implementations of modified operators or use Nyström
discretizations.
Another class of preconditioners is based on Dirichlet-

to-Neumann operators and on-surface radiation condi-
tions [109], [123]–[125]. As will be discussed in the next
section, some of these methods have been extended to handle
the high-frequency breakdown. Naturally, these extension are
all capable of curing the dense-discretization breakdown. In
these schemes, low-frequency issues have not always been
addressed in the original papers, but we believe they could
be extended to handle those as well.
To stabilize the standard Calderón preconditioner in

the static limit, it has been proposed to discretize the
EFIE with a loop-star basis first [86], [87], which implies
ill-conditioned Gram matrices and the search for global
loops. A perturbation method based approach was also
suggested [126].

Another strategy employs a discretization with the Hdiv-
inner product [127]; combined with a Calderón precondi-
tioner, that cures both the low-frequency and the dense-
discretization breakdown; however, the scheme has not yet
been extended to multiply-connected geometries.
For open problems, the Calderón preconditioner in (128)

yields only a logarithmic bound in h. Recently, a formulation
has been proposed that yields an h-independent bound by
leveraging an analytic transformation for the open disc and
Lipschitz transformations of the geometry [128].

B. QUASI-OPTIMAL HIERARCHICAL PRECONDITIONERS
One alternative to Calderón preconditioning for the EFIE
are hierarchical basis approaches. Hierarchical bases (also
referred to as multiresolution or wavelet methods) have been
pioneered in the context of scalar integral equations; they
can not only be used as preconditioner, but also to compress
the resulting system matrix [129]–[140]. Both the compress-
ibility of the system matrix [78], [141], [142], as well as the
preconditioning effect has been demonstrated for the EFIE
system matrix [79], [80], [83], [142], [143]. For unstruc-
tured meshes, a hierarchically preconditioned EFIE could
initially only be obtained for the TΦ,k-part of Tk [81].
Recently, a scheme based on generalized primal and dual
Haar prewavelets has been presented, where the condition
grows only logarithmically in N, and which—in contrast to
other hierarchical bases—extends naturally to unstructured
meshes [84].
The logarithmic growth renders hierarchical basis precon-

ditioners quasi-optimal compared with Calderón schemes,
where the condition number can be asymptotically bounded
by a constant. This disadvantage can, in practice, often be
compensated by the fact that unlike Calderón schemes, no
second multiplication with the EFIE matrix is required. As
mentioned in Section IV-A3, hierarchical basis precondi-
tioners can be applied to the CFIE [97] and the search for
global loops can be avoided by a suitable combination with
quasi-Helmholtz projectors [85].

C. ALTERNATIVE STRATEGIES
From the alternative strategies that remedy the low-frequency
breakdown mentioned in Section IV-A3, only a few are
dense-discretization stable without further changes. The most
prominent example is the decoupled potential integral equa-
tion [76]. The augmented EFIE, on the other hand, can be
combined with a Calderón preconditioner [144].
As an alternative to operator preconditioning based strate-

gies, algebraic preconditioners have been proposed. In
general, this class of preconditioners will not provide asymp-
totic bounds on the condition number in h. Very often those
methods have been designed with electrically large problems
in mind and they typically employ the MLFMM: wideband
stability is typically not a construction criterion.
The idea of algebraic preconditioners is to obtain an

approximation B of the system matrix A, where B−1 can be
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computed explicitly (a direct inverse is obtained) or implic-
itly (a linear system has to be solved at each iteration step)
fast.1 A detailed review of algebraic preconditioners for elec-
tromagnetic integral equations is provided in [25]. Here, we
review only the most well-known techniques.
A typical example of explicit preconditioners are sparse

approximations [145]–[148]. A challenge is that if a fast
method such as the MLFMM is used, the full system matrix
is not available. It is customary to use, for example, the
near-field interactions of the MLFMM to construct a pre-
conditioner [148]. While this matrix is indeed sparse, the
goal is to obtain a sparse inverse and, in general, the inverse
of a sparse matrix is not sparse. This sparse matrix is typ-
ically obtained as solution to the minimization problem
‖I − ANB‖F, where ‖·‖F is the Frobenius norm and AN
refers to the near-interaction matrices [149]. A filtering of
AN is often necessary to reduce the computational cost [150]
and the use of macro basis functions has also been proposed
to reduce the problem size [151]. Since the methods are
based on the near-interactions, it is local in nature; instead,
to consider global interactions, [152] proposes to use inter-
polative decompositions, while [149] employs an embedded
iterative scheme. Recently, hybrid parallelizations for clus-
ters have been presented [153]. Also, the sparse approximate
preconditioners can be combined with other methods such
as a two-grid spectral preconditioner [154].
Some of the most prominent among the implicit methods

are based on the incomplete LU decomposition [155]–[158].
The costs for obtaining the incomplete LU decomposition are
often lower than the costs of constructing a sparse approx-
imate inverse. However, highly indefinite systems pose a
significant challenge as they can give rise to ill-conditioned
triangular factors [25]. As an alternative, GMRES-based
near-zone preconditioning has been proposed [159].

VI. HIGH-FREQUENCY ISSUES
For resonant frequencies, both the EFIE and the MFIE
have nullspaces associated with the interior resonances and
are thus ill-conditioned. To overcome the problem of inte-
rior resonances, a CFIE or CSIE formulation is typically
employed [21], [160].

A. CALDERÓN-YUKAWA COMBINED FIELD INTEGRAL
EQUATION
Calderón preconditioning can also be extended to a combined
field framework. A trivial combination of the Calderón pre-
conditioned EFIE (126) and the MFIE from (20) would lead
to an overall operator suffering from interior resonances:
the identity (125) implies that the Calderón preconditioned
EFIE and the MFIE share part of their nullspaces. To obtain
a wideband stable CFIE, the EFIE from (126) should be
combined with the MFIE from (20) with one important
adjustment: the wavenumber k in T̃k needs to be made a

1. Operator preconditioning, in this logic, strives to find B as an
approximation of A−1.

complex number. One possibility for a complex k is to use
the Yukawa potential resulting in

(
−αT̃i kG

−1
n̂×f ,̃fTk + (1 − α)M+

k

)
j

= αT̃i kG
−1
n̂×f ,̃fe

i + (1 − α)hi. (141)

Originally, this has been proposed in [108] and later
employed in the Calderón multiplicative preconditioner for
the CFIE [161]; Section V-A3 includes a discussion of
Calderón-type preconditioners for the CFIE and CSIE.
This standard approach is, however, not stable until arbi-

trarily low frequencies, because of the numerical issues
detailed in Section IV. A stable formulation can be obtained
by combining the Calderón preconditioned EFIE (128) and
the stabilized MFIE from (112). Similar to the precondition-
ing EFIE matrix, a complex wavenumber should be used for
preconditioning MFIE. This results in the overall formulation

P̃k

(
T̃i kP̃kG

−1
n̂×f ,̃fPkTkPk

+ ξ
(
M−

i kG
−1
n̂×̃f ,fM

+
k −PΣHM

−
0 G

−1
n̂×̃f ,fM

+
0 PΛH

))
Pky

= −P̃k
(
T̃i kP̃kG

−1
n̂×f ,̃fPke

i − ξM−
i kG

−1
n̂×̃f ,fh

i
)
, (142)

with a suitably chosen ξ and in high-frequency scenarios, the
scaling of the projectors must be set to a unitary value [96].
Figure 12 shows that the CFIE formulation is free from inte-
rior resonances and Figure 13 the number of iterations as a
function of the spectral index 1/h. For the presented results,
we have weighted the EFIE and MFIE part equally. Finally,
this combined formulation has the advantage of not exhibit-
ing a static nullspace. This is because, unlike the standard
the Calderón EFIE (126), the Calderón EFIE stabilized with
projectors (128) has no static nullspace, which can additively
cure that of the MFIE and results in equation (142) that is
free from spurious resonances, as illustrated in Figure 14.
While both Calderón-Yukawa CFIEs (141) and (142) are

free from the dense-discretization breakdown (i.e., when all
parameters are kept constant expect from h, the condition
number can be asymptotically bounded for h → 0), the
condition number cannot be bounded independently from
k. This effect has been designated as the high-frequency
breakdown.

B. HIGH-FREQUENCY BREAKDOWN OF THE
CALDERÓN-YUKAWA CFIE
The high-frequency breakdown corresponds to the regime in
which the wavenumber k increases and the mesh parameter
h decreases proportionally to the inverse of the wavenum-
ber. Concretely, it corresponds to increasing the frequency
while keeping the number of basis functions per wave-
length constant (e.g., ten subdivisions per wavelength is a
common choice). In other words, we are interested in the
high-frequency regime which is characterized by hk = const
while k → ∞.

It can be shown that in general both the standard CFIE
and the Calderón-Yukawa CFIE have singular values that
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FIGURE 14. Low frequency (10−12 Hz) spectra of several formulations putting into
evidence their magnetostatic nullspace, or lack thereof. The matrices have been
obtained by discretizing a torus with a square the cross section of 0.2 m sides and
with a minimum inner diameter of 2 m. The average edge length of the mesh is of
0.2 m and the spectra have been normalized to make the figure more readable. The
combination parameter ξ = i was used here.

are unbounded in k. As, however, the problem is that the
singular values of the analytic operator are unbounded in k,
the condition number of the Calderón-Yukawa CFIE grows
when k → ∞. On spherical geometries, it has been proved
that the condition number grows as O(k2/3) [162]. As was
seen in the previous sections, the spectrum of the electro-
magnetic boundary integral operators can be separated into
parts: one for the solenoidal functions and the other for the
non-solenoidal functions. The O(k2/3) growth of the con-
dition number is due to a maximum singular value in the
solenoidal part of the spectrum that grows as O(k1/3) and
a minimum singular value in the non-solenoidal part of the
spectrum that decreases as O(k−1/3). This effect is related to
the high-frequency breakdown in the scalar Helmholtz equa-
tion in acoustics, where both the Dirichlet problem solved
with a standard CFIE and the Neumann problem solved with
a Calderón-Yukawa CFIE have condition numbers that grow
as O(k1/3) on a sphere [163], [164]. A more detailed analy-
sis of the high frequency breakdown on the sphere is given
in the Appendix.

C. REMEDIES
The preconditioners to cure the high-frequency breakdown
that are found in the literature are based on the use of a
modified wavenumber km. This modified wavenumber km is
the original wavenumber k plus a shift in the complex plane.
This modified wavenumber has the form [165]

km = k + i ck1/3a−2/3, (143)

where c is a dimensionless constant and a is a length that
depends on the geometry. For example, on spherical geome-
tries, a is the radius of the sphere and c is often chosen to be
c ≈ 0.4, which is actually based on optimizations for the con-
ditioning of the acoustic operators [165], but also give good

results in the electromagnetic case. A heuristic from [162]
is to choose as the maximum of the absolute value of the
mean curvature of the object boundary H = 1/a.

Among the solutions found in [162] proposes a Calderón-
like preconditioning with a modified wavenumber km in the
preconditioner of the EFIE operator, then an unchanged
MFIE is added in a CFIE fashion. The work [166] also
uses a Calderón-like preconditioning of the MFIE with the
same km. The work in [123] uses the inverse square root of
the vector Helmholtz operator with the modified wavenum-
ber as a preconditioner for the non-solenoidal part of the
equation. In [167], two different symmetric formulations for
the EFIE are proposed that are high-frequency stable (in
addition to being low-frequency and dense-discretization sta-
ble): one based on a loop-star decomposition with a scalar
Helmholtz operator (with km) and its inverse to precondition
separately the loop and star components, and the other based
on quasi-Helmholtz projectors to precondition independently
the solenoidal and the non-solenoidal part with the vector
Helmholtz operator and its inverse. Essentially, in the two
cases, the EFIE is squared with the Helmholtz operator in
the middle, which avoids the discretization of the EFIE with
dual basis functions similar to the refinement-free Calderón
preconditioner from Section V-A2.

VII. A NOTE ON THE ROLE OF THE BASIS FUNCTION
GRAM MATRIX ON CONDITIONING
Given that several of the techniques described above aim to
obtain a preconditioned equation which is spectrally equiva-
lent to an identity, it follows that the final condition number
is related to the one of the (potentially mixed) Gram matrix
between the rightmost expansion and leftmost testing basis
functions used. In the special case in which these two bases
coincide, the Gram matrix of the basis will be the one dictat-
ing ultimately the conditioning behavior. There are two main
causes of ill-conditioning for a Gram matrix associated with
a specific basis function set: (i) the mesh quality is low or
(ii) the basis functions linear dependency increases with one
of the relevant parameters (mesh size and polynomial order,
for example). Below we will briefly discuss these two cases
together with related solution approaches.

A. ILL-SHAPED MESH ELEMENTS
Simply speaking, a mesh is ill-shaped if it has narrow tri-
angles (see Figure 15 for a mesh with narrow triangles; for
a more nuanced discussion on measures for the quality of
meshes, see [168]). Ill-shaped meshes lead to higher con-
dition numbers of the discretized operator compared with a
discretization based on a well-shaped mesh, that is, where
the angles of each triangle have roughly the same size. To
quantify the impact of ill-conditioning due to the mesh, one
can consider the condition number of the discretized I, that
is, Gf ,f : the condition number will be a baseline for any
other integral operator discretized with RWG basis func-
tions. Clearly, this problem is not specific to surface integral
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FIGURE 15. Example of ill-shaped triangles.

equation methods, volume integral equation methods or finite
element methods also suffer from this issue.
This kind of Gram matrix ill-conditioning can be cured

by the optimization of the geometry or the applica-
tion of mesh smoothers, a strategy to avoid this cum-
bersome (often manual) work has been presented by
Stephenanson and Lee [169]. Based on a study of the SVD of
the EFIE system matrix, degrees of freedom associated with
the ill-shaped triangles are eliminated. An alternative strategy
can be the use of discontinuous Galerkin (DG) strategies.
In fact, one source of ill-shaped meshes stems from geome-
tries that necessitate a finer discretization of certain parts
of the geometry to either capture important details or to
avoid a work intensive cleanup of the geometry. With DG
individual parts of the surface are meshed independently
from each other. Weak conditions are used to enforce cur-
rent continuity [37]. Lastly, one can entirely avoid this issue
by discretizing directly on the spline-based geometry, that
is, leveraging methods from isogeometric analysis. For the
electric field integral equation such approaches have recently
been presented [170]–[173].
Improvements of the Calderón preconditioning in (128)

can be expected by placing an additional Gram matrix
resulting in

G− T
n̂×f ,̃f P̃kT̃kP̃kG

−1
n̂×f ,̃fPkTkPky

= −G− T
n̂×f ,̃f P̃kT̃kP̃kG

−1
n̂×f ,̃fPke

i, (144)

where G− T
n̂×̃f ,f = (GT

n̂×̃f ,f )
−1. It ensures that the condition

number can be bounded independently from h and the bases
used for discretization. For a well-conditioned bases such
as RWG and BC functions, this is not necessary. However,
it typically improves the condition number, in particular, if
the mesh contains ill-shaped triangles or if the discretiza-
tion is non-uniform which occurs, for instance, in the case
of meshes resulting from adaptive refinement. The cost for
inverting G− T

n̂×̃f ,f is often outweighed by a saving in the num-
ber of iterations required to solve the preconditioned system
since the cost of a matrix-vector product with T or T̃ is
often more expensive than inverting G− T

n̂×̃f ,f iteratively.

B. BASIS FUNCTIONS LINEAR DEPENDENCY
The choice of basis functions affects the conditioning of
the Gram matrix and thus of the discretized operator (espe-
cially when the latter is of the second kind, as it often
happens for preconditioned formulations). A particularly

important case of Gram matrix ill-conditioning though is
the one found in higher-order basis functions. The most
popular types of higher-order bases for electromagnetic inte-
gral equations are interpolatory and hierarchical higher-order
bases [174]–[185].
Hierarchical higher-order basis functions should not be

confused with hierarchical bases used for curing the
dense-discretization breakdown, which we discussed in
Section V-B. Typical hierarchical bases for curing the dense-
discretization breakdown of the EFIE are of the same
polynomial order as first order RWG bases. While the use
of such hierarchical basis functions leads with an increasing
order p to a faster convergence with respect to the analytic
solution, it also increases the condition number. For interpo-
latory bases, an exponential growth of the condition number
in p has been reported, in contrast to a polynomial growth
for hierarchical bases [180, p. 187].
Strategies to overcome the p-breakdown rely on con-

structing orthogonal higher-order basis functions. In fact,
hierarchical higher-order basis functions enforce orthogonal-
ity between functions on the same level [177], [178]. Further
improvements have been presented for wire-, quadrilateral-,
and brick-type elements [187]–[189].
For some of these hierarchical higher-order basis

functions, Calderón-type preconditioners have been
presented [189]. As a consequence from operator precon-
ditioning theory [110], [190], it is possible to obtain a
higher-order discretization of the EFIE, where the condition
number is bounded independently from h and p. It must be
noted though that while this is true for the overall condition
number, the (inverse) Gram matrices that appear in the
Calderón preconditioner remain ill-conditioned in p.

VIII. CONCLUSION
This paper has presented an overview of the state of the art in
electromagnetic integral equation preconditioning. Different
spectral regularization strategies have been discussed, fur-
ther analyzed, and framed in the overall context of solving
challenging large computational electromagnetics problems.
Bibliographic reviews have been alternated with theoretical
treatments and corroborating numerical results to show the
practical impacts of all the strategies.

APPENDIX A
CONTINUOUS INTERPRETATIONS
In this section, Γ is a sphere of radius a centered at the
origin. The scalar spherical harmonics (SH) are noted Ylm
with l ≥ 0 and |m| < l. The vector spherical harmonics
(VSH) are defined as

Ylm
(
r̂
) = r̂Ylm

(
r̂
)
, (145)

Xlm
(
r̂
) = a

i
√
l(l+ 1)

r̂× ∇Ylm
(
r̂
)
, (146)

Ulm
(
r̂
) = − a

i
√
l(l+ 1)

∇Ylm
(
r̂
)
, (147)
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They form an orthonormal basis for vector fields on Γ with
respect to the weighted inner product

〈u, v〉 =
∫

Γ

u · vd S(r)
a2

=
∫ 2π

ϕ=0

∫ π

θ=0
u · v sin θ d θ d ϕ.

(148)

Note that Xlm and Ulm are tangential, while Ylm are radial
vector fields. Therefore, only Xlm and Ulm are used in the
analysis of the surface integral operators. By construction,
this basis is Helmholtz decomposed: Xlm are solenoidal and
Ulm are irrotational.
In the following, Jl is the Riccati-Bessel function and

Hl is the Riccati-Hankel function of first kind. They are
related to the Bessel function Jl and the Hankel function
of first kind Hl by Jl(z) = √

πz/2 Jl+1/2(z) and Hl(z) =√
πz/2Hl+1/2(z). Also, ′ denotes their derivative with respect

to their argument. We thus obtain the analytic expressions
of the EFIE operator [108], [191], [192]

Tk Xlm = − Jl(ka)Hl(ka)Ulm, (149)

Tk Ulm = J
′
l(ka)H

′
l(ka)Xlm, (150)

the exterior MFIE operator

(I/2 +Kk)Xlm = i J′
l(ka)Hl(ka)Xlm, (151)

(I/2 +Kk)Ulm = − i Jl(ka)H
′
l(ka)Ulm, (152)

and the interior MFIE operator

(−I/2 +Kk)Xlm = i Jl(ka)H
′
l(ka)Xlm, (153)

(−I/2 +Kk)Ulm = − i J′
l(ka)Hl(ka)Ulm. (154)

The tangential vector fields Xlm and Ulm are eigenvectors of
the MFIE operator, and they are singular vectors of the EFIE
operators. Assume we discretize the operator T with the
VSH, then it is clear that the singular values associated with
the right singular vectors Xlm are Σl,X = | Jl(ka)Hl(ka)|,
and the singular values associated with the right singular
vectors Ulm are Σl,U = | J′

l(ka)H
′
l(ka)|. By studying the

behavior of these singular values in different regimes, we
can obtain the asymptotic behavior of the condition number
of the discretized EFIE. Since ∇ ·Xlm = 0, the study of the
operators applied to Xlm gives the behavior of the operators
applied to solenoidal functions. Whereas the study of the
operators applied to Ulm gives the behavior of the operators
applied to non-solenoidal functions. The following asymp-
totic expressions can be obtained easily from the asymptotic
behavior of the special functions in different regimes [193].

A. LOW-FREQUENCY BREAKDOWN AND OTHER
ISSUES
1) LOW-FREQUENCY BREAKDOWN

We study the condition number of the discretized EFIE for
k → 0, where we keep the number of basis functions con-
stant. In this case, it corresponds to considering only the
orders l less than some constant lmax. Thus in the asymptotic
expansion l is fixed and independent of k. In the following,

FIGURE 16. Singular values of the EFIE associated to the first three harmonic
orders (l = 1, 2, 3) as functions of the frequency. The low frequency behavior is given
by a growth of the maximum singular value as (ka)−1, and the decrease of minimum
singular value as (ka), which results in a condition number that grows proportionally
to (ka)−2 as ka → 0. In higher frequencies there are the first resonant frequencies (at
ka ≈ 2.74, 3.87, etc .) around which the condition number is unbounded.

we will use the asymptotic behavior of the Riccati-Bessel,
Riccati-Hankel, and their derivatives for small arguments
given by

Jl(ka) ∼
k→0

(ka)l+1

(2l+ 1)!!
, (155)

J
′
l(ka) ∼

k→0

(l+ 1)(ka)l

(2l+ 1)!!
, (156)

Hl(ka) ∼
k→0

− i(2l− 1)!!

(ka)l
, (157)

H
′
l(ka) ∼

k→0

i l(2l− 1)!!

(ka)l+1
, (158)

where !! is the double factorial (or semifactorial) that is
defined by the recurrence relation n!! = (n − 2)!!n and
1!! = 0!! = 1. Therefore, as k → 0, the singular values
scale as

σl,X = |Jl(ka)Hl(ka)| = O(k), (159)

σl,U = ∣∣J′
l(ka)H

′
l(ka)

∣∣ = O
(
k−1

)
. (160)

As a consequence, the condition number grows as O(k2).
The singular values of the EFIE operator on a sphere have
been represented on Figure 16.
A way to solve this problem is by scaling the solenoidal

part by k−1 and by scaling the non-solenoidal part by k. In
the VSH basis, it is simply a diagonal preconditioner, but in
practical applications one has to use some techniques such as
a loop-star decomposition or quasi-Helmholtz projectors to
decompose the two subspaces before rescaling them. Another
way to solve the problem is by Calderón preconditioning. In
this case, the main operator is (Tk)2, whose singular values
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are
∣∣Jl(ka)Hl(ka) J

′
l(ka)H

′
l(ka)

∣∣ = O(1) (161)

as k → 0. As a result, the condition number of the Calderón
EFIE remains bounded as k → 0.

2) LOW-FREQUENCY ROUND-OFF ERRORS IN THE
EXCITATION

We consider the plane wave fpw(r) = e0 ei kẑ·r x̂. Its tangential
component expands as [194]

〈Xl,±1, f pw〉 = 2π il e0

√
2l+ 1

4π

Jl(ka)

ka
, (162)

〈Ul,±1, f pw〉 = ±2π il e0

√
2l+ 1

4π

J
′
l(ka)

ka
. (163)

For k → 0, the dominant terms of the solenoidal and non-
solenoidal parts are

〈X1,±1, f pw〉 = O(ka), (164)

〈U1,±1, f pw〉 = O(1). (165)

When the RWG basis functions are used for the discretiza-
tion, the two components are summed together; due to finite
machine precision and the associated numerical round-off
errors, the solenoidal part is lost.

3) LOW-FREQUENCY ROUND-OFF ERRORS IN THE
SOLUTION

Consider the EFIE Tk jΓ = −n̂ × ei when the excitation is
the plane wave ei(r) = e0 ei kẑ·r x̂. From (149) and (162), the
solution jΓ has the following expansion

〈
Xl,±1, jΓ

〉 = 2π il

Hl(ka)ka

√
2l+ 1

4π
e0, (166)

〈
Ul,±1, jΓ

〉 = ± 2π il

H
′
l(ka)ka

√
2l+ 1

4π
e0. (167)

For k → 0, the dominant terms of the solenoidal and non-
solenoidal parts are respectively

〈X1,±1, jΓ 〉 = O(1), (168)

〈U1,±1, jΓ 〉 = O(ka). (169)

Again, similarly to the round-off errors in the excitation,
the solution has two Helmholtz components that scale
differently with the frequency. Therefore, in a numeri-
cal solver, unless some care is taken by treating the two
components separately, the non-solenoidal part will get
canceled.

B. DENSE-DISCRETIZATION BREAKDOWN
We study the condition number of the discretized EFIE
when h decreases and the frequency remains constant. A
decrease in h is equivalent to an increase of the maxi-
mum spacial frequency of the functions that are discretized.
In the case of the VSH, their spacial frequency increases
with their order l. The number of VSH whose order is

less or equal to l grows quadratically with l, due to their
multiplicity on the order m (|m| ≤ l). When we use local
basis functions such as RWGs to discretize the opera-
tors, the number of unknowns also grows quadratically
with a/h. Therefore, to study the dense-discretization break-
down, we can use the correspondence l = O(a/h). In the
following, we will use the asymptotic behavior of the Riccati-
Bessel, Riccati-Hankel, and their derivatives for large order
given by

Jl(ka) ∼
l→+∞

1√
2 e

(
e ka

2l+ 1

)l+1

, (170)

J
′
l(ka) ∼

l→+∞

√
e

2

l+ 1

2l+ 1

(
e ka

2l+ 1

)l
, (171)

Hl(ka) ∼
l→+∞ − i

√
2

e

(
2l+ 1

e ka

)l
, (172)

H
′
l(ka) ∼

l→+∞
i l

√
2 e

2l+ 1

(
2l+ 1

e ka

)l+1

. (173)

Therefore, as l → +∞, the singular values scale as

σl,X = |Jl(ka)Hl(ka)| = O(l−1) = O(h), (174)

σl,U = ∣∣J′
l(ka)H

′
l(ka)

∣∣ = O(l) = O
(
h−1

)
. (175)

As a consequence, the condition number grows as O(h−2).
The spectrum of the EFIE have been represented on
Figure 17 for different frequencies to illustrate this growth of
the condition number as the discretization density increases.
This problem can be solved using Calderón precondition-

ing: as l → +∞ (or equivalently as h → 0), the singular
values of (Tk)2 are

∣∣Jl(ka)Hl(ka) J
′
l(ka)H

′
l(ka)

∣∣ = σl,Xσl,U = O(1). (176)

As a result the condition number of the Calderón EFIE
remains bounded as h → 0.

C. HIGH-FREQUENCY RESONANCES
We study the condition number for ka � 1. Here the point
to notice is that l is kept constant as ka → +∞, and

Jl(ka) = sin(ka− lπ/2) + O
(
(ka)−1

)
, (177)

J
′
l(ka) = cos(ka− lπ/2) + O

(
(ka)−1

)
. (178)

So the Riccati-Bessel function and its derivative have zeros,
and as a consequence, there are an infinite number of
frequencies such that one of the σl,X or σl,U is 0. Therefore
the condition number of the EFIE is unbounded around these
resonant frequencies, which makes the EFIE unsolvable in
practice without further treatment. The MFIE suffers from
the same problem.
The resonant frequencies can be read on Figure 16 with

the first one appearing at ka ≈ 2.74. Also, it is clear from
Figure 16 that the higher ka is, the more common the res-
onant frequencies are. The result of the resonances on the
spectrum is clear on Figure 17, where there is a finite number
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FIGURE 17. Singular values of the operator of the EFIE on a sphere for three
different frequencies. The maximum singular value grows as h−1 and the minimum
singular value decreases as h, resulting in a condition number growth proportional
to h−2.

of singular values that are unbounded from below at a fixed
frequency.
The common way to solve this problem is to discretize

the CFIE, which combines the EFIE (6) scaled by α and the
MFIE (11) on which is applied (1−α)n̂×, where 0 < α < 1
is a dimensionless constant. The CFIE is

αn̂× ei + (1 − α)n̂× n̂× hi

= (−αTk + (1 − α)n̂× (I/2 +Kk)
)
jΓ . (179)

The singular values of this CFIE operator associated with
the right singular vector Xlm and Ulm are, respectively,

∣
∣α Jl(ka) + i(1 − α) J′

l(ka)
∣
∣|Hl(ka)|, (180)

∣∣α J
′
l(ka) − i(1 − α) Jl(ka)

∣∣∣∣H′
l(ka)

∣∣, (181)

which are never 0 since the zeros of Jl and J
′
l never coin-

cide (due to the fact that the zeros of the Bessel functions
are simple with an exception at ka = 0, which we do
not consider). In other words, the CFIE can always be
inverted.
Note that the CFIE only fixes the problem of the res-

onances that make the MFIE operator and EFIE operator
non-invertible for some frequencies. Around these resonant
frequencies, the condition number is unbounded. However,
the CFIE still suffer from the dense-mesh breakdown.
The Calderón-Yukawa CFIE is dense-mesh stable, low-
frequency stable and free from resonances. But it still
suffers from the high-frequency breakdown, which is an
asymptotic growing of the condition number as k → ∞
while keeping kh constant. It is discussed in the next
section.

FIGURE 18. Singular values of the operator of the Calderón-Yukawa CFIE (182) on a
sphere for three different frequencies. The maximum singular value grows as (ka)1/3

and the minimum singular value decreases as (ka)−1/3, resulting in a condition
number growth proportional to (ka)2/3.

D. HIGH-FREQUENCY BREAKDOWN
In this section we study the asymptotic behavior of the
singular values of the Calderón-Yukawa CFIE operator [96]

− Ti kTk + (I/2 −Ki k)(I/2 +Kk). (182)

Recall that the CFIE is used to avoid the interior reso-
nances, while Calderón preconditioning avoids the dense-
discretization breakdown. The Yukawa part denotes the use
of pure imaginary wavenumbers in the preconditioning oper-
ators so that the preconditioners do not reintroduce interior
resonances.
We show in this section that the maximum singular value,

which is associated with the solenoidal functions, scales at
least proportionally to k1/3, while the minimum singular
value, which is associated with the non-solenoidal functions,
scales at most as O(k−1/3). The result is a growth of the
condition number faster than a constant times k2/3, where
numerical evidences on the spherical harmonics show that
this limit is in practice attained. The singular values of the
Calderón-Yukawa CFIE have been represented on Figure 18
as well as the asymptotic bounds that are derived in the
following sections.
1) Minimum singular value: The singular value associated

with the nonsolenoidal VSH Ulm are

σl,U = ∣
∣Hl(i ka)H

′
l(ka)

(
J
′
l(i ka) Jl(ka) + Jl(i ka) J

′
l(ka)

)∣∣.

(183)

It is useful to treat the order l as a real variable instead
of an integer. We obtain an upper bound for the mini-
mum singular values by choosing as l the value for which
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Jl(ka) = √
πka/2 Jl+1/2(ka) = 0, that is, for which ka is a

zero of Jl+1/2 (J is the Bessel function and J is the Ricatti-
Bessel function). For the first zero of Jl+1/2, the asymptotic
expansion is given by [193, eq. (10.21.40)]

ka ∼ l+ αl1/3 + 1/2, (184)

or, equivalently, when

l ∼ ka− α(ka)1/3 − 1/2 (185)

with α = −2−1/3a1 ≈ 1.856, where a1 ≈ −2.34 is the
first zero of Ai, which denotes the Airy function of the
first kind. Using the uniform asymptotic expansion of the
derivatives of the Bessel and Hankel functions for large
orders [193, eq. (10.20.7-9)], we find that the upper bound
for the minimum singular value is asymptotically

π Ai′(a1)
∣∣Ai′(a1) − i Bi′(a1)

∣∣

27/6
(ka)−1/3 ≈ 0.69(ka)−1/3,

(186)

where Bi denotes the Airy function of the second kind.
2) Maximum singular value: The singular values associ-

ated with the solenoidal VSH Xlm are

σl,X = ∣∣H′
l(i ka)Hl(ka)

(
J
′
l(i ka) Jl(ka) + Jl(i ka) J

′
l(ka)

)∣∣.

Similarly to the previous case, there is another constant α̃

such that the index of a lower bound for the maximum
singular value is asymptotically

l ∼ ka− α̃(ka)1/3 − 1/2. (187)

Using the asymptotic expansion of the Bessel func-
tions in the transition region [193, eq. (10.19.8-9)] we
find that the dominant term in σl,X is proportional to
Ai(−21/3α̃)| Ai(e− i π/3 21/3α̃)|. So α̃ has to maximize this
quantity, and a derivative of it shows that α̃ is solution of

Ai′(z)
(

2 Ai(z)2 + Bi(z)2
)

+ Ai(z) Bi(z) Bi′(z) = 0, (188)

where z = −21/3α̃. Numerically, we obtain α̃ ≈ 0.623,
and the lower bound for the maximum singular value is
asymptotically

π Ai(z)|Ai(z) − i Bi(z)|
25/6

(ka)1/3 ≈ 0.524(ka)1/3. (189)

3) High-frequency stabilization: Notice that the Calderón-
EFIE (and the MFIE, respectively) does, in some sense, not
suffer from the high-frequency breakdown since the singular
values of its operator are bounded from above by a constant
independent from k, but it is unstable due to the interior res-
onances. In contrast, the Calderón-Yukawa CFIE is free from
interior resonances, but it suffers from the high-frequency
breakdown as the maximum singular values of its operator
is unbounded in k. To solve this issue one can construct a
Calderón-CFIE, but instead of using the wavenumber k in
the preconditioner, one uses a modified wavenumber km that

FIGURE 19. Singular values of the Calderón-CFIE with modified wavenumber km in
the preconditioning operators (190) on a sphere for three different frequencies. The
singular values are bounded from above and from below by a constant resulting in a
stable condition number when the frequency increases.

is shifted in the complex plane to avoid reintroducing the
resonances resulting in [166]

− TkmTk + (
I/2 −Kkm

)
(I/2 +Kk). (190)

This modified wavenumber for the sphere has the
form [123], [162]

km = k + i ck1/3a−2/3, (191)

where c ∈ R is a constant. A common choice that gives a
good condition number is c ≈ 0.4. The singular values of
this operator are similar to those of the Calderón-Yukawa
CFIE with the pure imaginary wavenumber i k replaced by
km, namely

σl,U = ∣∣Hl(kma)H
′
l(ka)

(
J
′
l(kma) Jl(ka) + Jl(kma) J

′
l(ka)

)∣∣

(192)

σl,X = ∣∣H′
l(kma)Hl(ka)

(
J
′
l(kma) Jl(ka) + Jl(kma) J

′
l(ka)

)∣∣.
(193)

These singular values have been plot in Figure 19 for increasing
frequencies. It is evident that the condition number is bounded.

APPENDIX B
INVERSE GRAM MATRIX PROPERTIES
Lemma 1: For the inverse mixed Gram matrix Gn̂×̃f ,f , we
have

PΣHG
−1
n̂×̃f ,fPΛ = 0, (194)

PΣG
−1
n̂×̃f ,fPΛH = 0. (195)

Proof: First, we define the transformation matrix Q =[
Λ H Σ

]
, where the global loops are constructed such
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(
QTGQ

)−1

=

⎡

⎢⎢
⎣

(
ΛTGΛ

)−1 −(
ΛTGΛ

)−1
ΛTGH

(
HTGH

)−1 (
ΛTGΛ

)−1
ΛTGH

(
HTGH

)−1
HTGΣ

(
ΣTGΣ

)−1 − (
ΛTGΛ

)−1
ΛTGΣ

(
ΣTGΣ

)−1

0
(
HTGH

)−1 −(
HTGH

)−1
HTGΣ

(
ΣTGΣ

)−1

0 0
(
ΣTGΣ

)−1

⎤

⎥⎥
⎦

(200)

Q
(
QTGQ

)−1
QT = Λ

(
ΛTGΛ

)−1
ΛT − Λ

(
ΛTGΛ

)−1
ΛTGH

(
HTGH

)−1
HT + Λ

(
ΛTGΛ

)−1
ΛTGH

(
HTGH

)−1
HTGΣ

(
ΣTGΣ

)−1
ΣT

− Λ
(
ΛTGΛ

)−1
ΛTGΣ

(
ΣTGΣ

)−1
ΣT +H

(
HTGH

)−1
HT −H

(
HTGH

)−1
HTGΣ

(
ΣTGΣ

)−1
ΣT +Σ

(
ΣTGΣ

)−1
ΣT (201)

that ΛTH = 0. Furthermore, without loss of generality, we
assume that loop and star functions have been eliminated
such that they are linearly independent. In this case, we can
denote the projectors as

PΛH = Λ(ΛTΛ
)−1
ΛT +H(

HTH
)−1
HT, (196)

PΣH = Σ(
ΣTΣ

)−1
ΣT +H(

HTH
)−1
HT. (197)

To reveal how G−1
n̂×̃f ,f acts on the different quasi-

Helmholtz subspaces, we derive an explicit expression for
(Q− TQTGQQ−1)−1 = Q(QTGQ)−1QT, where in the fol-
lowing we abbreviate Gn̂×̃f ,f = G. First, we recall the block
structure of

QTGQ =
⎡

⎣
ΛTGΛ ΛTGH ΛTGΣ

HTGΛ HTGH HTGΣ

ΣTGΛ ΣTGH ΣTGΣ

⎤

⎦

=
⎡

⎣
ΛTGΛ ΛTGH ΛTGΣ

0 HTGH HTGΣ

0 0 ΣTGΣ

⎤

⎦, (198)

which follows from the orthogonality of solenoidal (i.e., Λ)
and irrotational functions (i.e., n̂× Σ̃) / harmonic functions
with irrotational perturbation (i.e., n̂× H̃).
Using the Schur complement, we have

[
A B
0 D

]−1

=
[
A−1 −A−1BD−1

0 D−1

]
, (199)

Recursively application of (199) to (198) yields (200) shown
at the top of the page; explicitly computing Q(QTGQ)−1QT

results in (201), shown at the top of the page. Evidently, we
have

HTG−1Λ = 0, (202)

ΣTG−1Λ = 0, (203)

ΣTG−1H = 0, (204)

and considering the definition of projectors, the lemma
follows.
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[188] S. V. Savić, M. M. Iilć, and B. M. Kolundzija, “Maximally
orthogonalized higher order basis functions in large-domain
finite element modeling in electromagnetics,” IEEE Trans.
Antennas Propag., vol. 68, no. 8, pp. 6455–6460, Aug. 2020,
doi: 10.1109/TAP.2020.2970038.

[189] F. Valdés, F. P. Andriulli, K. Cools, and E. Michielssen,
“High-order div- and quasi curl-conforming basis functions for
Calderón multiplicative preconditioning of the EFIE,” IEEE Trans.
Antennas Propag., vol. 59, no. 4, pp. 1321–1337, Apr. 2011,
doi: 10.1109/TAP.2011.2109692.

[190] R. Hiptmair, “Operator preconditioning,” Comput.
Math. Appl., vol. 52, no. 5, pp. 699–706, Sep. 2006,
doi: 10.1016/j.camwa.2006.10.008.

[191] G. C. Hsiao and R. E. Kleinman, “Mathematical foundations for error
estimation in numerical solutions of integral equations in electromag-
netics,” IEEE Trans. Antennas Propag., vol. 45, no. 3, pp. 316–328,
Mar. 1997, doi: 10.1109/8.558648.

[192] F. Vico, L. Greengard, and Z. Gimbutas, “Boundary integral equation
analysis on the sphere,” Numerische Mathematik, vol. 128, no. 3,
pp. 463–487, Nov. 2014, doi: 10.1007/s00211-014-0619-z.

[193] F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark, NIST
Handbook of Mathematical Functions. Cambridge, U.K.: Cambridge
Univ. Press, 2010, p. 951.

[194] J. D. Jackson, Classical Electrodynamics, 3rd ed. New York, NY,
USA: Wiley, 1999, p. 808.

SIMON B. ADRIAN (Member, IEEE) received the
Bachelor of Science degree in electrical engineer-
ing and information technology from the Technical
University of Munich (TUM), Munich, Germany,
in 2009, the Master of Science degree in electri-
cal and computer engineering from the Georgia
Institute of Technology, Atlanta, GA, USA, in
2010, the Diplom-Ingenieur degree in electrical
engineering and information technology from the
TUM in 2012, and the Doktor-Ingenieur degree
from the TUM and the École Nationale supérieure

Mines-Télécom Atlantique Bretagne Pays de la Loire (IMT Atlantique),
Brest, France, in 2018.

From 2012 to 2019, he was Research Assistant with TUM. In 2018,
he was a Visiting Professor with the Politecnico di Torino, Turin, Italy.
From 2019 to 2020, he was a Senior Engineer with Infineon AG,
Neubiberg, Germany. Since 2020, he is an Assistant Professor with the
University of Rostock. Areas of application include antenna modeling and
bio-electromagnetic problems. His research interest is in computational elec-
tromagnetics with a focus on integral equation solvers. He is interested
in preconditioning techniques, low-frequency stable formulations, and fast
solvers.

Dr. Adrian is laureate of an IEEE Antennas and Propagation Society Pre-
Doctoral Research Award and an IEEE Antennas and Propagation Society
Doctoral Research Award. He was awarded with the Kurt-Fischer-Preis 2012
for his diploma thesis. His contribution to the student paper competition at
IEEE APS/URSI Symposium in 2013 was selected as an honorable men-
tion paper. He received the Second Prize in the Third International Union
Radio-Scientifique Internationale (URSI) Student Prize Paper Competition
of the URSI General Assembly and Scientific Symposium 2014, the Best
Young-Scientist-Paper Award of the Kleinheubacher Tagung 2014, the Third
Prize Student Paper Award of the IEEE APS/URSI Symposium 2015, the
First Prize EMTS 2016 Young Scientist Best Paper Award of the URSI
International Symposium on Electromagnetic Theory 2016, the Third Prize
Student Paper Award of the IEEE APS/URSI Symposium 2018, and the
Dr.-Georg-Spinner-Hochfrequenz-Preis for the doctoral thesis in 2018. He
has been an Associate Editor of the IEEE TRANSACTIONS ON ANTENNAS

AND PROPAGATION since 2020 and the IEEE Antennas and Propagation
Magazine since 2021. He has been a member of the IEEE Antennas and
Propagation Society Education Committee since 2016, where he has been
chair of the Student Activities Subcommittee since 2021. He has been
member of URSI since 2018.

ALEXANDRE DÉLY received the M.Sc.Eng. degree
from the École Nationale Supérieure des
Télécommunications de Bretagne, France, in 2015,
and the Ph.D. degree from the École Nationale
Supérieure Mines-Télécom Atlantique, France, and
from the University of Nottingham, U.K., in 2019.

He is currently working with the Politecnico di
Torino, Turin, Italy. His research focuses on pre-
conditioned and fast solution of boundary element
methods, frequency domain, and time domain
integral equations.

VOLUME 2, 2021 1173

http://dx.doi.org/10.1109/TAP.2019.2935778
http://dx.doi.org/10.1007/BF01396415
http://dx.doi.org/10.1109/8.558649
http://dx.doi.org/10.1109/TAP.2010.2103012
http://dx.doi.org/10.1109/TAP.2011.2158789
http://dx.doi.org/10.1109/TAP.2008.926784
http://dx.doi.org/10.1109/8.650207
http://dx.doi.org/10.1109/8.791939
http://dx.doi.org/10.1137/S1064827500367531
http://dx.doi.org/10.1109/TMTT.2005.860295
http://dx.doi.org/10.1109/TAP.2004.835279
http://dx.doi.org/10.1109/TAP.2013.2249036
http://dx.doi.org/10.1109/TAP.2014.2323081
http://dx.doi.org/10.1109/TAP.2020.2970038
http://dx.doi.org/10.1109/TAP.2011.2109692
http://dx.doi.org/10.1016/j.camwa.2006.10.008
http://dx.doi.org/10.1109/8.558648
http://dx.doi.org/10.1007/s00211-014-0619-z


ADRIAN et al.: ELECTROMAGNETIC INTEGRAL EQUATIONS: INSIGHTS IN CONDITIONING AND PRECONDITIONING

DAVIDE CONSOLI (Graduate Student Member,
IEEE) received the M.Sc. (Laurea) degree from
the Politecnico di Torino, Italy, in 2018, where
he is currently pursuing the Ph.D. degree. His
research interests are in computational electromag-
netics with a focus on fast and preconditioned
integral equation formulations.

ADRIEN MERLINI (Member, IEEE) received the
M.Sc.Eng. degree from the École Nationale
Supérieure des Télécommunications de Bretagne,
France, in 2015, and the Ph.D. degree from
the École Nationale Supérieure Mines-Télécom
Atlantique (IMT Atlantique), France, in 2019.

From 2018 to 2019, he was a visiting Ph.D. stu-
dent with the Politecnico di Torino, Italy, which
he then joined as a Research Associate. Since
2019, he has been an Associate Professor with
the Microwave Department, IMT Atlantique. His

research interests include preconditioning and acceleration of integral equa-
tion solvers for electromagnetic simulations and their application in brain
imaging.

Dr. Merlini received the Young Scientist Award at the URSI GASS 2020
meeting. His coauthored conference paper recipient of an honorable men-
tion at the URSI/IEEE-APS 2020. He is a member of IEEE-HKN, the IEEE
Antennas and Propagation Society, URSI France, and of the Lab-STICC
Laboratory.

FRANCESCO P. ANDRIULLI (Senior Member,
IEEE) received the Laurea degree in electrical
engineering from the Politecnico di Torino, Turin,
Italy, in 2004, the M.Sc. degree in electrical engi-
neering and computer science from the University
of Illinois at Chicago in 2004, and the Ph.D. degree
in electrical engineering from the University of
Michigan at Ann Arbor in 2008.

From 2008 to 2010, he was a Research
Associate with the Politecnico di Torino. From
2010 to 2017, he was an Associate Professor

(2010–2014) and then a Full Professor with the École Nationale Supérieure
Mines-Télécom Atlantique (IMT Atlantique, formerly ENST Bretagne),
Brest, France. Since 2017, he has been a Full Professor with the Politecnico
di Torino. His research interests are in computational electromagnet-
ics with focus on frequency- and time-domain integral equation solvers,
well-conditioned formulations, fast solvers, low-frequency electromagnetic
analyses, and modeling techniques for antennas, wireless components,
microwave circuits, and biomedical applications with a special focus on
Brain Imaging.

Prof. Andriulli was the recipient of the Best Student Paper Award at
the 2007 URSI North American Radio Science Meeting. He received the
First Place Prize of the student paper context of the 2008 IEEE Antennas
and Propagation Society International Symposium. He was the recipient
of the 2009 RMTG Award for junior researchers and was awarded two
International Union of Radio Science (URSI) Young Scientist Awards at
the International Symposium on Electromagnetic Theory in 2010 and 2013,
where he was also awarded the Second Prize in the Best Paper Contest.
He also received the 2015 ICEAA IEEE-APWC Best Paper Award. In
addition, he coauthored with his students and collaborators other three first
prize conference papers (EMTS 2016, URSI-DE Meeting 2014, ICEAA
2009), a second prize conference paper (URSI GASS 2014), two third
prize conference papers (IEEE-APS 2015, IEEE-APS 2018), three hon-
orable mention conference papers (ICEAA 2011, URSI/IEEE-APS 2013,
URSI/IEEE-APS 20) and other three finalist conference papers (URSI/IEEE-
APS 2012, URSI/IEEE-APS 2007, URSI/IEEE-APS 2006). He received the
2014 IEEE AP-S Donald G. Dudley Jr. Undergraduate Teaching Award, the
triennium 2014–2016 URSI Issac Koga Gold Medal, and the 2015 L. B.
Felsen Award for Excellence in Electrodynamics. He is the Editor in Chief of
the IEEE Antennas and Propagation Magazine. He serves as a Track Editor
for the IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, and as
an Associate Editor for IEEE ACCESS, URSI Radio Science Letters, and IET
Microwaves, Antennas & Propagation. He is the PI of the ERC Consolidator
Grant “321.” He is a member of Eta Kappa Nu, Tau Beta Pi, Phi Kappa Phi,
and URSI.

1174 VOLUME 2, 2021



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


