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Transcritical bifurcation for the conditional distribution of a diffusion process

Model, motivation and main result

Let D = (0, 5) and consider Lipschitz functions ϕ1 , ϕ2 , ψ 1 , ψ 2 : D → [0, 1] such that ψ 1 + ψ 2 = 1 and (see Figure 1)

           ϕ 1 |(0,1] ≡ 1, ϕ 1 |[1,2] ≤ 1, ϕ 1 |[2,5) ≡ 0, ϕ 2 |(0,3] ≡ 0, ϕ 2 |[3,4] ≤ 1, ϕ 2 |[4,5) ≡ 1, ψ 1 |(0,2] ≡ 1, 0 < ψ 1 |(2,3) ≤ 1, ψ 1 |[3,5) ≡ 0, ψ 2 |(0,2] ≡ 0, 0 < ψ 2 |(2,3) ≤ 1, ψ 2 |[3,5) ≡ 1.
For all α > 0, we consider the absorbed diffusion process X α evolving according to the Itô's stochastic differential equation

dX α t = ϕ 1 (X α t ) + √ α ϕ 2 (X α t ) dB t + (ψ 1 (X t ) + α ψ 2 (X t )) dt, (1) 
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Figure 1: Representation of the graphs of ϕ 1 , ϕ 2 , ψ 1 and ψ 2 .

stopped when it reaches ∂D = {0, 5}, and where B is a standard one dimensional Brownian motion. This defines a sub-Markov semi-group (P α t ) t∈R + on D by

δ x P α t f = E x (f (X α t )1 X α t ∈D
), ∀f ∈ L ∞ (D) and a semi-flow (Φ α t ) t∈R + on the set P(D) of probability measures on D by Φ α t (µ) = P µ (X t ∈ • | X t ∈ D). Observe that the diffusion coefficient in [START_REF] Bansaye | A non-conservative harris' ergodic theorem[END_REF] vanishes on the interval [START_REF] Benaïm | Degenerate processes killed at the boundary of a domain[END_REF][START_REF] Benaïm | Stochastic approximation of quasi-stationary distributions on compact spaces and applications[END_REF]. Since in addition the drift coefficient is positive on [START_REF] Benaïm | Degenerate processes killed at the boundary of a domain[END_REF][START_REF] Benaïm | Stochastic approximation of quasi-stationary distributions on compact spaces and applications[END_REF] for any α > 0, the set [START_REF] Benaïm | Stochastic approximation of quasi-stationary distributions on compact spaces and applications[END_REF][START_REF] Cattiaux | Quasi-stationary distributions and diffusion models in population dynamics[END_REF] is absorbing and P 2 (∀t ≥ 0, X t ≥ 2, ∃t ≥ 0, X t = 3) = 1.

Hence, the family of diffusion processes (X α ) α≥0 has some similarities with the family of discrete-time Markov chains (X a,b ) a,b∈(0, [START_REF] Bansaye | A non-conservative harris' ergodic theorem[END_REF] , where X a,b is defined on {1, 2, ∂}, absorbed at ∂, with transition submatrix on {1, 2} given by a 1 -a 0 b . Figure 2: Domain of attraction of the attractors, with quadratic ϕ 1 , ϕ 2 , ψ 1 , ψ 2 . ν α ((0, 2)) has been computed numerically using Fleming-Viot type approximation techniques (see for instance [START_REF] Del | Exponential mixing properties for time inhomogeneous diffusion processes with killing[END_REF]).

It is pointed in

Our goal in this note is to prove a similar property for the family (X α ) α≥0 , which can be formulated as a bifurcation of the dynamical system on P(D) generated by Φ α . Our motivation is to quantify precisely the speed of convergence and the basin of attraction of the fixed points of this dynamical systems (see Fig. 2). Another motivation is to provide an illustration to the fact that, for an absorbed diffusion process satisfying the weak Hörmander condition and regularity properties at the absorbing set, uniqueness of a quasi-stationary distribution does not necessary hold true unless some accessibility properties are satisfied (see Theorem 1.8 of [START_REF] Benaïm | Degenerate processes killed at the boundary of a domain[END_REF]). The definition of a quasi-stationary distribution is recalled in Section 2 below.

To state our main result, we define the absorption parameters of X α for α = 1:

λ 1 := inf λ ∈ R, lim inf t→+∞ e λt P x 1 (X 1 t ∈ (0, 2)) > 0 , for some x 1 ∈ (0, 2)).
and

λ 2 := inf λ ∈ R, lim inf t→+∞ e λt P x 2 (X 1 t ∈ [3, 5)) > 0 , for some x 2 ∈ [3, 5),
As expected, we will see that the parameters λ 1 and λ 2 are positive and do not depend on x 1 nor x 2 .

Theorem 1.1. The dynamical system generated by Φ α parametrized by α > 0 admits a transcritical bifurcation at λ 1 /λ 2 . More precisely, there exist a family of probability measure (µ α ) α> λ 1/λ 2 on (0, 5) and a probability measure µ 0 on [START_REF] Benaïm | Stochastic approximation of quasi-stationary distributions on compact spaces and applications[END_REF][START_REF] Cattiaux | Quasi-stationary distributions and diffusion models in population dynamics[END_REF] such that:

• for α ≤ λ 1 /λ 2 , µ 0 is a global attractor for Φ α for the total variation distance,

• for α > λ 1 /λ 2 , µ 0 is a saddle point whose stable manifold for the total variation distance is the set W s (µ 0 ) := {µ ∈ P((0, 5)) : µ((0, 2)) = 0}, and µ α is a stable point whose basin of attraction for the total variation distance is W u (µ 0 ) = {µ ∈ P((0, 5)) : µ((0, 2)) > 0}.

Our method also provides an estimate for the speed of convergence of the dynamical system generated by Φ α to its limit fixed point. One can check from the proof that it is exponential when α = λ 1 /λ 2 and polynomial in

O(1/t) when α = λ 1 /λ 2 .
The proof of this result relies on the theory of quasi-stationary distributions. We show in particular that the process X α admits either one or two quasi-stationary distributions, depending on the value of α, which correspond to µ 0 and µ α (when α > λ 0 /λ 1 ). A central feature allowing this property is that X α is reducible. Indeed, it is proved in [START_REF] Benaïm | Degenerate processes killed at the boundary of a domain[END_REF] that irreducibility for such diffusions entails the uniqueness of a quasi-stationary distribution. In order to prove Theorem 1.1, we start with considerations on quasi-stationary distributions for Markov processes in reducible state spaces. Since they apply to general Markov processes and may have independent interest, they are stated independently in Section 2. We conclude the proof of the theorem in Section 3.

Quasi-stationarity for two-clusters reducible processes

Let X be a Markov process with state space M = D ∪ {∂} with ∂ / ∈ D, in discrete or continuous time, such that M admits a measurable partition D 1 ∪ D 2 ∪ {∂}. We assume that {∂} and D 2 ∪ {∂} are absorbing sets (see Figure 3), which means that A probability measure ν is said to be a quasi-stationary distribution if, for all t ≥ 0,

P ∂ (X t = ∂) = 1 and P x (X t ∈ D 2 ∪ {∂}) = 1, ∀x ∈ D 2 , ∀t ≥ 0.
P ν (X t ∈ •|X t = ∂) = ν(•). (2) 
It is well-known (see [START_REF] Méléard | Quasi-stationary distributions and population processes[END_REF]Proposition 1]) that the notion of quasi-stationary distribution is equivalent to the one of quasi-limiting distribution, defined as a probability measure ν such that there exist some initial distributions µ such that, for all measurable subset A ⊂ D,

lim t→∞ P µ (X t ∈ A|X t = ∂) = ν(A).
It is also well-known that, to any quasi-stationary distribution ν is associated the so-called exponential absorption rate λ 0 > 0 such that P ν (X t ∈ •, X t = ∂) = e -λ 0 t ν. We refer the reader to [START_REF] Méléard | Quasi-stationary distributions and population processes[END_REF][START_REF] Collet | Quasi-stationary distributions[END_REF][START_REF] Van Doorn | Quasi-stationary distributions for discrete-state models[END_REF] for a general overview on the theory of quasi-stationarity, and to [START_REF] Ross | On the convergence of diffusion processes conditioned to remain in a bounded region for large time to limiting positive recurrent diffusion processes[END_REF][START_REF] Lu Gong | Killed diffusions and their conditioning[END_REF][START_REF] Cattiaux | Quasi-stationary distributions and diffusion models in population dynamics[END_REF][START_REF] Cattiaux | Competitive or weak cooperative stochastic Lotka-Volterra systems conditioned to non-extinction[END_REF][START_REF] Knobloch | Uniform conditional ergodicity and intrinsic ultracontractivity[END_REF][START_REF] Kolb | Quasilimiting behavior for onedimensional diffusions with killing[END_REF][START_REF] Littin | Uniqueness of quasistationary distributions and discrete spectra when ∞ is an entrance boundary and 0 is singular[END_REF][START_REF] Del | Exponential mixing properties for time inhomogeneous diffusion processes with killing[END_REF][START_REF] Champagnat | General criteria for the study of quasi-stationarity[END_REF][START_REF] Champagnat | Criteria for exponential convergence to quasi-stationary distributions and applications to multi-dimensional diffusions[END_REF][START_REF] Hening | Quasistationary distributions for one-dimensional diffusions with singular boundary points[END_REF][START_REF] Guillin | Quasi-stationary distribution for strongly Feller Markov processes by Lyapunov functions and applications to hypoelliptic Hamiltonian systems[END_REF][START_REF] Lelièvre | Quasi-stationary distribution for the langevin process in cylindrical domains, part i: existence, uniqueness and long-time convergence[END_REF][START_REF] Ramil | Quasi-stationary distribution for the langevin process in cylindrical domains, part ii: overdamped limit[END_REF] for the study of the quasi-stationary distribution of diffusion processes. The aim of this section is to provide conditions on X allowing to obtain the existence of a quasi-stationary distribution ν for the process X, as well as the so-called Malthusian behavior (see [START_REF] Bertoin | The strong malthusian behavior of growth-fragmentation processes[END_REF] for the terminology), that is to say the existence of a positive function η on D such that

lim t→∞ e λ 0 t P x (X t ∈ •, X t = ∂) = η(x)ν(•),
where λ 0 is the exponential absorption rate associated to ν (in particular, this convergence entails the convergence of the conditional probability measure

P x (X t ∈ •|X t = ∂) towards ν).
In what follows, we will present three different sets of assumptions, each discussed in three different subsections, and each entailing different Malthusian behavior for the process X.

Exponential convergence on D 2 and faster exit from D 1

Let us introduce our first set of assumptions.

Assumption QSD2.

a. There exist a positive function η 2 on D 2 , a probability measure ν 2 on D 2 , a constant λ 2 > 0, and positive constants C 2 , γ 2 > 0 such that

e λ 2 t P x (X t ∈ •, X t ∈ D 2 ) -η 2 (x)ν 2 (•) T V ≤ C 2 e -γ 2 t , ∀x ∈ D 2 , t ≥ 0. (3) 
b. In addition, sup x∈D 1 e λ 2 t P x (X t ∈ D 1 ) ≤ f (t), where f is non-increasing and L 1 on R + .

The assumption a. refers to the Malthusian behavior, as described before, of the restriction of X on the subset D 2 , holding uniformly in x in total variation and exponentially fast. We refer the reader to [START_REF] Del | On the stability of nonlinear Feynman-Kac semigroups[END_REF][START_REF] Del | Genealogical and interacting particle systems with applications[END_REF][START_REF]Uniform convergence to the Q-process[END_REF][START_REF] Ferré | More on the long time stability of Feynman-Kac semigroups[END_REF][START_REF] Velleret | Unique Quasi-Stationary Distribution, with a possibly stabilizing extinction[END_REF][START_REF] Bansaye | A non-conservative harris' ergodic theorem[END_REF][START_REF]Practical criteria for r-positive recurrence of unbounded semigroups[END_REF][START_REF] Guillin | Quasi-stationary distribution for strongly Feller Markov processes by Lyapunov functions and applications to hypoelliptic Hamiltonian systems[END_REF][START_REF] Benaïm | Degenerate processes killed at the boundary of a domain[END_REF][START_REF]Lyapunov criteria for uniform convergence of conditional distributions of absorbed markov processes[END_REF] for general criteria entailing such behavior.

Also, remark that the inequality (3) entails that η 2 is bounded (take for example t = 0). In addition, it implies that η 2 (x) = lim t→+∞ e λ 2 t P x (X t = ∂) for all x ∈ D 2 . In addition, as noticed above, it implies that ν 2 is a quasistationary distribution for X.

Then Assumption QSD2 entails the following result on quasi-stationarity.

Theorem 2.1. Under QSD2, there exists η :

D → R + positive on D 2 such that sup x∈D e λ 2 t P x (X t ∈ •, X t = ∂) -η(x)ν 2 (• ∩ D 2 ) T V ----→ t→+∞ 0. ( 4 
)
If in addition P x (∃n ≥ 0, X n ∈ D 2 ) > 0 for all x ∈ D 1 , then η is positive on D and ν 2 (• ∩ D 2 )
is the unique quasi-stationary distribution for X on D.

In other terms, the Malthusian behavior of X, only assumed for x ∈ D 2 in Assumption QSD2, holds for all x ∈ D and uniformly in x in total variation. Speed of convergence for (4) is discussed after the proof of Theorem 2.1.

Proof of Theorem 2.1. For the rest, we first prove this theorem in the discrete time setting, and then consider the continuous-time setting.

Step 1: Proof in the discrete-time setting. We define the stopping time τ c 1 := min{n ≥ 0, X n / ∈ D 1 }. For all x ∈ D and all measurable set A ⊂ D 1 ∪ D 2 , for all n ∈ Z + , we have, using the strong Markov property at time τ c 1 ,

P x (X n ∈ A) = P x (X n ∈ A ∩ D 1 ) + P x (X n ∈ A ∩ D 2 ) = P x (X n ∈ A ∩ D 1 ) + n k=0 E x 1 τ c 1 =k P X k (X n-k ∈ A ∩ D 2 ) . (5) 
If x ∈ D 2 , then the result is an immediate consequence of (3) with η(x) = η 2 (x). It only remains to consider the case x ∈ D 1 . On the one hand, we have by assumption

e λ 2 n P x (X n ∈ A ∩ D 1 ) ≤ e λ 2 n P x (X n ∈ D 1 ) ----→ n→+∞ 0. ( 6 
)
On the other hand, using (3) and extending η 2 to {∂} by η 2 (∂) = 0, we obtain, for all k ≥ 0, t ≥ 0 and measurable set A ⊂ D 2 ,

E x 1 τ c 1 =k P X k (X n-k ∈ A) -E x 1 τ c 1 =k η 2 (X k )ν 2 (A)e -λ 2 (n-k) ≤ E x 1 τ c 1 =k C 2 e -(λ 2 +γ 2 )(n-k) 1 X k ∈D 2 ≤ C 2 P x (X k-1 ∈ D 1 , X k ∈ D 2 ) e -(λ 2 +γ 2 )(n-k) if k ≥ 1, 0 if k = 0.
Summing over k, we deduce that, for all n ≥ 0 and all measurable set

A ⊂ D 2 , n k=0 E x 1 τ c 1 =k P X k (X n-k ∈ A) - n k=0 E x 1 τ c 1 =k η 2 (X k )ν 2 (A)e -λ 2 (n-k) ≤ C 2 e -λ 2 n e -γ 2 n n k=1 e λ 2 k e γ 2 k P x (X k-1 ∈ D 1 , X k ∈ D 2 ) ≤ C 2 e -λ 2 (n-1) e -γ 2 n n k=1 e γ 2 k f (k -1). (7) 
Moreover

k≥n+1 E x 1 τ c 1 =k η 2 (X k )e λ 2 k ≤ η 2 ∞ k≥n+1 e λ 2 k P x (X k-1 ∈ D 1 , X k ∈ D 2 ) ≤ η 2 ∞ k≥n+1 e λ 2 k (P x (X k-1 ∈ D 1 ) -P x (X k ∈ D 1 )) ≤ η 2 ∞ (e λ 2 -1) k≥n e λ 2 k P x (X k ∈ D 1 ) ≤ η 2 ∞ (e λ 2 -1) +∞ n-1 f (t)dt.
This, ( 5), ( 6) and ( 7) entail that, for all x ∈ D 1 and all measurable A ⊂ D,

sup x∈D 1 e λ 2 n P x (X n ∈ A) - +∞ k=0 E x 1 τ c 1 =k η 2 (X k )e λ 2 k ν 2 (A ∩ D 2 ) ----→ n→+∞ 0. Setting η(x) := +∞ k=0 E x 1 τ c 1 =k η 2 (X k )e λ 2 k if x ∈ D 1 η 2 (x) if x ∈ D 2 ,
this concludes the proof of (4). If in addition P x (∃n ≥ 0, X n ∈ D 2 ) > 0 for all x ∈ D 1 , then η is positive on D and hence ν 2 (• ∩ D 2 ) is the unique quasi-limiting distribution of the process and hence its unique quasi-stationary distribution.

Step 2 : Proof in the continuous-time setting. The proof is done by applying the discrete time result to the Markov chain (X n ) n∈Z + .

Let X satisfy Assumption QSD2. Then the discrete time process (X n ) n∈N also satisfies Assumption QSD2 and hence, by Theorem 2.1 in the discrete time setting, we have

sup x∈D e λ 2 n P x (X n ∈ •, X n = ∂) -η(x)ν 2 (• ∩ D 2 ) T V ----→ n→+∞ 0. ( 8 
)
For any x ∈ D and h > 0, integrating the above convergence result with respect to P x (X h ∈ •) entails that

e λ 2 n P x (X n+h ∈ •, X n+h = ∂) -E x (η(X h ))ν 2 (• ∩ D 2 ) T V ----→ n→+∞ 0
Similarly, for any x ∈ D and h > 0, applying [START_REF] Champagnat | General criteria for the study of quasi-stationarity[END_REF] to the test function y ∈ D

→ P y (X h ∈ •, X h = ∂), gives e λ 2 n P x (X n+h ∈ •, X n+h = ∂) -η(x)P ν 2 (X h ∈ •, X h = ∂) T V ----→ n→+∞ 0.
But D 2 ∪ {∂} being absorbing, we have

P ν 2 (X h ∈ •, X h = ∂) = P ν 2 (X h ∈ •, X h ∈ D 2 ), which implies that E x (η(X h ))ν 2 (• ∩ D 2 ) = η(x)P ν 2 (X h ∈ • ∩ D 2 ) = e -λ 2 h η(x)ν 2 (• ∩ D 2 ),
so that E x (η(X h )) = e -λ 2 h η(x), and hence

e λ 2 n P x (X n+h ∈ •, X n+h = ∂) -e -λ 2 h η(x)ν 2 (• ∩ D 2 ) T V ----→ n→+∞ 0
Since the convergence holds uniformly in h ∈ [0, 1], this concludes the proof of (4) in the continuous time setting. The uniqueness of the quasi-stationary distribution is immediate, since any quasi-stationary distribution for (X t ) t∈R + is also a quasi-stationary distribution for (X n ) n∈Z + .

Let us do some remarks before passing to the second set of assumptions.

Remark 2.1. In the proof, the speed of convergence in the above theorem are explicit in terms of the quantities appearing in the assumptions. In particular, if Assumption QSD2 holds true with e (λ 2 +ε)t sup

x∈D 1 P x (X t ∈ D 1 ) ----→ t→+∞ 0,
for some ε > 0, then the convergence in (4) is exponential.

Remark 2.2. Non-uniform speed of convergence can also be proved under weaker form of Assumption QSD2. For instance if (3) holds true and if, for some x ∈ D 1 , e λ 2 t P x (X t ∈ D 1 ) ≤ f (t) with f non-increasing and L 1 on R + (but non-uniformly in x ∈ D 1 ), then,

e λ 2 n P x (X n ∈ •) -η(x)ν 2 (• ∩ D 2 ) T V ----→ n→+∞ 0.
Remark 2.3. The use of the absorbed Markov process setting is for convenience only: the above result applies more generally to semi-groups on L ∞ (D) admitting an isolated simple leading eigenvalue λ ∈ C.

Exponential convergence on D 1 and faster absorbtion in D 2

Let us now state our second set of assumptions.

Assumption QSD1. There exist a positive function η 1 on D 1 , a probability measure ν 1 on D 1 , a constant λ 1 > 0, and positive constants C 1 , γ 1 > 0 such that

e λ 1 t P x (X t ∈ •, X t ∈ D 1 ) -η 1 (x)ν 1 (•) T V ≤ C 1 e -γ 1 t , ∀x ∈ D 1 , t ≥ 0. ( 9 
)
In addition, for all t ≥ 0,

e λ 1 t sup x∈D 2 P x (X t ∈ D 2 ) ≤ f (t) ( 10 
)
where f is non-decreasing and L 1 on R + . Assumption QSD1 is very similar to Assumption QSD2, except that this assumption now deals with the quasi-stationarity for the restriction of the process X considered as absorbed by D 2 ∪ {∂}. Similarly to Assumption QSD2, Assumption QSD1 entails that η 1 is bounded, η 1 (x) = lim t→∞ e λ 1 t P x (X t ∈ D 1 ) for all x ∈ D 1 , and that ν 1 is a quasi-stationary distribution for the process X considered as absorbed by D 2 ∪ {∂}. The condition [START_REF]Practical criteria for r-positive recurrence of unbounded semigroups[END_REF] tells that sup x∈D 2 P x (X t = ∂) vanishes faster than the probability of survival starting from the quasi-stationary distribution ν 1 .

Theorem 2.2. Under Assumption QSD1, there exists a positive finite measure ν on D such that

sup x∈D e λ 1 t P x (X t ∈ •, X t = ∂) -η(x)ν T V ----→ t→+∞ 0, (11) 
where η(x) = η 1 (x) for all x ∈ D 1 and η(x) = 0 for all x ∈ D 2 . In addition, ν/ν(D) is the unique quasi-stationary distribution of X such that ν(D 1 )/ν(D) > 0.

Hence, (11) entails that P x (X t ∈ •|X t = ∂) converges in total variation towards ν/ν(D). Note also that Assumption QSD1 does not tell anything on the convergence of P

x (X t ∈ •|X t = ∂) when x ∈ D 2 . Remark 2.4. Similarly as in Remark 2.1, if e (λ 1 + )t sup x∈D 2 P x (X k ∈ D 2 ) → 0
for some ε > 0, then the convergence in ( 11) is exponential.

Remark 2.5. Similarly as in Remark 2.2, if (9) holds true and if

∞ k=0 e λ 1 k sup x∈D 2 P x (X k ∈ A) < +∞.
for some measurable A ⊂ D, then sup

x∈D 1 e λ 1 n P x (X n ∈ A) -η 1 (x)ν(A) ----→ n→+∞ 0.
This last case is particularly interesting, since it applies to situations where ν is not necessarily a finite measure (one may have ν(D 2 ) = +∞).

Proof of Theorem 2.2. We only prove the result in the discrete-time setting. The adaptation to the continuous-time setting follows from the same argument as in the proof of Theorem 2.1.

Fix x ∈ D 1 . The result is an immediate consequence of (9

) if A ⊂ D 1 ν(• ∩ D 1 ) = ν 1 .
It remains to consider the case A ⊂ D 2 , the general case being obtained by linearity. For all measurable A ⊂ D 2 and all x ∈ D 1 , we have, for all k ∈ {0, . . . , n -1},

E x 1 τ c 1 =n-k P X n-k (X k ∈ A) -η 1 (x)e -λ 1 (n-k-1) E ν 1 1 τ c 1 =1 1 X k+1 ∈A = E x f A (X n-k-1 )1 n-k-1<τ c 1 -η 1 (x)e -λ 1 (n-k-1) ν 1 (f A )
where, for all y ∈ D 1 , f A (y) = P y (X 1 ∈ D 1 , X k+1 ∈ A), and where τ c 1 was defined in the proof of Theorem 2.1. By Markov's property, we have f A (y) ≤ sup z∈D 2 P z (X k ∈ A). Hence, according to (9), we have

E x 1 τ c 1 =n-k P X n-k (X k ∈ A) -η 1 (x)e -λ 1 (n-k-1) E ν 1 1 τ c 1 =1 1 X k+1 ∈A ≤ C 1 e -λ 1 n e -γ 1 (n-k-1) e λ 1 (k+1) sup z∈D 2 P z (X k ∈ A) ≤ C 1 e -λ 1 n e -γ 1 (n-k-1) e λ 1 f (k).
Summing over k ∈ {0, . . . , n -1} and multiplying by e λ 1 n , we get

e λ 1 n P x (X n ∈ A) -η 1 (x) n-1 k=0 e λ 1 (k+1) E ν 1 1 τ c 1 =1 1 X k+1 ∈A ≤ C 1 e -γ 1 n n-1 k=0 e γ 1 (k+1) e λ 1 (k+1) sup z∈D 2 P z (X k ∈ A) ≤ C 1 e λ 1 n-1 k=0 e -γ 1 (n-k-1) f (k),
where the right hand term goes to 0 when n → +∞. Finally, we observe that

+∞ k=n e λ 1 (k+1) E ν 1 1 τ c 1 =1 1 X k+1 ∈A ≤ +∞ k=n e λ 1 (k+1) sup z∈D 2 P x (X k ∈ A) ≤ e λ 1 +∞ n-1 f (t)dt,
which also goes to 0 when n → +∞ under the assumption [START_REF]Practical criteria for r-positive recurrence of unbounded semigroups[END_REF]. This concludes the proof of [START_REF]Lyapunov criteria for uniform convergence of conditional distributions of absorbed markov processes[END_REF] with

ν(A) := ν 2 (A ∩ D 1 ) + +∞ k=0 e λ 1 (k+1) ν 1 1 τ c 1 =1 1 X k+1 ∈A∩D 2
In particular, ν/ν(D) is a quasi-limiting distribution of X and is thus a quasi-stationary distribution.

To conclude, let ν be a quasi-stationary distribution for X such that ν (D 1 ) > 0. Integrating [START_REF]Lyapunov criteria for uniform convergence of conditional distributions of absorbed markov processes[END_REF] with respect to ν and noting that ν (η 1 ) > 0, we deduce that the exponential absorption rate of ν is λ 1 and that ν/ν(D) is a quasi-limiting distribution for X starting from ν , and thus ν = ν .

Exponential convergence in D 1 and D 2 with the same rate

Let us now present our last set of assumptions.

Assumption QSD1-2. There exist two positive functions η 1 on D 1 and η 2 on D 2 , two probability measures ν 1 on D 1 and ν 2 on D 2 , a positive constant λ 0 > 0, and positive constants C 1 , γ 1 , C 2 , γ 2 > 0 such that ( 9) and (3) hold true with λ 1 = λ 2 = λ 0 .

In other terms, ν 2 and ν 1 are the quasi-stationary distributions for X respectively started from D 2 and absorbed at ∂, and started from D 1 and absorbed at D 2 ∪ {∂}, associated to the same absorption rate λ 0 > 0. Under this assumption, we have the following result.

Theorem 2.3. Under Assumption QSD1-2, the process admits ν 2 (• ∩ D 2 ) as unique quasi-stationary distribution and

sup x∈D 1 e λ 0 t t P x (X t ∈ •, X t ∈ D 2 ) -η(x)ν 2 (• ∩ D 2 ) T V ≤ C t + 1 , ( 12 
)
where η is a positive function on D 1 and C is a positive constant.

In particular, Malthusian behavior (3) does not hold for x ∈ D 1 . However, [START_REF] Collet | Quasi-stationary distributions[END_REF] still entails that the probability measure P x (X t ∈ •|X t = ∂) converges in total variation towards ν 2 for all x ∈ D 1 (and also for all x ∈ D 2 by Hypothesis (3)).

Proof of Theorem 2.3. As for the proof of Theorem 2.1, we only deal with the discrete-time setting.

Fix x ∈ D 1 and measurable set A ⊂ D 2 . For all k ≥ 0, we have, using

(recall that λ 1 = λ 2 = λ 0 ), e λ 0 (k+1) P ν 1 (τ c 1 = 1, X k+1 ∈ A) -e λ 0 E ν 1 1 τ c 1 =1 η 2 (X 1 ) ν 2 (A) ≤ e λ 0 C 2 e -γ 2 k , (3) 
where τ c 1 was defined in the proof of Theorem 2.1. Moreover, for all n ≥ 1 and k ∈ {0, . . . , n -1},

e λ 0 (k+1) η 1 (x)P ν 1 (τ c 1 = 1, X k+1 ∈ A) -e λ 0 n E x 1 τ c 1 =n-k 1 Xn∈A = e λ 0 (k+1) η 1 (x)ν 1 (f A ) -e λ 0 (n-k-1) E x (f A (X n-k-1 )) , where f A (y) = P y (τ c 1 = 1, X k+1 ∈ A) ≤ sup z∈D 2 P z (X k ∈ D 2 )
. Hence using [START_REF]Uniform convergence to the Q-process[END_REF], we deduce that

e λ 0 (k+1) η 1 (x)P ν 1 (τ 1 c = 1, X k+1 ∈ A) -e λ 0 n E x 1 τ c 1 =n-k 1 Xn∈A ≤ e λ 0 (k+1) C 1 e -γ 1 (n-k-1) sup z∈D 2 P z (X k ∈ D 2 ) = C 1 e λ 0 e -γ 1 (n-k-1) sup z∈D 2 e λ 0 k P z (X k ∈ D 2 ),
where, according to (3), sup z∈D 2 e λ 0 k P z (X k ∈ D 2 ) is uniformly bounded in k by C 2 + η 2 ∞ . This, [START_REF] Del | Genealogical and interacting particle systems with applications[END_REF] and summing over k ∈ {0, . . . , n -1} imply that

e λ 0 n P x (X n ∈ A) -ne λ 0 η 1 (x)E ν 1 1 τ c 1 =1 η 2 (X 1 ) ν 2 (A) ≤ C 2 η 1 (x)e λ 0 ∞ k=0 e -γ 2 k + +∞ k=0 e -γ 1 k C 1 e λ 0 (C 2 + η 2 ∞ ).
This concludes the proof of (12) with η(x) := e λ 0 η 1 (x)E ν 1 1 τ c 1 =1 η 2 (X 1 ) .

3 Proof of Theorem 1.1

We start with a proposition related to the theory of quasi-stationary distributions for diffusion processes.

Proposition 3.1. There exist a positive function η 2 : [3, 5) → (0, +∞), a probability measure ν 2 on [3, 5) and positive constants C 2 , λ 2 , γ 2 > 0 such that, for all α > 0 and for all probability measure µ on [START_REF] Benaïm | Stochastic approximation of quasi-stationary distributions on compact spaces and applications[END_REF][START_REF] Cattiaux | Quasi-stationary distributions and diffusion models in population dynamics[END_REF],

e αλ 2 t P µ (X α t ∈ • ∩ [3, 5)) -µ(η 2 )ν 2 (•) T V ≤ C 2 e -αγ 2 t , ∀t ≥ 0. ( 14 
)
There exist a positive function η 1 : (0, 2) → (0, +∞), a probability measure ν 1 on (0, 2) and positive constants C 1 , λ 1 , γ 1 > 0 such that, for all probability measure µ on (0, 2) and all α > 0,

e λ 1 t P µ (X α t ∈ • ∩ (0, 2)) -µ(η 1 )ν 1 (•) T V ≤ C 1 e -γ 1 t , ∀t ≥ 0. ( 15 
)
Proof of Proposition 3.1. For any α > 0, on the event X α 0 ∈ [START_REF] Benaïm | Stochastic approximation of quasi-stationary distributions on compact spaces and applications[END_REF][START_REF] Cattiaux | Quasi-stationary distributions and diffusion models in population dynamics[END_REF], the process remains almost surely in [START_REF] Benaïm | Stochastic approximation of quasi-stationary distributions on compact spaces and applications[END_REF][START_REF] Cattiaux | Quasi-stationary distributions and diffusion models in population dynamics[END_REF] until it reaches ∂D at the end point 5. It is known (this can be proved for instance using Section 4.5 of [START_REF] Champagnat | General criteria for the study of quasi-stationarity[END_REF]) that, considering the process X α restricted to [START_REF] Benaïm | Stochastic approximation of quasi-stationary distributions on compact spaces and applications[END_REF][START_REF] Cattiaux | Quasi-stationary distributions and diffusion models in population dynamics[END_REF] absorbed when it reaches 5, there exists a probability measure µ α on [START_REF] Benaïm | Stochastic approximation of quasi-stationary distributions on compact spaces and applications[END_REF][START_REF] Cattiaux | Quasi-stationary distributions and diffusion models in population dynamics[END_REF] (the quasi-stationary distribution of X α restricted to [START_REF] Benaïm | Stochastic approximation of quasi-stationary distributions on compact spaces and applications[END_REF][START_REF] Cattiaux | Quasi-stationary distributions and diffusion models in population dynamics[END_REF]), a positive function ζ α : [3, 5) → (0, +∞), and positive constants c α , δ α , δ α > 0 such that, for all probability measure µ on [START_REF] Benaïm | Stochastic approximation of quasi-stationary distributions on compact spaces and applications[END_REF][START_REF] Cattiaux | Quasi-stationary distributions and diffusion models in population dynamics[END_REF],

e δαt P µ (X α t ∈ •) -µ(ζ α )µ α (•) T V ≤ c α e -δ α t , ∀t ≥ 0. (16) 
Also, since Law((X α t ) t≥0 ) = Law((X 1 αt ) t≥0 ), we deduce that ζ α = ζ 1 , µ α = µ 1 and δ α = αδ 1 for all α > 0. Moreover, on can take c α = c 1 and δ

α = αδ 1 . Setting η 2 = ζ 2 , ν 2 = µ 1 , C 2 = c 1 , λ 2 = δ 1 and γ 2 = δ 1 , this proves (14).
Similarly, the law of the process X α restricted to (0, 2) and absorbed when it reaches {0, 2} does not depend on α, and there exists a probability measure ν 1 on (0, 2) (the quasi-stationary distribution of the process X α conditioned to remain in (0, 2)), a positive function η 1 : (0, 2) → (0, +∞) and positive constants C 1 , λ 1 , γ 1 > 0 such that, for all probability measure µ on (0, 2) and all α > 0,

e λ 1 t P µ (X α t ∈ •, t < T 0 ∧ T 2 ) -µ(η 1 )µ 1 (•) T V ≤ C 1 e -γ 1 t , ∀t ≥ 0, ( 17 
)
where T a denotes the first hitting time of {a} (see again Section 4.5 in [START_REF] Champagnat | General criteria for the study of quasi-stationarity[END_REF]).

Since the process cannot enter (0, 2) after time T 0 ∧ T 2 , we deduce that

P µ (X α t ∈ •, t < T 0 ∧ T 2 ) = P µ (X α t ∈ • ∩ (0, 2 
)). This concludes the proof of Proposition 3.1.

We consider now the behaviour of the process with initial position in [START_REF] Benaïm | Degenerate processes killed at the boundary of a domain[END_REF][START_REF] Benaïm | Stochastic approximation of quasi-stationary distributions on compact spaces and applications[END_REF]. For any α > 0 and x ∈ [2, 3), denote by (f α t (x)) t≥0 the solution of the ODE ∂f

α t (x)/∂t = ψ 1 (f α t (x)) + αψ 2 (f α t (x)) and f α 0 (x) = x. For all x ∈ [2, 3), denote by t 3 (x) = inf{t ≥ 0, f α t (x) = 3}, then P x (X α t ∈ A) = 1 f α t (x)∈A if f α t (x) < 3, P 3 X α t-t 3 (x) ∈ A if f α t (x) ≥ 3,
where we used the strong Markov property at time T 3 and the fact that X α is deterministic with drift equal to ψ 1 + αψ 2 on [2, 3] (so that T 3 = t 3 (x) P x -almost surely). In particular, we deduce from Proposition 3.1 that, for all x ∈ [2, 3) and t ≥ t 3 (x),

e αλ 2 (t-t 3 (x)) P x (X α t ∈ •) -η 2 (3)ν 2 (•) T V ≤ C 2 e -αγ 2 (t-t 3 (x))
and hence

e αλ 2 t P x (X α t ∈ •) -η α (x)ν 2 (•) T V ≤ e α(λ 2 +γ 2 )t 3 (x) C 2 e -αγ 2 t ≤ C 2 e -αγ 2 t ,
where η α (x) := e αλ 2 t 3 (x) η 2 (3) and C 2 = e α(λ 2 +γ 2 )t 3 (2) C 2 . By integration of the last inequality and by ( 14), we thus proved that, for any initial distribution in [START_REF] Benaïm | Degenerate processes killed at the boundary of a domain[END_REF][START_REF] Cattiaux | Quasi-stationary distributions and diffusion models in population dynamics[END_REF],

e αλ 2 t P µ (X α t ∈ •) -µ(η α )ν 2 (•) T V ≤ C 2 e -αγ 2 t , ∀t ≥ 0, (18) 
where

η α (x) = e αλ 2 t 3 (x) η 2 (3) if x ∈ [2, 3] η 2 (x) if x ∈ [3, 5).
We are now in a position to apply the results of Section 2, with D 1 = (0, 2) and D 2 = [2, 5).

Case α < λ 1 /λ 2 . In this case we observe that Assumption QSD2 is satisfied (of course with αλ 2 instead of λ 2 ). Indeed, on the one hand (3) is immediate from [START_REF] Guillin | Quasi-stationary distribution for strongly Feller Markov processes by Lyapunov functions and applications to hypoelliptic Hamiltonian systems[END_REF], while, for all x ∈ D 1 , sup x∈D 1 e αλ 2 t P x (X t ∈ D 1 ) ≤ e (αλ 2 -λ 1 )t (C 1 + η 1 ∞ ) ----→ t→+∞ 0 and is L 1 (R + ), where we used [START_REF] Del | Exponential mixing properties for time inhomogeneous diffusion processes with killing[END_REF]. Moreover, we have P x (X 1 ∈ D 2 ) > 0 for all x ∈ D 1 and hence, according to Theorem 2.1, ν 2 (• ∩ D 2 ) is the unique quasi-stationary distribution ν for the process X α absorbed at {0, 5}, and (4) implies that, for all probability measure µ on D,

Φ α t (µ) T V ----→ t→+∞ ν 2 (• ∩ D 2 ).
Case α = λ 1 /λ 2 . In this case, we observe that Assumption QSD1-2 is satisfied. To deduce the convergence of Φ α t (µ), we need to distinguish two cases: either µ(D 1 ) = 0 and then the fact that

Φ α t (µ) T V ----→ t→+∞ ν 2 (• ∩ D 2 ).
follows from (3), or µ(D 1 ) > 0 and then it follows from (9), ( 3) and ( 12) that, on the one hand, e λ 0 t t P µ (X t = ∂) = e λ 0 t t P µ (X t ∈ D 1 )+ e λ 0 t t P µ (X t ∈ D 2 , X t = ∂) ----→ t→+∞ µ(η) > 0 and on the other hand, that for all A ⊂ D 1 ∪ D 2 measurable, e λ 0 t t P µ (X t ∈ A) = e λ 0 t t P µ (X t ∈ A∩D 1 )+ e λ 0 t t P µ (X t ∈ A∩D 2 ) ----→ t→+∞ µ(η)ν 2 (A∩D 2 ), where the convergence is uniform with respect to A. Hence, in all cases,

Φ α t (µ) T V ----→ t→+∞ ν 2 (• ∩ D 2 ).
Case α > λ 1 /λ 2 . In this case, we observe that Assumption QSD1 is satisfied. Indeed, on the one hand (9) holds true, while, for all x ∈ D 2 ,

k∈Z + sup x∈D 2 e λ 1 k P x (X k ∈ D 2 ) ≤ k∈Z + e (λ 1 -αλ 2 )k (C 2 + η α ∞ ) < +∞,
where we used (18) and αλ 2 > λ 1 . Then, [START_REF]Lyapunov criteria for uniform convergence of conditional distributions of absorbed markov processes[END_REF] in Theorem 2.2 implies that there exists a probability measure ν on D such that ν(D 1 ) > 0 and such that, for all probability measure µ on D such that µ(D 1 ) > 0,

Φ α t (µ) T V ----→ t→+∞ ν.
In addition, [START_REF] Guillin | Quasi-stationary distribution for strongly Feller Markov processes by Lyapunov functions and applications to hypoelliptic Hamiltonian systems[END_REF] entails that, for all probability measure µ on D such that µ(D 1 ) = 0,

Φ α t (µ) T V ----→ t→+∞ ν 2 (• ∩ D 2 ).
This concludes the proof of Theorem 1.1.
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 3 Example 3.5] that the probability measures ν 2 := δ 2 andν := a-b 1-b δ 1 + 1-a 1-b δ 2 (when a > b) are such that • If a > b, lim n→∞ P µ (X a,b n = i|X a,b n = ∂) = ν({i}) for all i = 1, 2 and µ = δ 2 . • Otherwise, lim n→∞ P µ (X a,b n = i|X a,b n = ∂) = ν 2({i}) for all i = 1, 2 and µ ∈ P({1, 2}).

Figure 3 :

 3 Figure 3: Transition graph displaying the relation between the sets D 1 , D 2 and ∂.
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