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COUNTING FUNCTIONS FOR DIRICHLET SERIES AND
COMPACTNESS OF COMPOSITION OPERATORS

FRÉDÉRIC BAYART

Abstract. We give a sufficient condition for a composition operator with positive
characteristic to be compact on the Hardy space of Dirichlet series.

1. Introduction

1.1. Description of the results. Let H2 be the Hilbert space of Dirichlet se-
ries f(s) =

∑

n≥1 ann
−s with square summable coefficients endowed with ‖f‖2 =

∑

n≥1 |an|
2. By the Cauchy-Schwarz inequality, Dirichlet series in H2 generate holo-

morphic functions in C1/2, where Cθ = {s ∈ C : ℜe(s) > θ}. Let ϕ : C1/2 → C1/2 be
analytic. The composition operator with symbol ϕ is defined onH2 by Cϕ(f) = f◦ϕ.
In [9], Gordon and Hedenmalm determined which symbols ϕ generate a bounded
composition operator on H2: this happens if and only if ϕ belongs to the Gordon-
Hedenmalm class G of the analytic functions ϕ : C1/2 → C1/2 which may be written
ϕ(s) = c0 + ψ(s) where c0 is a non-negative integer, ψ is a Dirichlet series that
converges uniformly in Cε for every ε > 0 and satisfies the following properties:

(a) if c0 = 0, then ψ0(C0) ⊂ C1/2;
(b) if c0 ≥ 1, then either ψ(C0) ⊂ C0 or ψ0 ≡ 0.

The non-negative integer c0 is called the characteristic of ϕ and we will use the
notation G0 and G≥1, respectively, for the subclasses (a) and (b).

Once you know your operator is continuous the next step is to study whether it is
compact. In our context we try to characterize compactness of Cϕ from properties
of its symbol ϕ. This has been investigated in many papers (like [1], [2], [3], [6], [7],
[8], [11]). Following the seminal paper of Shapiro [12] for composition operators on
H2(D), a natural way for doing so is to characterize compactness of Cϕ by mean
of some counting function related to ϕ. This was recently achieved in [7] for the
subclass G0 of composition operators with zero-characteristic.

In the present paper, we mostly concentrate on the subclass G≥1. In [2], the
Nevanlinna counting function of ϕ = c0s + ψ ∈ G≥1 was defined on C0 by

Nϕ(w) =
∑

ϕ(s)=w

ℜe(s), w ∈ C0.

In that paper, it was shown that provided |ℑm(ψ)| is bounded, the condition
Nϕ(w) = o(ℜe(w)) as ℜe(w) tends to 0 implies the compactness of Cϕ. Conversely,
in [1], Bailleul established that if ψ is supported on a finite set of prime numbers
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and is finitely valent, the compactness of Cϕ implies the above condition on Nϕ.
Moreover these two properties are equivalent if ψ is supported on a single prime
number (see [6]). We recall that if Q is a subset of the set of prime numbers, a
Dirichlet series

∑

n ann
−s is supported on Q provided an = 0 as soon as there exists

a prime number not in Q such that p|n.
Our aim here is to show that the result of [2] is still true without any assumption

on |ℑm(ψ)|.

Theorem 1.1. Let ϕ ∈ G≥1 and let us assume that Nϕ(w) = o(ℜe(w)) as ℜe(w)
tends to 0. Then Cϕ is compact on H2.

1.2. Background material. We briefly review some basic facts on Dirichlet series.
Let T∞ be the infinite polycircle endowed with its Haar measure m. It can be
identified to the group of characters of (Q+,+) via the prime number factorization:
to any z ∈ T∞ we associate the character χ defined by

χ(n) = zα1

1 · · · zαd
d for n =

d
∏

j=1

p
αj

j .

For f(s) =
∑

n ann
−s a Dirichlet series and χ a character, we denote by fχ the

Dirichlet series fχ(s) =
∑

n anχ(n)n
−s. If f converges uniformly in Cθ for some

θ ∈ R, then for any χ ∈ T∞, there exists a sequence of real numbers (τn) such that
fχ is the uniform limit in Cθ of the vertical translates (f(· + iτn)). Conversely all
uniform limits in Cθ of vertical translates are equal to some fχ, which justifies that
the functions fχ are called vertical limit functions.

If we now assume that f belongs toH2, then for almost every χ ∈ T∞, fχ converges
in C0 and one can compute the norm of f via the following Littlewood-Paley formula:

µ(R)‖f‖2 = µ(R)|f(+∞)|2 + 4

∫

T∞

∫ +∞

0

∫

R

σ|f ′
χ(σ + it)|2dµ(t)dσdm(χ),

where µ is any finite positive measure on R.
Regarding composition operators, the notion of vertical limits is extended to sym-

bols ϕ ∈ G≥1 by defining ϕχ = c0s+ψχ. The composition operators Cϕ and Cϕχ are
related by the formula

(f ◦ ϕ)χ = fχc0 ◦ ϕχ.

2. On counting functions for Dirichlet series

Let ϕ belong to G≥1. The classical Nevanlinna counting function associated to ϕ
is defined on C0 by

Nϕ(w) =
∑

ϕ(s)=w

ℜe(s), w ∈ C0.

It was introduced in [2] where the two following important properties were proved:

(NC1) Nϕ(w) ≤
1
c0
ℜe(w) for all w ∈ C0.

(NC2) If Nϕ(w) = o(ℜe(w)) as ℜe(w) → 0, then for all ε > 0, there exists θ > 0
such that, for all w ∈ C0 with ℜe(w) < θ, for all χ ∈ T∞, Nϕχ(w) ≤ εℜe(w)
(namely, the o bound is uniform with respect to χ ∈ T∞).
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In this paper, we will be also interested in a restricted version of the counting
function, which is defined by

Nϕ(w) =
∑

ϕ(s)=w
|ℑm(s)|<1

ℜe(s), w ∈ C0.

A similar restricted counting function has been introduced in [6], when ϕ is sup-
ported on a single prime number. The main interest of working with Nϕ instead of
Nϕ comes from the following enhancement of (NC1), which is inspired by [6, Lemma
6.3].

Proposition 2.1. Let ϕ = c0s + ψ ∈ G≥1. There exists C > 0 such that, for all
χ ∈ T∞, for all w ∈ C0 with ℜe(w) < c0,

Nϕχ(w) ≤ C
ℜe(w)

1 + (ℑm(w))2
.

Proof. Let Θ be the conformal map from D onto the half-strip

S = {s = σ + it : σ > 0, |t| < 2}

normalized by Θ(0) = 2 and Θ′(0) > 0. By standard regularity results on conformal
maps there exists C1 > 0 such that, for all s with 0 < ℜe(s) < 1 and |ℑm(s)| < 1,

ℜe(s) ≤ C1 log
1

|Θ−1(s)|
. (2.1)

Fix w ∈ C0 and χ ∈ T∞ with 0 < ℜe(w) < c0. Define G on D by

G(z) = Gw,χ(z) :=
ϕχ(Θ(z))− w

ϕχ(Θ(z)) + w̄
(2.2)

which is a self-map of D. The Littlewood inequality for the standard Nevanlinna
counting function of G says that

∑

z∈G−1({0})

log
1

|z|
≤ log

1

|G(0)|
. (2.3)

Now G(z) = 0 if and only if ϕχ(Θ(z)) = w so that (2.3) becomes

∑

Θ(z)∈ϕ−1
χ ({w})

log
1

|z|
≤ log

∣

∣

∣

∣

ϕχ(Θ(0) + w̄

ϕχ(Θ(0))− w

∣

∣

∣

∣

which itself can be rewritten
∑

s∈ϕ−1
χ ({w})

log
1

|Θ−1(s)|
≤ log

∣

∣

∣

∣

ϕχ(2) + w̄

ϕχ(2)− w

∣

∣

∣

∣

.

Observe now that, when ϕχ(s) = w, then 0 < ℜe(s) < 1 so that, using (2.1),

Nϕχ(w) =
∑

ϕχ(s)=w
|ℑm(s)|<1, ℜe(s)<1

ℜe(s)

≤ C1

∑

s∈ϕ−1
χ ({w})

log
1

|Θ−1(s)|
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≤ C1 log

∣

∣

∣

∣

ϕχ(2) + w̄

ϕχ(2)− w

∣

∣

∣

∣

.

Now we apply [7, Lemma 2.3] to get

Nϕχ(w) ≤ 2C1
ℜe(ϕχ(2))ℜe(w)

|w − ϕχ(2)|2

≤ 2C1
ℜe(ϕχ(2))ℜe(w)

(ℜe(ϕχ(2))− ℜe(w))2 + (ℑm(ϕχ(2))−ℑm(w))2
.

Our restriction on ℜe(w) shows that ℜe(ϕχ(2))− ℜe(w) ≥ c0. On the other hand,
since ψ is a Dirichlet series uniformly convergent in each Cε, ε > 0, ψ(2 + iR) is
bounded. ψχ being a vertical limit function of ψ, there exists C2 > 0 such that
|ϕχ(2)| ≤ C2 for all χ ∈ T∞. If |ℑm(w)| ≤ 2C2, then we write

Nϕχ(w) ≤
2C1C2ℜe(w)

c20
≤

2C1C2

c20
(1 + 4C2

2)
ℜe(w)

1 + (ℑm(w))2

whereas, if |ℑm(w)| > 2C2, then ℑm(w)− ℑm(ϕχ(2)) ≥
1
2
ℑm(w) which yields

Nϕχ(w) ≤ 2C1C2
ℜe(w)

c0 +
1
4
(ℑm(w))2

.

Therefore, in all cases, Proposition 2.1 is proved. �

Proposition 2.1 will be used to give a uniform bound on Nϕχ , in the spirit of
(NC2), upon the assumption Nϕ(w) = o(ℜe(w)).

Corollary 2.2. Let ϕ ∈ G≥1 and δ ∈ (0, 1). Let us assume that Nϕ(w) = o(ℜe(w))
as ℜe(w) goes to 0. Then for all ε > 0 there exists θ > 0 such that, for all χ ∈ T∞,
for all w ∈ C0 with ℜe(w) < θ,

Nϕχ(w) ≤ ε
ℜe(w)

(

1 + (ℑm(w))2
)(1+δ)/2

. (2.4)

Proof. Assume that the result is false. Then we can find ε > 0, a sequence (wk) in
C0 with ℜe(wk) → 0 and a sequence (χk) in T∞ such that, for all k,

Nϕχk
(wk) ≥ Nϕχk

(wk) > ε
ℜe(wk)

(

1 + (ℑm(wk))2
)(1+δ)/2

.

If ℑm(wk) is unbounded, this contradicts Proposition 2.1 whereas if ℑm(wk) is
bounded, this contradicts that Nϕ(wk) = o(ℜe(wk)) and in particular (NC2). �

3. Compact composition operators

3.1. Compactness on Hardy spaces.

Proof of Theorem 1.1. Let (fn) be a sequence in H2 that converges weakly to zero.
We will let fn,χ the vertical limit function of fn with respect to the character χ. By
the Littlewood-Paley formula applied with dµ(t) = 1

2
1[−1,1]dt, setting s = σ + it,

‖Cϕ(fn)‖
2 = |fn(+∞)|2 + 2

∫

T∞

∫

R+

∫ 1

−1

|f ′
n,χc0 (ϕχ(s))|

2|ϕ′
χ(s)|

2σdtdσdm(χ).
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Our assumption on (fn) implies that (fn(+∞)) tends to zero. In the inner-most
integrals we do the non-univalent change of variables w = u + iv = ϕχ(σ + it).
Observe that this change of variables involves the restricted Nevanlinna counting
function Nϕ whereas in [2] we used Nϕ (but we only obtained an inequality). Hence

‖Cϕ(fn)‖
2 = |fn(+∞)|2 + 2

∫

T∞

∫

R+

∫

R

|f ′
n,χc0 (w)|

2Nϕχ(w)dvdudm(χ).

Now let ε > 0 and let θ > 0 be given by Corollary 2.2 for δ = 1/2. We split the

integral over R+ into
∫ θ

0
+
∫ +∞

θ
. For the first integral, say I0, we use (2.4) to get

I0 ≤ ε

∫

T∞

∫

R+

∫

R

|f ′
n,χc0(w)|

2u
dv

(1 + v2)3/4
dudm(χ)

≤ C1ε‖fn‖
2

where we have used the Littlewood-Paley equality with the finite measure dµ(v) =
dv

(1+v2)3/4
. To hande the integral over [θ,+∞[, say I2, we now use Proposition 2.1 to

write

I1 ≤ C

∫

T∞

∫ +∞

θ

∫

R

|f ′
n,χc0 (w)|

2 u

1 + v2
dvdudm(χ)

≤ C

∫ +∞

θ

∫

R

∑

n

|an,k|
2(log k)2k−2u u

1 + v2
dvdudm(χ)

≤ C2

∑

k≥1

|an,k|
2(log2 k)

∫ +∞

θ

k−2udu

where we have written fn(s) =
∑

k≥1 an,kk
−s. Now the argument of [2] shows that

lim supn→+∞

∑

k≥1 |an,k|
2(log2 k)

∫ +∞

θ
k−2udu = 0, which finishes the proof of Theo-

rem 1.1. �

Remark 3.1. Using the Littlewood-Paley formula for Hp and the argument of [4],
a variant of the above proof shows that the condition Nϕ(w) = o(ℜe(w)) as ℜe(w)
tends to zero is also sufficient to prove the compactness of Cϕ on Hp, p ≥ 1.

Remark 3.2. Proposition 2.1 provides also an alternative approach to the continu-
ity of Cϕ when ϕ ∈ G≥1. Nevertheless, as it is written, we loose the fact that Cϕ is
a contraction.

3.2. Compactness on Bergman spaces. In this section, we turn to the Bergman
spaces of Dirichlet series introduced by McCarthy in [10]. For α > −1 define

Aα =

{

f(s) =
+∞
∑

n=1

ann
−s : ‖f‖2α =

+∞
∑

n=1

|an|2

(1 + log n)1+α
< +∞

}

(as in the case of the disc, the Hardy space H2 corresponds to the limiting case
α = −1). The norm of an element f of Aα can be evaluated thanks to the following
Littlewood-Paley formula:

‖f‖2α ≍ |f(+∞)|2 +

∫

T∞

∫ +∞

0

∫

R

|f ′
χ(σ + it)|2σ2+αdµ(t)dσdm(χ)
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where µ is any finite positive measure on R. Moreover, if f is a Dirichlet series
which converges uniformly in each half-plane Cε, ε > 0, an easy adaptation of [7,
Lemma 2.2] shows that

‖f‖2α ≍ |f(+∞)|2 + lim
σ0→0+

lim
T→+∞

1

T

∫ +∞

σ0

∫ T

−T

|f ′(σ + it)|2σ2+αdtdσ. (3.1)

Compactness of composition operators on Aα has been studied in [2] and in [1].
The interest of working in Bergman spaces is that one often can replace a sufficient
condition on some counting function by a sufficient condition on the symbol itself.
This is what happens again here.

Theorem 3.3. Let ϕ ∈ G and α > −1.

a) If ϕ ∈ G≥1 and ℜe(ϕ(s))
ℜe(s)

→ +∞ as ℜe(s) → 0, then Cϕ is compact on Aα.

b) If ϕ ∈ G0 and ℜe(ϕ(s))−1/2
ℜe(s)

→ +∞ as ℜe(s) → 0, then Cϕ is compact on Aα.

Proof. Let us start with a). Let Nα,ϕ =
∑

ϕ(s)=w
|ℑm(s)|<1

(

ℜe(s)
)2+α

be the appropriated

Nevanlinna counting function for Aα. We first observe that, for all χ ∈ T∞ and for
all w ∈ C0,

Nα,ϕχ(w) ≤









∑

ϕχ(s)=w
|ℑm(s)|<1

ℜe(s)









2+α

≤ C
(ℜe(w))2+α

1 + (ℑm(w))2+α

for some C > 0. Moreover, let ε > 0 and θ > 0 be such that ℜe(s) < θ =⇒
ℜe(s) < εℜe(ϕ(s)). For all χ ∈ T∞, one gets by vertical limit ℜe(s) ≤ εℜe(ϕχ(s)).
Let w ∈ C0 with ℜe(w) < θ and let χ ∈ T∞. If ϕ−1

χ ({w}) = ∅ then Nα,ϕχ(w) = 0.

Otherwise, any s ∈ ϕ−1
χ ({w}) satisfy ℜe(s) < θ so that

Nα,ϕχ(w) =
∑

ϕχ(s)=1
|ℑm(s)|<1

(

ℜe(s)
)2+α

≤ εα+1
(

ℜe(w)
)α+1

∑

ϕχ(s)=1
|ℑm(s)|<1

ℜe(s)

≤ Cεα+1

(

ℜe(w)
)2+α

1 + (ℑm(w))2

where we have used Proposition 2.1. We then conclude exactly as in the proof of
Theorem 1.1. Details are left to the reader.

Let us turn to b). We are inspired by [7] but working in a Bergman space and
using this very strong assumption we will avoid most of the technical difficulties
which appear here. First we observe that for any f ∈ Aα, σu(f ◦ ϕ) ≤ 0, which
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implies that we can estimate the norm of f ◦ ϕ using (3.1). We then consider, for
σ0, T > 0 and w ∈ C0, the counting function

Mα,ϕ(σ0, T ;w) =
1

T

∑

ϕ(s)=w
|ℑm(s)|<T, ℜe(s)>σ0

(

ℜe(s)
)2+α

.

The nonunivalent change of variables w = ϕχ(s) leads to

‖Cϕf‖
2
α ≍ |f(ϕ(+∞))|2 + lim

σ0→0+
lim

T→+∞

∫

C1/2

|f ′(w)|2Mα,ϕ(σ0, T ;w)dσdt.

Let ε > 0 and 0 < θ < ℜe(ϕ(+∞))/2 such that ℜe(ϕ(s)) < 1
2
+ θ implies ℜe(s) <

ε
(

ℜe(ϕ(s))− 1
2

)

. Then

Mα,ϕ(σ0, T ;w) ≤
1

T

∑

ϕ(s)=w
|ℑm(s)|<T

(

ℜe(s)
)2+α

≤ ε1+α

(

ℜe(w)−
1

2

)1+α
1

T

∑

ϕ(s)=w
|ℑm(s)|<T

ℜe(s)

≤ C
ε1+α

(

ℜe(w)− 1
2

)2+α

|w − ϕ(+∞)|2

by [7, Lemma 2.3 and 2.4] where the constant C is uniform in T for all T ≥ σ1,
for some σ1 > 0. The compactness of Cϕ now follows from an argument similar to
that of [7, Theorem 1.4], using that the estimate on Mα,ϕ(σ0, T ;w) for ℜe(w) < θ
is uniform with respect to σ0 and T . �

Corollary 3.4. Let ϕ ∈ G and α > −1.

(1) If ϕ ∈ G≥1 and ϕ is supported on a finite set of prime numbers, then

Cϕ is compact on Aα ⇐⇒
ℜe(ϕ(s))

ℜe(s)

ℜe(s)→0
−−−−−→ +∞.

(2) If ϕ ∈ G0 and ϕ is supported on a single prime number, then

Cϕ is compact on Aα ⇐⇒
ℜe(ϕ(s))− 1/2

ℜe(s)

ℜe(s)→0
−−−−−→ +∞.

Remark 3.5. For the case of positive characteristic, we do not know whether the
condition ℜe(ϕ(s))/ℜe(s) → +∞ is always necessary for compactness.

3.3. Concluding remarks.

Question 3.6. On H2, can we get a necessary condition using some counting func-
tion without any extra assumption on ϕ ∈ G≥1? Or at least, if ϕ ∈ G≥1 is supported
on a finite set of prime numbers, do we have

Cϕ is compact on H2 ⇐⇒ Nϕ(w) = o
(

ℜe(w)
)

as ℜe(w) → 0?
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Remark 3.7. The condition ℜe(ϕ(s))−1/2
ℜe(s)

ℜe(s)→0
−−−−−→ +∞ is not necessary for com-

pactness on Aα when the symbol is not supported on a single prime number. For
instance, ϕ(s) = 5

2
− 2−s− 3−s generates a compact operator on Aα (the proof of [3,

Theorem 2], done in H2, can be adapted to Aα) which does not satisfy the above
condition.

Remark 3.8. We can also use the restricted Nevanlinna counting function intro-
duced here to simplify the results of [5], deleting an unnecessary assumption of
boundedness. For instance, we can replace Theorem 5.5 of [5] by: let ϕ0 and ϕ1 ∈ G≥1

and write them ϕ0 = c0s + ψ0, ϕ1 = c0s + ψ1. Assume moreover that there exists
C > 0 such that

• |ϕ0 − ϕ1| ≤ Cmin(Reϕ0,Reϕ1);
• |ϕ′

0 − ϕ′
1| ≤ C.

Then Cϕ0
and Cϕ1

belong to the same component of C(H), the set of composition
operators on H. If moreover we assume that

|ϕ0 − ϕ1| = o
(

min(Reϕ0,Reϕ1)
)

and ϕ′
0 − ϕ′

1 → 0 as min(Reϕ0,Reϕ1) → 0

then Cϕ0
− Cϕ1

is compact.
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